
impact – A Modelica R© Package Manager

Michael Tiller
Xogeny Inc., USA

michael.tiller@xogeny.com

Dietmar Winkler
Telemark University College, Norway

dietmar.winkler@hit.no

Abstract

To manage complexity, modern programming lan-
guages use organizational units to group code related
by some common purpose. Depending on the pro-
gramming language, these units might be called lib-
raries, packages or modules. But they all attempt to
encapsulate functionality to promote modular code
and reusability. For the remainder of this paper,
we will simply refer to these organizational units as
packages (as they are called in Modelica).

Also common to many modern programming lan-
guages are tools to manage these packages. These
tools are generally called package managers and they
allow developers to quickly “fetch” any packages
they may need for a given project. The main func-
tions of package managers are to allow developers to
search, install, update and uninstall packages with a
simple command-line or graphical interface. In the
Java world, the most common package manager is
maven. For Python, tools like easy_install[1] and
pip[2] are used for managing packages. For client-
side web development, bower is used. For server-
side JavaScript, the tool of choice is npm[3]. For
compiled languages, these package managers often
include some additional build functionality as well.

This paper introduces impact, a package manager
for Modelica. Using impact, Modelica users and
developers can quickly search for, install and up-
date Modelica libraries. In this paper, we will dis-
cuss the functionality provided by impact. In addi-
tion, we will discuss how the functionality was im-
plemented. As part of this we will discuss the im-
portance of collaborative platforms, like GitHub[4]
in our case, for providing a means for collecting, cur-
ating and distributing packages within a community
of developers.

The impact package manager is provided to the
Modelica community as a free, open-source tool.

Furthermore, the protocols involved are all docu-
mented and we encourage tool vendors to integrate
them into their own tools so they can provide the
same searching, updating and installation capabilit-
ies that the command-line tool provides.

Keywords: Modelica, package manager, GitHub,
dependency management, Python

1 Introduction

It is increasingly the case that the adoption of new
technologies hinges on automating away the tedious
tasks required to learn and adopt these new techno-
logies. For programming languages or frameworks,
this means streamlining the process by which librar-
ies can be found and installed.

For nearly all modern languages, this issue of
“package management” has reached the point where
it is almost an element of language design. The Java
world has the maven tool, Scala has sbt, Node.js has
npm and the Go language includes built-in support
for package management via its the command line
go compiler.

In the Modelica world, this issue has been largely
overlooked. Although there have been proposals
for formats to list network accessible libraries, these
efforts have remained mere proposals without any
concrete functionality. The impact project was in-
spired by the Bower[5] project’s approach. This
lightweight, git-centric approach (discussed in Sec-
tion 3) turned out to be relatively straightforward to
implement and provides functionality otherwise un-
available in the Modelica world.

The goal of the impact project is to provide the
same basic package management features found in
most package managers. These features will be dis-

DOI
10.3384/ECP14096543

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

543



cussed in detail in subsequent sections of this paper
(see Section 2). Our goal is to lower the barrier for
users to find, install and update libraries. At the same
time, we expect that the impact tool itself will be
just as easy to install as the libraries it supports.

The contribution of the impact project is making
installation of Modelica packages as easy as possible.
There are actually three important aspects in our ap-
proach. The first aspect is the one most apparent to
the user, a command-line interface that can be used
to easily install not just a given Modelica library, but
also its dependencies. However, such a command
line tool must rely on the second aspect which is the
avialability of a centrally served, up to date index of
packages. The final aspect is making it easy for lib-
rary developers to publish their libraries in such a
way that they are available to other Modelica users
through the impact package manager. Each of these
aspects will be discussed as part of this paper.

It is worth noting that while impact can handle
dependences, it does not solve some of the problems
currently inherent in Modelica. At the moment, de-
pendencies between packages are described by indi-
vidual versions. The result is that these dependencies
can create brittle chains which are not always pos-
sible to satisfy. The logic for unconvering depend-
encies in impact is very simple. It merely identifies
any dependencies explicitly listed by the library and
then attempts to find that version of those packages
within the impact package index. Hopefully the
Modelica annotations to express dependencies will
be refined to support a richer set of relationships. If
so, the logic used by impact to identify and install
these dependencies can be extended to support this
improved expressiveness.

2 Command Line Interface

2.1 Installation of impact

The impact tool is available from “PyPI”[6] and
can be installed by running either

$ pip install impact

or

$ easy_install impact

As an alternative one can also download the
sources from https://github.com/xogeny/
impact or https://pypi.python.org/pypi/
impact, unpack and run

$ python setup.py install

in order to install it.

2.2 Searching

Searching for librararies is done by executing:

$ impact search <search term>

This will print a list of all package whose names
and/or description strings contain the “<search
term>”. The returned list also contains the URL
where the Modelica package is hosted.

The output can also be made more verbose with:

$ impact search -v <search term>

which, in addition, will return the description string
and the available versions.

2.3 Installing packages

Once a package of interest is found using search,
it can be installed by executing:

$ impact install <package name>

This will then fetch not only the package itself and
extract it in a configurable target directory but it will
also fetch the dependencies of the packages as long
as those are available to impact.

If several versions of a package are available,
impactwill choose the latest one. If this is not de-
sirable then one can also specify the version expli-
citly. For example, in order to install Modelica ver-
sion 2.2.2 one would execute the command:

$ impact install Modelica#2.2.2

impact – A Modelica Package Manager

544 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096543



Just like for the search sub-command there is also
a verbose switch “-v” available for install which
will give information on what versions are available,
which version is going to be installed, what the de-
pendencies are and where the version will be down-
loaded from.

In addition there is also a “[–dry-run|-d]” op-
tion available which does not download or extract
any files but will simply report what impact would
do. Users will generally use the “dry-run” option in
combination with the “verbose” option.

3 Candidate Packages

The question that might arise now is, how does
impact know what packages and which versions of
those packages are available.

3.1 Making packages visible

The Modelica Association (MA) has always
maintained a list of available Modelica libraries
on their website under https://modelica.org/
libraries. Initially, the list was a static web page
which listed the different packages and their latest
version as submitted to the webmasters of the MA.
Keeping the list of packages up-to-date was a manual
job for both the website maintainers and package de-
velopers.

In spring 2013, all the free packages listed on
https://modelica.org/libraries were moved
to individual repositories on GitHub. Third-party
packages can be found under https://github.
com/modelica-3rdparty and packages by the MA
under https://github.com/modelica This had
the following benefits:

• Package developers can access their package re-
pository directly without having to involve the
webmasters of the MA thus submitting updates
any time.

• All packages now have an individual issue
tracker and version control service in place.

• The webmasters of the MA can now collect the
latest information on all the packages automat-
ically in order to generate an up-to-date list-

ing on https://modelica.org/libraries
(more on this later in Section 3.3).

3.2 Semantic versioning

One thing that is important when trying to build up
a package manager that can also handle version de-
pendencies is the need for a proper approach to ver-
sion numbering.

We decided to base our package manager on a
system called Semantic Versioning[7]. As a result,
package developers are strongly encouraged to use
semantic versioning so that they are compatible with
impact. This has the additional benefit of being a
well-documented and logical approach.

Semantic versioning has the simple rule of:

Given a version number MAJOR.MINOR.PATCH, in-
crement the:

1. MAJOR version when you make incompatible API
changes,

2. MINOR version when you add functionality in a
backwards-compatible manner, and

3. PATCH version when you make backwards-
compatible bug fixes.

In addition, pre-releases (e.g., beta releases, re-
lease candidates) and build metadata (e.g., version
control hashes) are also taken care of in this system,
details can be found in the manual page[7].

3.3 GitHub API

Having all packages available as GitHub reposit-
ories means that we can use the GitHub API v3[8]
in order to collect data about those packages. All
API access is over HTTPS, and accessed from the
api.github.com domain. All data is sent and re-
ceived as JSON[9].

For example if one visits: https://api.
github.com/users/modelica/repos a verbose
list containing a series of information of all repos-
itories that exist under the user modelica is returned
in JSON format. This includes also a new API-url
for retrieving the tags of a specific repository. For
example, by visiting https://api.github.com/
repos/modelica/Modelica/tags we get a list of

Session 3E: Modelica Tools 2

DOI
10.3384/ECP14096543

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

545



all tags for the Modelica Standard Library repository
including download links for a zipped version of the
tagged source code.

As mentioned before, all data is returned as JSON
according to a proper schema. This makes it easy
to pull out all the information we need. Initially,
this information was used to generate an up-to-date
listing of all MA and third-party packages to be
displayed on https://modelica.org/libraries
but we also noticed quite quickly the possibilities
such an API opens up. It was offering the very in-
formation we needed in order to build a catalog of
available packages including the different tagged ver-
sions for download.

3.4 GitHub only?

The mechanism described so far seems to depend
a lot on GitHub’s API. So one might wonder is there
a danger of locking us to GitHub.

The answer is actually no. We chose GitHub just
as one possible data source. It is possible to en-
hance impact with other “connectors” to other ex-
isting package hosting solutions (private or public).
As long as the schema is known to impact it can
then pull its data from basically all possible places.
For example, it would also be possible to use the API
of the GitLab project[10] to extract the same inform-
ation.

4 Package Index

Package information is maintained in an index file.
This index file is also generated by impact but the
process of building an index is not normally used by
the user or tool vendors so all discussion about the
creation of index files is presented later in Section 5.
The index file is stored in JSON format and has the
following structure:

{
"<LibraryName>": {

"homepage": "<URL>",
"description": "<description string>",
"versions": [

"<version number>": {
"version": "<version number>",
"major": <major version number>,
"minor": <minor version number>,

"patch": <patch version number>,
"tarball_url": "<URL to tarball>",
"zipball_url": "<URL to zipball>",
"path": "<path to library>",
"dependencies": [

{"name": "<DepLibName1>",
"version": "<version string>"},

{"name": "<DepLibName2>",
"version": "<version string>"},

...
]

}
...

]
}

}

All quantities listed within angle brackets, <...>,
are library specific details. The <LibraryName>
is the name of the package in Modelica. Gener-
ally speaking, all version numbers follow the se-
mantic versioning approach. However, since not all
Modelica libraries currently follow semantic version
conventions, indices can include semantic duplicates
(e.g., 1.0 and 1.0.0) which reference the same un-
derlying version. Therefore, any non-semantic con-
forming versions (e.g., 1.0) will act as “redirects” to
the semantic version (e.g., 1.0.0).

The homepage field is a URL to a web site that
contains additional information about the library.
The zipball_url and tarball_url fields point to
archives that can be downloaded, in the zip and tar
formats, respectively. The dependencies field lists
all the library’s dependencies. These are the librar-
ies that will also be installed when installing the spe-
cified library version they are listed under. The path
field specifies the name of the directory or file rep-
resenting the Modelica library within the specified
archive.

Note, we have not currently defined a schema for
this format. To promote interoperability we recog-
nize that a formal schema would be the next logical
step. We have added the creation of a JSON schema
for the index file format to our list of next steps to
promote interoperability with other implementations.
Our hope is that such a schema would further encour-
age tool vendors to support this format as a means of
publishing information about available Modelica lib-
raries.

The Modelica Association index of publicly avail-
able libraries can be found at https://impact.
modelica.org/impact_data.json.

impact – A Modelica Package Manager

546 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096543



5 Private Packages

5.1 Using Private Indices

As mentioned in Section 4, there will be a pack-
age index hosted on modelica.org that lists any
packages connected to special Modelica related Git-
Hub accounts. This provides a means for library de-
velopers to quickly add their libraries to the set of
libraries that are publicly indexed.

However, we recognize that many users will de-
pend on libraries that cannot be hosted publicly. At
the same time, we would like for those users to
be able to benefit from the same kind of package
management features for finding and installing their
privately hosted libraries.

For this reason, users can create a special config-
uration file that lists the indices to be searched. By
default, impact will use only the index hosted on
modelica.org. But through custom configurations,
users can specify any collection of indices (public or
private) they wish to use.

To specify an alternative list of indices, a user
would simply edit their user configuration file and
add the following text:

[Impact]
indices=<ur1l>,<url2>

where the value of indices is a list of URLs
pointing to index files. The default value for the
indices variable is https://impact.modelica.
org/impact_data.json. In cases where private in-
dex are files used, the URLs for private index files
should be listed first and the URL to the index file
hosted on modelica.org should be last.

Note, the location of the user’s configuration file
will depend on the platform their are using. Inform-
ation about the location of the configuration file and
current settings is generated by the following com-
mand:

$ impact info

5.2 Generating Private Indices

In order for users to include a private index file in
the list of indices to be searched (as discussed 5.1), it
is necessary to also have the capability to easily gen-
erate such private indices. This functionality is also
available using the impact command line although
we did not discuss it previously because it is not func-
tionality that a typical user would require.

To generate an index file, the following impact
command line syntax should be used:

$ impact refresh <source1> \
<source2> ... <sourcen> \
-o <output file>

where each source is a URL that en-
codes information about a potential source.
For example, the default sources are
github://modelica-3rdparty/.* and
github://modelica/.* (in other words,
all repositories belonging to the GitHub user
modelica-3rdparty and all repositories belonging
to the GitHub user modelica, respectively). Note
that later sources have a higher priority than earlier
sources. Also, at the moment the only types of
repositories supported are GitHub repositories
although by using a URL based approach it is easy to
extend the possibilities to include Git, Subversion or
other types of repositories as long as the information
required for the index file is available.

The output file generated from this command
should then be made accessible to users so they can
incorporate it into the set of indices they search (see
Section 5.1 for more details).

6 Source Code and Licensing

The impact project started off as a simple script,
then a gist and eventually a complete repository. The
repository for the source code is hosted on GitHub
at https://github.com/xogeny/impact. Poten-
tial contributors are invited to fork the repository and
add more functionality. Contributions to improve
impact are very welcome.

The software is distributed under an MIT license.
As such, there are no significant restrictions on using

Session 3E: Modelica Tools 2

DOI
10.3384/ECP14096543

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

547



the code in open-source, closed-source or commer-
cial projects. In fact, we welcome vendor support and
adoption. In addition to making the complete source
code for the package manager available and docu-
menting the functionality in this (freely download-
able) paper, we are also making the index data freely
available from the modelica.org domain. We hope
that all these measures will lead to the highest pos-
sible chance of adoption.

7 Conclusion

Inspired by the approach taken in Bower, we’ve
created impact, a package manager for the Modelica
eco-system. Like Bower, this approach is relatively
light and relies heavily on the GitHub API to aggreg-
ate and index publicly available libraries. Also like
Bower, our approach relies on semantic versioning,
a widely adopted approach for associating concrete
meaning to the various elements of a version. We
use these meanings to help validate and organize the
tags associated with Modelica libraries.

The impact tool also provides one of the key ele-
ments of a package manager, the ability to automat-
ically pull in dependencies during installation. With
this feature, users can list the libraries they directly
depend on and impact will automatically install any
additional dependencies. The dependency informa-
tion is constructed automatically from the version
annotation already present in Modelica libraries.

The index of publicly available libraries is hosted
on modelica.org. But impact can also be used to
index and install private libraries as well. All impact
functionality (installing, searching, etc.) is available
for both public and private libraries.

References

[1] easy_install. Easily download, build, install,
upgrade, and uninstall Python packages.
2014. URL: https://pypi.python.org/
pypi/setuptools.

[2] pip. A tool for installing and managing Python
packages. 2014. URL: http://www.pip-
installer.org.

[3] npm. Node Packaged Modules. 2014. URL:
https://npmjs.org/.

[4] GitHub. Build software better, together. 2014.
URL: https://github.com/.

[5] Inc. Twitter. Bower – A package manager for
the web. 2014. URL: http://bower.io/.

[6] PyPI. The Python Package Index. 2014. URL:
https://pypi.python.org/pypi.

[7] Tom Preston-Werner. Semantic Versioning
2.0.0. 2014. URL: http://semver.org/.

[8] GitHub Developers. GitHub API v3. 2014.
URL: http://developer.github.com/
v3/.

[9] JSON. JavaScript Object Notation. 2014.
URL: http://www.json.org/.

[10] GitLab developers. GitLab API. 2014. URL:
https : / / github . com / gitlabhq /
gitlabhq / blob / master / doc / api /
README.md.

impact – A Modelica Package Manager

548 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096543


