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Abstract 

This paper presents a methodology for model-based 
fault detection and diagnosis underpinned by model-
ica models and using a qualitative approach to diag-
nosis, which has been applied to diagnosis of an air 
handling unit based on data recorded by a building 
management system. The main steps from model de-
velopment to component diagnosis are discussed and 
illustrated using a heating coil component. 
 
Keywords: model-based diagnosis, heating coil, cali-
bration, fault detection and diagnosis 

1 Introduction 

Heating Ventilation and Air conditioning (HVAC) 
systems are known for being very inefficient for dif-
ferent reasons, one of the most common causes being 
the presence of undetected failures in one or more of 
its components. Undetected faults can remain for long 
periods due to different factors: compensations made 
by the control algorithms of other elements belonging 
to the same system; lack of proper maintenance, im-
proper timing of flow of energy to/from the building, 
etc. Even when systems are known to suboptimal op-
eration, the presence of faults may be very difficult to 
manually localize and identify, making it a costly task 
for human operators who only act when indoor envi-
ronmental conditions are not met. This lack of timely 
intervention raises the need for developing automated 
fault detection and diagnosis methods and technolo-
gies that assist the building operator.  
Different fault detection and diagnosis (FDD) meth-
odologies have been developed for HVAC systems, 
mostly based on expert knowledge to help identifying 
the faulty condition and its source [1]. However, a 
new trend in FDD is that of using models of the 
HVAC systems providing a base line for optimal op-
eration, and supporting the detection of deviation 
from this optimum [2]. Model-based methods, offer 
the advantage of an increased flexibility to adapt to 

different and innovative HVAC systems. 
The focus of this paper is on a model-based diagnostic 
solution that uses a qualitative model for the part of 
the HVAC system corresponding to the Air Handling 
Unit (AHU). This solution is derived from a general 
first-principle Modelica model and exploits a general 
diagnosis algorithm that isolates and identifies faults 
that occur frequently and can cause significant loss of 
system performance in AHUs: passing heating- and 
cooling-coil valves, and stuck dampers. An applica-
tion example using a heating coil model is presented 
and provisions are made for the extension to other 
components. 
The paper is structured as follows: section 2 provides 
an intuitive introduction to model-based diagnosis 
(MBD); section 3 outlines model requirements for on-
line diagnosis while section 4 presents the modelica 
models and its calibration. In section 5 an example of 
the complete tool chain is discussed and finally, sec-
tions 6 and 7 provide concluding remarks and future 
work. 

2 Model-Based Diagnosis: an intuitive 
introduction 

Models used for designing and verifying control usu-
ally capture the nominal behaviour of the controlled 
physical system but are less reliable when modelling 
behaviours related to faulty operation. In fact, model-
based diagnosis is able to perform fault localization 
using only models that represent the intended behav-
iour of the system (OK models) [3]. However, fault 
identification requires modelling the possible rele-
vant faulty behaviours, as well, which may also lead 
to a more focused localization [3]. Therefore, for each 
system component, a health variable is defined as the 
health status (failure mode) of that component. A sys-
tem health assignment (or health mode) is the set of 
health assignments for all components in the system. 
To each component OK or failure mode, the respec-
tive (mis)behaviour is captured by a model (e.g. a set 
of (differential) equations. For example, a passing 
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heating coil valve will have hot water flowing in the 
heating coil when the heating coil is supposed to be 
switched off, in which case the air heats up after pass-
ing over this heating coil. Hence, in this case, the con-
trol setting is heating coil valve closed, but with the 
fault, the valve is actually open. 
Based on this, each system health assignment implies 
one behaviour model of the entire plant, which is ob-
tained by aggregating the component (fault) models. 
Model-based diagnosis is based on an explicit repre-
sentation of the knowledge about the components and 
the information about the plant structure, which deter-
mines how the components interact with each other. 
Based on a library of generic component models and 
the representation of the plant topology, a system 
model (possibly covering both the nominal and faulty 
behaviours) can be obtained automatically. This 
model is exploited by a generic diagnosis algorithm, 
which is not plant-specific and even not domain-spe-
cific (Figure 2). This way, diagnostics tailored to a 
specific plant require only the specification of the 
plant structure and component models; they are gen-
erated automatically instead of being hand-tailored. 
For the purposes of this research work, a plant model 
consisting of component models was built manually 
and then fed to the diagnostics tool that produces the 
diagnostics system automatically. However, steps 
have been taken to automate the full process by pars-
ing the modelica file. This parsing can be done as long 
as certain naming convention is in place. 

3 From Model to On-line Diagnosis 

In this section, we present a complete workflow and 

system modules required to build a diagnostic solu-
tion for a class of plants (AHU) and to deploy it for a 
single plant and run it on-line, which is illustrated in 
Figure 1. Here, we give only an overview of the steps 
and modules, the most important ones being discussed 
in more detail in the following sections. 
• Producing the general solution involves:  

o the production of a library of Modelica mod-
els (section 4) and; 

o its transformation into a qualitative diagnostic 
model library (top row Figure 1).  

• Producing an application system based on the 
general solution, requires 
o The configuration and calibration of a Model-

ica model of the correct behaviour (named 
OK model and explained in section 4); 

o the composition of the diagnostic model 
based on the diagnostic library and the com-
ponent structure of the plant, which can be ex-
tracted from this Modelica system model. 
This composition step is part of the function-
ality of the tool used in this work, Raz’r (from 

 

 
Figure 1 From model to diagnosis, the MBD chain 
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OCC'M Software GmbH). The extraction of 
the component structure from Modelica has 
not yet been realized, but is expected to be 
straightforward, given that the models have 
been developed following certain require-
ments, which are stated in section 3.1.  

• For on-line diagnosis,  
o qualitative deviations are generated by com-

puting the difference between the real data 
(currently for steady state only) and the pre-
dictions generated by the OK model of the 
plant (implemented in Modelica), and deter-
mining qualitative deviations based on given 
thresholds. A steady state filter is used to ex-
tract steady state data from the real operation 
data. The resulting qualitative deviations of 
dependent variables (and zero deviations for 
the exogenous variables) are processed by 

o the runtime diagnosis engine, which is pro-
duced by the code generator from the Raz’r 
module by compiling the consistency-based 
diagnosis algorithm and the diagnostic plant 
model into very compact C-code. The output 
is the set of all mode assignments containing 
minimal combinations of component faults 
that are consistent with the abstract observa-
tions [4]. 

3.1 Requirements on Modelling for Model-
Based Diagnosis 

In order to support the model-based diagnosis ap-
proach as previously outlined, the diagnosis models 
and, hence, also the numerical models to generate 
them from have to satisfy particular requirements: 
• Strictly component-oriented modelling: the li-

brary has to be organized around the component 
types (with models that can be parameterized) that 
constitute the plant and that are units subject to 
diagnosis, e.g. heat exchangers, mass exchanger, 
mass movers, etc. 

• Fault models should be represented (perhaps 
with a parameter characterizing the fault, such as 
the opening of a passing valve) 

• The plant model has to be configured strictly ac-
cording to the real physical interconnections in 
the plant. It must not include computational arte-
facts that link certain variables that are not really 
interacting directly via a physical connection. 
This includes using the concept of connectors in 
Modelica to reflect the channels of physical inter-
actions between components (rather than connec-
tions via single variables as, for instance, in 
Matlab/Simulink). 

The models in the library have to be formulated in a 
context-independent manner and must not rely on 
implicit assumptions about the presence and correct 
functioning of other components, even though they 
may exist in most standard configurations. This is rel-
evant for two reasons: it enables the re-use of the com-
ponent models for different plants, and it is a precon-
dition for the adequacy of the models in fault situa-
tions. 

4 Modelling a Simple Heating Coil 

 

Figure 3. MBD first steps, model development and 
calibration 

4.1 Model Development 

Model development was driven by the specific appli-
cation needs as specified in the previous section. 
These needs also encompass matching of the type of 
information interchanged between elements, reusabil-
ity of the models, best use of manufacturer‘s data for 
setting up models and ease of use. 
Ease of use and best use of manufacturer’s data are 
closely related since the manufacturer’s data is the 
first source of information a model developer will 
have in hand. In this regard, the developed model is 
such that this data is input into the parameters of the 
models corresponding this way to a first calibration 
step based on the manufacturer provided operation 
point. Table 1 shows the parameters, from the manu-
facturer’s data, to be provided to the heating coil 
model. 

The heating coil model calculates the outlet steady-
state conditions in both, water and air sides, using 
equations derived from the conservation of energy 
and mass principles and the definition of effectiveness 
in the classical eff-NTU method which given by equa-
tions (1), (2) and (3) [5]: 

Table 1. Manufacturer’s datasheet operation point values 
needed as parameters for model setup 

Heating Coil 

air input temperature 
air output temperature 
air mass flow rate 
water input temperature 
water output temperature  
water mass flow rate 

Modelica Component Library 

Modelica OK Model 
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The effectiveness eff depends on the coil configura-
tion (parallel flow, counter flow, or cross flow with 
both streams unmixed) [6]. The full modelica code 
is out of the scope of this paper but a snippet of the 
three main equations (1), (2), and (3) is shown below 
to illustrate the match between equation formulation 
and modelica code development: 
 
Qflow = Cflow_a*(To_a - Ti_a); 

Qflow = Cflow_w*(Ti_w - To_w); 
Qflow=eff*min(Cflow_a,Cflow_w)*(Ti_w-
Ti_a); 
 
For the heating-coil component, there are inputs and 
outputs for flow of air through the ducting, and flow 
of hot water through the heating coil. Hence, mass- 
and energy-balance equations must be defined for 
the airflow and water-flow. The imposition of en-
ergy- and mass- balance provides the remainder of 
the Modelica model equations. 

4.2 Calibration 

The calibration methodology uses real operation data 
obtained from the facility’s building management sys-
tem (BMS). For the calibration procedure, instead of 
trying to adjust each of the component’s parameters, 
the approach used is by assuming all the calibration 
can be done with the valve model explained below in 
this section. 
In the heating coil, the air outlet temperature is con-
trolled by water mass flow rate using valves. A control 
signal determines the valve’s position.  
Real valves have no linear behaviour but they may 
present non-linear behaviour and even hysteresis. To 
model the valve’s hysteresis, several options can be 
followed, e.g. using on-off hysteresis, linear hystere-
sis and non-linear hysteresis. For the purposes of this 
research work, a hysteresis as shown in Figure 4 was 
chosen since it produced a good trade-off between ac-
curacy and simplicity. The chosen hysteresis model 
will still be a good representation of the real operation 
of the valve while it does not add important calcula-
tion burden to the model. 
There are three parameters to calibrate. ‘mflowMAX’ 
is the water mass flow rate when the control signal is 
equal to 1 (maximum opening position), centHys and 
delta characterise the hysteresis’ curve and the on/off 
points. 

The real data has to be carefully observed to find max-
imum opening points and then the mflowMAX value is 
fixed in order to decrease the difference between real 
data and model results of the controlled variable in 
those points (temperature and/or humidity ratio). 

To determine centHys and delta, the employed strat-
egy was to find sharp changes in controlled variable 
(output air temperature). When the controlled variable 
has a sharp raise, the control signal coincides with a 
value equal to centHys+delta; controlled variable has 
a sharp decrease, the control signal coincides with the 
value equal to centHys-delta. 
Pre and post calibration results can be seen in Figure 
5 and Figure 6. 

In Table 2 we show calibration accuracy based on er-
ror metrics such as root mean square error (RMSE), 
coefficient of variation of the RMSE (CV-RMSE), 
mean bias error (MBE) and, normalised MBE 
(NMBE). 

5  Qualitative Diagnostic Models 

 
 

Figure 7 From numerical model to qualitative models 
 

Q = Ca*(TaO-TaI)  (1) 

Q = Cw*(TwI-TwO) (2) 

Q = eff*min(Ca, Cw)*(TwI-TaI) (3) 

 
Figure 4 Valve hysteresis function 

Table 2. Calibration Results 
Heating Coil RMSE 

(K) 
CV 
RMSE 

MBE 
(K) 

NMBE 

Pre-Calibration 1.57 0.52 -0.76 -0.26 
Pos-Calibration 0.54 0.18 -0.07 -0.02 

Qualitative Com-
ponent Library 

Modelica 
Component 
Library 

Model Transfor-
mation 
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Creating a diagnostic library, based on the Modelica 
library, requires its transformation into a diagnostic 
model library. Figure 7 illustrates these steps.  
The models used in our diagnostic approach are stated 
in relative, rather than absolute terms: they capture the 
deviation of variable values from the respective under 
nominal behaviour.  
Following [7], [8]: the qualitative deviation of a vari-
able x is defined as: 

Δx:= sign(xact - xnom) (4) 

Equation (4), captures whether an actual (observed, 
assumed, or inferred) value is greater, less or equal to 
the nominal value. The latter is the value to be ex-
pected under nominal behaviour, technically: the 
value implied by the model in which all components 
are in OK mode. 
Qualitative deviation models can be obtained from 
standard models stated in terms of (differential) equa-
tions by canonical transformations, such as equations 
(5) and (6). We use ⊕, ⊝ and ⊗, to denote addition, 
subtraction and multiplication on signs.  

It is important to note that these equations do not con-
tain and require values for the reference values xnom 
and, hence, can be applied to different plants and un-
der distinct operating modes. The qualitative devia-
tion models, obtained from the Modelica models, re-
flect current modelling assumptions, (steady state, 
and no deviation in airflow) and become very compact 
due to their qualitative nature and because constants 
can be dropped and just replaced by their signs. Inter-
nally, this model is automatically transformed into an 
efficient data structure representing finite relation. 
In the following, we illustrate how this transformation 
can be done by manipulating the equations. Accord-
ing to energy balance equations (equations (1), (2) 
and, (3)), and assuming no losses, the energy balance 
in equation (7) can be reformulated in terms of devia-
tions (Δ) as in equation (8).  
Assuming that the air flow and the water temperature 
(drop) are positive and not deviating and replacing the 
capacity flow by the mass flow mfloww (which differ 
only by a constant factor), we obtain equation (9) 
which applies to all modes of the coil. 

0 = Ca*(TaO-TaI) -  Cw*(TwI-TwO) (7) 

0 = Δ (Ca*(TaI-TaO)) ⊕ Δ (Cw*(TwI-TwO)) (8) 

0 = ΔTaI  ⊝ ΔTaO ⊕ Δmfloww (9) 

Following equation (4), each of the variables used for 
diagnostics (equation (9)) can have a deviation of the 
measured value from the simulated one as follows: 
• positively (‘+’), when the actual (measured, pre-

dicted, or assumed) value is above the simulated 
plus a threshold; 

• negatively (‘-‘),when the actual value is below the 
simulated minus a threshold; 

• or not deviate (‘0’), when the actual value is 
within the simulated value plus/minus the thresh-
old. 

Table 3 depicts the resulting relation on the three de-
viation variables, i.e. all solution tuples of equation 
(9). For instance, the first three rows of the table indi-
cate the intuitive fact that, if the mass flow shows no 
deviation, a deviation of the incoming air temperature 

 
Figure 5  non-calibrated  simulated (model) vs. measured 
(real) output air temperature for the heating coil model.  

 
Figure 6  calibrated simulated (model) vs. measured (real) 

output air temperature for the heating coil model. 

a + b = c ⇒ Δa  ⊕ Δb = Δc (5) 

a * b = c ⇒ (aact ⊗ Δb) ⊕ (bact ⊗ Δa)  ⊝ (Δa 

⊗ Δb) = Δc 

(6) 
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will simply be propagated to the output air tempera-
ture.  
On the other hand, a positive deviation of the output 
air temperature in combination with no deviation in 
the input air temperature, is only consistent with a 
positive deviation in the mass flow rate of the water 
(last-but-one row). From the diagnostic perspective, 
this reveals a fault in the coil (e.g. a passing valve), 
because a correct coil will not produce a deviating wa-
ter flow. A valve stuck closed may lead to a negative 
deviation “–“, if the command Cmd to the valve is 
“open” (to some non-zero position, “+”). If the control 
commands the valve to be shut, anyway, a stuck-
closed valve would cause no deviation in the water 
flow. This is captured by the model fragment in Table 
5, which actually, is the complete fault model. Table 
4 and Table 5 show the models of the OK mode and 
the passing valve, respectively. The table expresses 
that this mode may coincide with the nominal behav-
iour for a certain range of opening commands, but de-
viate positively for smaller valve positions.  
With respect to their use for diagnosis, tables 4 – 6 
jointly with table 3 capture which tuples of tempera-
ture and water flow deviations are consistent with 
which behaviour modes. Note that this does not re-
quire that the deviations can be observed directly. 
They may also be predicted by the system model 
based on observations for a particular system health 
assignment.  
 
Bear in mind that a qualitative representation of one 
mode doesn’t exclude that any other mode can be 
reached with the same combination of inputs/outputs. 

5.1  Runtime Deviation Generation 

 

Figure 8 Generating Deviations 
 
At runtime, the system will calculate deviations (Fig-
ure 8) by following the steps: 
• Read each data vector corresponding to the sensor 

and actuator signals;  
• Extract the exogenous variables including (exter-

nal temperature, damper, and valve commands); 
• Provide the exogenous variable values to the Mod-

elica model of nominal behaviour, compare the 
values predicted by this model with the actual sen-
sor data, and compute the deviations. In the current 

solution, this is simply done by using a threshold 
(which can be different for different variables).  

For the example with the heating coil documented 
here, a threshold of 2°C was chosen in order to pro-
duce deviations in the domain of signs (‘+’,’-‘,’0’). In 
future solutions, different orders of magnitudes of the 
deviations could be generated by the abstraction mod-
ule, which can take arbitrary sets of interval bounda-
ries as an input. 
For the example with the heating coil, Table 7 shows 
both the sensor data and the predicted values, high-
lighting the temperature before and after the heating 
coil. Using the 2°C threshold, the inflow air tempera-
ture is determined as nominal, while the outflow air 
temperature is higher than expected. This triggers a 
diagnosis event. 

5.2  Diagnosis Inference 

 

Figure 9 From deviations and qualitative model to diagnosis 

Table 3. Relation on tempera-
ture deviations and water 
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Table 4 Qualitative repre-
sentation of the OK mode 

Cmd Δmfloww 

0 0 
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Table 5 Qualitative repre-
sentation of the stuck 

closed valve mode 

Cmd Δmfloww 

0 0 

+ - 

Table 6  Qualitative repre-
sentation of the passing 
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The computed deviation pattern (with a zero deviation 
of exogenous variables -input temperature, and valve 
commands-) forms the input to the diagnosis runtime 
system (Figure 9). The deviation patterns will be 
checked for consistency with the possible models. In 
the trivial example restricted to one component pre-
sented in Table 7, the input/output temperature devia-
tions (0, +) match with only one row in Table 3 that 
holds for all behaviour modes, which fixes mfloww to 
be positively deviating. This positive deviation is con-
sistent with the valve passing mode (Table 6), but nei-
ther with the OK mode, not the stuck closed mode. 
Note, that this result can actually be concluded with-
out information about the command to the valve.  
What is illustrated here for a single component, is ac-
tually applied to the space of plant models covered by 
the system health assignments, which may yield alter-
native diagnosis hypotheses and also such that corre-
spond to multiple component faults.  

6 Discussion  

In this paper a tool chain from model development to 
fault detection in air handling units has been presented 
and discussed with an illustrative example of a heat-
ing coil. The development tool of choice for the model 
was Modelica since it provides all the necessary tools 
to comply with model requirement for model-based 
fault detection as shown in section 3.1. 
One of the main advantages of the model-based ap-
proach is the adaptability to different plants and to 
changes in the same plant. A brief description of the 
steps involved in adapting the qualitative model based 
diagnosis is presented below. 
• Structural changes: These changes will have to 

be reproduced in the model, which would need to 
be compiled and recalibrated. The diagnosis model 
structure is a 1:1 mapping of the model and as such 
only minor adaptation is needed. However, if the 
change involves variables considered for diagno-
sis, the variable mapping between model and diag-
nosis framework has to be modified and tested 
with new data sets. 

• Parameter changes: recalibration of the models is 
in principle the only requirement. In the case these 
parameter changes impact the accuracy of the 

model, the tolerances of the diagnosis framework 
might have to be adjusted. 

• Sensor changes: similar consideration to the case 
of structural changes should be taken in the case of 
adding new sensors or modifying position of exist-
ing ones. In the case that existing sensors are to be 
replaced with new ones with different precision, 
the steps described in the parameter changes are to 
be followed. 

• Changes in control: plant model and diagnosis 
framework is, in principle, not affected by changes 
in the control strategy. 

This adaptability makes model-based diagnosis a via-
ble approach to fault detection and diagnosis in air 
handling units. 
Taking into account that heating ventilation and air 
conditioning systems are rarely critical systems, the 
benefits of FDD in the build environment are more 
economic and environmental rather than being a 
safety issue and that hourly fault detection and diag-
nosis frequencies are more than acceptable in building 
applications; there is little scope for extending the 
models to include dynamic behaviour at the moment.  
Although in early stage, there exist scope for modelica 
models to become the de-facto standard in energy 
modelling of building components as shown by the 
recently established International Energy Agency An-
nex 60. Within this context, one of the key issues for 
model use during operation (e.g. Model-Based FDD, 
Model-Predictive Control, etc.) is the development of 
calibrated models that represent in a cost-effective 
manner the expected normal behaviour of the systems. 
Focused on air handling units’ components, an ap-
proach to tack such problem, which can be automated, 
has been presented in this research paper 

7 Future Work 

Next steps in this research are: 
• Development and testing of models for other com-

ponents of HVAC systems; 
• Improve the calibration methodology by develop-

ing an automatic calibration procedure that could 
be implemented underpinned by machine learning. 

• Comparison of the qualitative model-based diag-
nosis approach with others such APAR rules or 
quantitative diagnosis 

• Deployment and testing in a range of real units op-
erating in normal environments. 
 

Table 7 Deviations between sensor data and model data 
 TaI (ºC) TaO (ºC) 

Sensor Data 18.32 20.87 

Model Prediction 18.44 18.44 

Resulting Deviation 0 + 
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9 Nomenclature 

eff 
Q 
C 
T 

effectiveness 
heat transfer 
capacity flow 
temperature 

[1] 
[W] 

[W/K] 
[ºC] 

mflow mass flow rate [kg/s] 
Subscripts and functions 
a air I input 
w water O output 
min(⋅, ⋅) smallest value between arguments 
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