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Abstract 

In this work, the structure of a modular, acausal and 
reconfigurable electro-thermal battery model is de-
scribed. The dynamic model structure adopted for 
the battery cell is based on an equivalent circuit 
whose parameters are generated using real cycling 
data through an optimisation routine written in the 
Modelica language. A linearised one-dimensional 
thermal mathematical model with lumped parameters 
is used to simulate temperature profiles for the cell. 
The cell and scaled-up pack model is parameterised 
for a number of commercially available cells ranging 
a number of cell formats, sizes and chemistries. 
These Dymola models are validated using highly 
transient and aggressive real-world as well as syn-
thetic drive cycles. 
 

Keywords: Lithium ion, battery, HEV, EV, PHEV, 
Acausal, Dymola, Modelica 

1 Introduction 

 
A key enabler (or constraint) of the electrified power 
train is the need to store energy in a form that can be 
easily and robustly converted into electricity. Batter-
ies have emerged as a preferred choice in alternative 
energy storage but the technology still comes with 
significant compromises for the customer. Many of 
the challenges and opportunities presented by battery 
technology can be traced to the li-ion cell at the heart 
of the battery. 
 
 
 
 

 
 
 
 
The need to accurately, rapidly and robustly model 
the performance of cells and their effects on the bat-
tery system and wider vehicle is of paramount im-
portance to vehicle OEMs. While multiple modelling  
approaches are available for Li-ion cells, a balance is 
required to produce a model than has the flexibility 
to map the microscopic scale effects of internal cell 
mechanisms to the macroscopic scale of pack and 
vehicle dynamics in a timely and cost effective man-
ner. 
 
Moreover it is important for any of these battery 
models to be readily integrateable with an existing 
electrified powertrain and control simulation toolset, 
where an acausal simulation structure (as opposed to 
input-led) can be advantageous. In this paper, we 
extend the INEEL FreedomCar program model [1] to 
include temperature dependence, voltage hysteresis, 
self-discharge and diffusion limitation. We present a 
generic routine that can be used to generate model 
parameters based on optimisation [2]. Moreover, we 
utilise the capacity of Modelica to avoid assignment 
statements and base our model on equations so as to 
achieve acausality. Finally, we show an efficient 
method for scaling-up the cell electro-thermal model, 
while maintaining the ability to uniquely parameter-
ize individual cells, to pack level without substantial-
ly compromising simulation time. 

2 Model development 

2.1 Cell Model 
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Modelling the electronic and thermal behaviour of a 
battery cell requires characterization of mechanisms 
across multiple time domains and model parameters 
that are dynamically interlinked. The equivalent cir-
cuit model (ECM) adopted in this work is shown in 
Figure 1 and consist of a parallel RC network con-
nected in series with a capacitor, a resistor and an 
ideal voltage source. As shown in Figure 1, the cir-
cuit is mainly composed of three parts including an 
open-circuit voltage source	���, internal resistances 
and equivalent capacitances. The internal resistances 
include the ohmic resistance �� which comprises all 
electronic resistances and the polarization resistance �� which when coupled with �� accounts for ion 
diffusion. The equivalent capacitance �	
 is used to 
describe the transient response during charging and 
discharging [1].  

 

 
 
Figure 1: Depicting the equivalent circuit model of a Li-ion 
battery system. The circuit represents temperature, state of 
charge and current dependency of the circuit components; self-
discharge and the hysteresis effects added with open circuit 
voltage.   

 

The electrical behaviour of the ECM shown in Fig-
ure 1 is given by [1]: 

 �� = ��� − ���� −�	
 − �� ��� �� + ������ = ���� 

 

 

(1) ��� �	
 = �� ������  

 

where �� is the terminal voltage, �� is the load cur-
rent, �	
 	is the voltage drop across the capacitor �	
, �� is voltage drop due to polarisation effects 
and � is accumulated charge; the mentioned varia-
bles are time dependent. This coupled set of equa-

tions (1) can be solved analytically and without loss 
of generality the solution is given by: 

 �� = ��� − ����− 1�	
�����
− �� ������� �� ����� ���� 

 

(2) 

 

The last term on the right hand side arises from the 
RC component and is decoupled from contributions 
from the other components in the circuit. This sug-
gests that from a mathematical viewpoint introducing 
more RC terms into the ECM will not lead to chal-
lenging parameterization algorithms, however, in so 
doing one must give attention to balancing the com-
putational effort with accuracy yield. In this work we 
consider a single (modified) RC circuit, similar to 
that proposed by INEEL FreedomCar program [2], 
and will show that this leads to sufficient accuracy. 

 

Equation (2) can be re-written in a closed form thus 
[2]: 

 

�� = ��� − ���� − 1�	
� ������� −��
� �!����� , 

�!,# = $1 − 1 − �%& '−∆�)!*∆�)! + ��,#
+ $1 − 1 − �%& '−∆�)!*∆�)!
− �%& ,−∆�)!-+ �!,#
+ �%& ,−∆�)!- �!,#�. 

 

(3) 

 

which is written in matrix form: 

 

/
001
��,.��,2⋮⋮⋮��,45

667 =
/
001
11⋮⋮⋮1
		 ��,.��,2		⋮		⋮		⋮��,4

		 8ℎ�,.8ℎ�,2		⋮		⋮		⋮8ℎ�,4
		 �!,.�!,2		⋮		⋮		⋮�!,4 5

667: ������	
�.�� ; 

 

 

(4) 
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where 

 8ℎ�,# �< ��,=∆�#
=>� .  

(5) 

 

Solving equation (4) via an optimisation routine in 
Modelica, which constitutes a part of the battery li-
brary, generates estimates for the parameters of the 
ECM at a fixed temperature �@�, load current and 
state of charge �AB�� defined by 

 

AB� � AB����� 
 100
�DE�F�� �� � AG� ∙ ��

��
� 

 
 

(6) 

 

where �DE�F�  is the rated capacity of the cell (the 
total amount of charge that can be reversibly cycled 
from the cell) and	AG is the self-discharge contribu-
tion given by [3]: 

 

	AG � I� J
 KL�M@NAB� 
 

(7) 

 

where the ratio of activation energy to the molar gas 
constant		KL �M⁄  is determined through observations 
and on timescales of a few hours can be taken to be 
zero. The optimisation routine runs a sweep for ) 
within a range of values. The value of ) which yields 
the least error when predicting �� via equation 4 is 
selected for the reference data set. 

The optimisation routine is repeated for various 
temperatures, current pulses and AB� values to pro-
duce a three dimensional map of battery parameters 
as a function of AB�, 	�� and	@. These parameters are 
then fed into the equivalent circuit models.  

 

The Hysteresis contributions		�
	to cell voltage is 
modelled by the following first-order differential 
equation which we couple to open circuit voltage ��� 
[4]: 

 
P�
P� � 
Q��� 
 RAG�S�
,TEU � VWXY����
Z  

(8) 

 

where the constants  Q and R are to be determined 
and 	�
,TEU is the limiting hysteresis voltage. Equa-
tion (8) is constructed such that for prolonged as well 
as large pulse charge currents the hysteresis voltage 
tends to  	�
,TEU while for prolonged as well as large 
pulse discharge currents the hysteresis voltage tends 

to	
�
,TEU. Moreover, if there is a prolonged period 
of zero current the hysteresis voltage tends to 
�
,TEU through the self-discharge effect. 

 

The ��  component shown in Fig 1 attributes a time 
constant ) � ���� to the bulk diffusional process of 
Li ions in the solid phase. We account for diffusion 
limitation, where the surface concentration of lithium 
may be significantly different than the average con-
centration contained within the active material parti-
cle, by allowing the time constant to be a function of 
current and assume the following simple power-law 
form [5]: 

 

) � [\� � \.�� � \2��2 � \]��] � ^���_�[ (9) 

 

 
Figure 2: A comparison of ���	estimation using polynomial fit-
ting (6th order) and spline functions applied to ���	�AB�� values 
generated through solving Eq. (4).  

 

To generate mathematically smooth estimates for the 
battery parameter (` � `�AB�, 	��, @�) the usual 
practice is to use polynomial fitting functions. This 
method has the disadvantage that it often does not fit 
the data well as in the case of Open Circuit Voltage 
depicted in Fig. 2. In this work we utilize spline 
functions to generate smooth estimates for `�AB�, @� 
which avoid oscillations in interpolated values either 
side of outliers. We find that while both estimates 
follow the general trend of the data in the highly 
non-linear regions of the curve the accuracy of the 
spline function is much greater compared to a poly-
nomial fit. 

 

Cubic splines are preferred over lower degree 
splines. With first-degree splines the slope of the 
spline may change abruptly at the knots (i.e., data 
points) and for second-degree splines the disconti-
nuity is in the second derivative which means that 
the curvature of the quadratic spline changes abrupt-
ly at each node. The cubic spline function A is de-
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fined in the X interval [X0,Xf] such that A is a poly-
nomial of degree at most 3 on each subinterval ab# , b#c.d and A	is continuous up to its second deriv-
ative.  

 

Spline interpolation is coupled with linear interpola-
tion where there is a weak correspondence between a 
variable {AB�, 	��, @} and the model parameter	` =
ter	` = `�AB�, 	��, @�).  
 

A further improvement in stability was achieved us-
ing Akima splines. The calculation of the derivative 
only relies on data from local points, hence reducing 
the amount of oscillations between data points in the 
interpolation. 

 

Temperature is modelled as lumped value. For mod-
elling Li-ion batteries this is convenient because of 
the resulting simplicity of the governing equations. 
Such assumptions can be suitable if temperature gra-
dients within the cell body are negligible [5] which 
does not hold for most HEV applications were cur-
rents are large. It has recently been shown that a cell 
with a temperature gradient maintained across is has 
a lower impedance than one held at the theoretical 
average temperature [6]. Our assumption therefore 
will introduce some errors in voltage predictions but 
this, as will be demonstrated, can be negligible. The 
thermal model for a single cell is depicted in Figure 
3 where the heat generated in aJd is given by:  

 �h = � ,� − ��� − @DFi �����@ - (9) 

 

where a dot represents a time derivative and ��� − ���� represents irreversible joule heating 
caused by Li-ion transport. The last term on the right 
hand side of Eq. (9) represents the reversible rate of 
heat generation due to entropy change. This model 
assumes no specific geometry for a single cell be-
yond a total volume with uniform temperature for 
some arbitrary body.  

 

 
Figure 3: Figure depicting the 1D thermal model which is cou-
pled to the electrical model via the heat source (equation 9).   

 

2.2 Pack Model 

 
The pack model consists of an electrical network and 
a thermal network connecting electrical and thermal 
paths respectively. 

 

Pack electrical model 

A pack is constructed from modules which are con-
structed from sub-modules. The sub-modules are of 
two types: only parallel connections and only series 
connections. This allows us to make effective “cells” 
which become the building blocks of our model. The 
sub-modules are constructed by appropriately loop-
ing electrical connections of a single cell. Each cell 
is then allowed to be unique, i.e., take unique values 
of initial SoC, C/3 discharge capacity, internal re-
sistance, polarisation resistance, ���, bus bar con-
nection resistance – through a data table. Such 
uniqueness of cell parameters allows for various in-
teresting studies including cell balancing, diagnos-
tics, performance limitations, design optimisation 
and so forth. The sub-modules are either connected 
via parallel or series loops to construct modules 
which can be connected to construct a pack. The un-
specified parameters of the pack electric model in-
clude bus-bar resistance and inter-module connection 
resistance. For studies of high frequency ripple, the 
inductance of bus bars can be included as a parame-
ter; however, in what is presented here this option is 
deselected.  

 

The advantages of using component arrays over sep-
arate instantiations of components is firstly: less 
model diagram layer space being taken up, but more 
importantly: the ability for the model to be scaled up 
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or down without having to manually redefine the 
architecture. 

 

 
 

Figure 4: Dymola model diagram layer showing component 
array methodology for scalable stacks. 

 

In the example shown in Figure 4, each element in 
the cell and resistance arrays (size=n) have been 
linked using the following notation: 

 
  connect(pin_p, cell[1].pin_p)  
 
for k in 2:data.n loop 
    connect(resistor[k -
 1].n, cell[k].pin_p)  
end for; 
   
  connect(resistor.p, cell.pin_n)  
  connect(resistor[data.n].n, pin_n)  
  connect(const.y, cell.Temp)  

 

 

Symbolic Manipulation is a powerful tool used to 
simplify the systems of equations generated for a 
model during compilation. The model equations are 
rearranged into a form where the unknowns can be 
calculated whilst the redundant equations are re-
moved. Dymola like other Modelica based tools has 
its own version of Symbolic Manipulation which 
helps achieve time-effective model computation. 

 

The simplification of the systems of equations leaves 
the accuracy of the model intact whilst dramatically 
reducing the computational effort required to solve 
the original model equations [7]. 

 

Pack thermal model 

Akin to the electrical pack model we connect thermal 
paths between cells via heat-ports. Thus, employing 
loops we thermally connect cells within sub-
modules, sub-modules within modules and modules 

within a pack which is attached to a global cooling 
circuit. In our work we consider two cooling models: 
 

Control based ideal cooling system 

 

This simple model mimics an ideal cooling strategy. 
The cooling system remains inactive as long as the 
temperature of the cells in the pack remains below 
some critical temperature	@� (a design parameter). As 
soon as the temperature exceeds @� the cooling sys-
tem takes action: it extracts heat ��@� [W] away 
from every cell in the pack uniformly. The 
tion	��@�, which is a function of cell temperature, 
can take any form and in the simplest design will be 
a constant (i.e., regardless of how hot the cells are, 
the cooling system exerts the same effort). Once the 
temperature is forced below	@� the cooling system 
will return to its idle state. 
 

 

Fluid based Cooling Model 

 

This model couples simple fluid dynamics with the 
existing electro-thermal model. This model connects 
every cell in the pack via their sub-modules and 
modules to the global cooling circuit via cooling 
plates. The surface area of the cooling plate is a criti-
cal feature and is a parameter of the model. The 
cooling system is traversed by coolant (incompressi-
ble mixture of water and ethylene glycol, the ratio of 
which is a parameter of the model) that is forced by 
an ideal pump with a mass flow rate jik�l that is a 
parameter of the model.  
 

3 Validation 

We have parameterized our model for a number of 
commercially available cells ranging a number of 
cell formats, sizes and chemistries including cells 
with Lithium iron phosphate (LFP), Manganese spi-
nel (LMO) and Lithium nickel manganese cobalt 
(NMC) cathode materials and graphite and Lithium 
titanate (LT) anode materials. We find cells with the 
same chemical compositions have similar ����AB�� 
profiles; however, internal resistance – which is in-
fluenced by factors such as electronic contact be-
tween active electrode materials and current collec-
tors, homogeneity of the active material paste, the 
battery internal structure – and polarisation re-

Cell 
array 

Link re-
sistance 
array 

Looped con-
nections 
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sistance – influenced by electrolyte composition – 
are found to differ. It can thus be established that the 
manufacturing process itself will have a bearing on a 
batteries performance characteristics.  

 
In what follows of this sub-section we present some 
validation results for the electro-thermal cell model. 
While the model has been validated for a number of 
commercially available cells here we present results 
for a 20Ah LFP pouch cell. The cells were cycled 
and monitored using a Bitrode MCV 16-100-5 
EV/HEV Battery Cell Test System. 

 

3.1 Cell level validation 

 
The validation of the 20Ah LFP cell utilised an ag-
gressive artificial cycle, shown in Figure 5a, in order 
to test the model boundaries.  The subsequent results 
of the electro-thermal model are shown, with labora-
tory test data, in Figures 5b-5c. 

 
  
 
 
 

 
Figure 5a: Depicts a highly demanding current profile used for 
this validation process. The duration of this cycle is 600 seconds 
(excluding rest time) and the pulses range between 20C dis-
charge and 10C charge.  
 

 

 
Figure 5b: A comparison of predicted terminal voltage using the 
cell model (blue line) with actual test data (red line) for a 20Ah 
LFP cell. The maximum transient error is less than 50mV. 

 

 
Figure 5c: A comparison of temperature predictions using the 
reduced order model (red line) with laboratory data (blue line) 
for an A123 20Ah LFP cell.  

 
 

3.2 Pack level validation 

 
For pack validation we use a commercial pack com-
prising 214 20Ah LFP cells in a 2p107 configura-
tion. The cells are organised into 5 modules: 4 mod-
ules with 2p24s configuration and a final module 
with a 2p11s configuration. There is a service break 
that splits the pack between 2 modules and 3 mod-
ules (2p48s and 2p59s) for safety. The cells are 
welded to the bus bar by laser welding and the mod-
ules are connected via thick 48mm cables with a re-
sistance of 240x10-8240 × 10�p Ω and inductance 
of 50nH. The pack was cycled and monitored using a 
Bitrode FTF-500-900 EV/HEV Battery Pack Test 
System and temperature was recorded using t-type 
thermocouples connected to a pico logger. 

 
  

The pack was cycled with a number of PHEV cycles. 
Here we present results of a single charge sustaining 
mode cycle. It is worth mentioning that the nominal 
transient discrepancy between modelled and meas-
ured voltages were below 2% during most part of the 
simulation and in some cases peaked to 5% as shown 
in Figure 6b (i.e., the maximum transient discrepan-
cy between modelled and measured voltage is less 
than 5%). The pack was connected to a cooling sys-
tem passing liquid coolant at a rate of 27L/min thor-
ough the cooling plates attached to the bottom of the 
pack (opposite end to cell tabs). 
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Figure 6a: A 63 minute current cycle consisting of theree phas-
es: The first 24 minute charge depleting phase with currents 
between -200A<I<130A takes the cell from 70% SoC down to 
10% SoC; this is followed by a 34 minute phase of constant 40A 
charge which takes the cell back up to 70% SoC; the final phase 
is a 5 minute charge depleting phase with similar current magni-
tudes. 

 
 

 
Figure 6b: Shows a good fit between modelled voltage (red) and 
measured voltage (blue). During most of the simulation errors 
were below 2%, with a peak error of 5% at around the 5000 sec-
onds.  

 

 
Figure 6c: Compares modelled temperature (red line) verses 
maximum recorded cell temperature  in the pack and minimum 
recorded temperature (blue dashed lines). 

 
 

4 Conclusions 

 
In this paper we present a library of models that ex-
tend to construct a coupled, dynamic, electro-thermal 
model of battery cells and packs. At the elementary 
level we utilize a single polarization equivalent cir-
cuit model (ECM) to capture the Ohmic and diffu-
sional characteristics of a Lithium ion battery. The 
EC model is then developed to include effects of 
hysteresis, self-discharge and diffusion limitation. 

 
A distinguishing property of this model is the inclu-
sion of diffusion limitation effects through a current 
dependant time constant. This property better mimics 
the solid diffusional dynamics of Li+ intercalation 
into the active material.  

 
Employing an optmimisation routine we extract state 
of charge (SoC), temperature (T) and current de-
pendent (IL) model parameters from High Pulse 
Power Characterization (HPPC) data. This extracted 
data then forms a three dimensional “look-up table” 
which is interpolated using Spline functions in the 
ranges 0%≤SOC≤100% and -20oC≤T≤65oC.  

 
The model (cell, module and pack) is acausal and 
thus utilises physical pins that mimic battery termi-
nals. Stimuli are therefore any load acting on the bat-
tery via the tabs (as is the case in reality) and outputs 
are any measurements that are made across the tabs 
(using modelled sensors).  
 
The cell model was validated using a number of 
commercially available cells. Our combined valida-
tion results showed a maximum of 50mV discrepan-
cy between measured and tested voltages at cell level 
and a 1.4℃  discrepancy between measured and test-
ed temperature at cell level.  

 
Our pack model is constructed from a series-parallel 
configuration of cells where cell-to-cell connections 
are modelled by a resistor. Our focus for this inte-
grated architecture was methods of automated and 
unique parameterization which facilitates, for exam-
ple, the study of the effects of SoC imbalance, 
anomalous resistances and SoC balancing mecha-
nism.  
 
An important characteristic of the model presented 
here, which is unique to Modelica code, is that it is 
based on equations instead of assignment statements. 
The main advantage is that the solution direction of 
equations will adapt to the data flow context in 
which the solution is computed. The nature of the 
equation based approach means that the models are 
acausal. This in turn means that the modeler does not 
have to rewrite or rearrange the system equations 
when using the components in different scenarios, 
for example forward and inverse dynamic modelling 
situations. More advantageously a model of a battery 
behaves physically like battery. So for example, if a 
resistor is connected to the physical pins (modelled 
negative and positive terminals of a battery) the bat-
tery will discharge causing a rise in temperature, fall 
in SOC, fall in voltage and so on.  
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In this work we demonstrate Dymola's ability for 
multi domain modelling. We find that the Mdoelica 
libraries including Electric, Fluid and Thermal readi-
ly facilitate the construction of coupled electro-
thermal battery models. However, we also find that 
Dymola is lacking in some areas of numerical prob-
lem solving, particularly in solving coupled non-
linear simultaneous equations as well as coupled 
non-linear partial differential equations. We circum-
vent these problems by employing regression meth-
ods for predicting battery parameters. 
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