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Abstract

A linear single-track model for articulated vehicles has
been implemented. The model can represent an artic-
ulated vehicle with an arbitrary number of units each
with an arbitrary number of axles. Lateral and yaw
dynamics are in focus but longitudinal effects in cou-
plings are also included. In the model, tire forces are
linear with respect to slip angle. The couplings be-
tween units are represented as non-linear kinematic
constraints which are valid for small and large artic-
ulation angles.

Four use cases are presented: Inverse dynamics for
feedforward control, frequency responses when vary-
ing parameters, steady-state evaluations and dynamic
simulation. For these use cases, four parametrizations
of the model are used corresponding to a tractor with a
semitrailer a truck with a dolly and a semitrailer, an A-
double (tractor+semitrailer+dolly+semitrailer) and an
approximate version of an airport baggage carrier with
five full trailers.

Keywords: vehicle dynamics, vehicle models, artic-
ulated vehicles

1 Introduction

Simple vehicle dynamics models are very useful for
basic analysis, rough parameter tuning and concept
studies. By keeping models simple, one gains not
only simulation speed but the possibility to for exam-
ple invert the model for feedforward control. A simple
model is however not always simple to model.

Several modeling approaches have been used to
model articulated vehicles [1], [2], [3], [4]. For simple
models, it is common to simplify the coupling equa-
tions using small angle approximations. This greatly
simplifies the modeling effort but also invalidates the

model for low-speed cases when articulation angles
typically exceed the validity range of such an approx-
imation. For multiple units, keeping the non-linear
coupling equations usually require some kind of sym-
bolic solver, such as Maple, Mathematica or Matlab’s
Symbolic toolbox. It is also common that the mod-
eling is done for a specific vehicle combination with
little room for extending to more units without refor-
mulating the model.

Creating the model using Modelica one does not
have to explicitly solve all equations and thus the
model formulation can be kept simple while letting
the Modelica tool take care of equation solving. Fur-
thermore, by vectorizing the model with respect to the
number of units and axles the model equations does
not have to be expressed with a specific vehicle com-
bination in mind, leaving that to the specific imple-
mentation.

2 Model description

A description of the model equations and structure
is presented here. For brevity and readability of
code snippets,vector() and matrix() function
calls and some full library paths are left out.MSL is
used when models are taken from the Modelica Stan-
dard Library, mainly fromModelica.SIunits and
Modelica.Blocks.

2.1 Assumptions

As is normal for single-track models, the two tires on
an axle are lumped as a single tire in the middle of
the axle. Coupling points are assumed to not transfer
torque between units. Slip angles are assumed to be
small such that tanα ≈ α .

While the model accepts a variable input velocity,
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typical longitudinal effects such as load transfer are
not taken into account.

2.2 Parameter and variable structure

Parameters describing positions on the vehicle are all
expressed relative to the first axle of the corresponding
unit. This includes axle positions, center of gravity,
c.g., positions and coupling point positions. Figure 1
shows the position parameters for a unit. Since states
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Figure 1: Geometric parameters of uniti. Ai andBi are
the distances from the first axle to the front and rear
coupling points, respectively.Xi is the distance from
the first axle to center of gravity.Li, j is the distance
from axle 1 to axlej on uniti.

are defined at the center of gravity of each unit, po-
sition parameters are recalculated relative to this, e.g.
Acog = A−X .

Parameters and quantities related to axles, such as
tire forces and axle positions, are defined as matrices
with dimensions[nu,na] wherenu is the number of
units in the combination andna denotes the maximum
number of axles on any of the units. If the number of
axles on a unit is less thanna the unused elements will
be set to zero and are thus disregarded. Parameters
and quantities related to units, such as motion states
and masses, are defined as vectors of lengthnu.

2.3 Tire forces

Given the small angles assumption, the slip angle for
a single tire is defined as

α =
vy +Lcogωz

vx
−δ (1)

whereLcog is the distance from the center of gravity
to the axle that is being considered,vy andωz are the
lateral velocity and yaw rate of the unit in question
andδ is the steering angle. In the model code, the slip
angle matrix for all axles is defined as

alpha = ((vy*ones(1,na)
+Lcog.*(wz*ones(1,na)))
./(vx*ones(1,na))-delta);

The lateral tire forces can then be calculated as

Fyw = -C.*alpha;

whereC is the axle cornering stiffness matrix. To-
gether with the longitudinal forces,Fxw, the tire forces
can be transformed to the vehicle coordinate system
with the steering angledelta

Fx = Fxw.*cos(delta)-Fyw.*sin(delta);
Fy = Fxw.*sin(delta)+Fyw.*cos(delta);

A variableFxd is defined as the drive force needed at
each driven axle to maintain the input velocity. This
force is applied at each driven axle:

for i in 1:nu loop
for j in 1:na loop

if driven[i,j] then
Fxw[i,j]=Fxd;

else
Fxw[i,j]=0;

end if;
end for;

end for;

This force is implicitly determined to satisfy the rest
of the model equations.

2.4 Coupling constraints

The constraints in the couplings state that the global
velocity vector of the rear coupling on the unit in front
should be the same as that of the front coupling point
on the unit behind. The Modelica language allows
for a series of equations to be defined using for loops.
Here, the constraint that the velocities at the front cou-
pling of unit i should be the same as that of the rear
coupling on unit i-1 is defined by looping over all the
couplings:

for i in 1:nu-1 loop
vx[i+1] = vx[i]*cos(theta[i])

-(vy[i]+Bcog[i]*wz[i])*sin(theta[i]);
vy[i+1]+Acog[i+1]*wz[i+1]=

(vy[i]+Bcog[i]*wz[i])*cos(theta[i])
+vx[i]*sin(theta[i]);

end for;

Equations for the coupling forces are not formulated
explicitly, the velocity constraints in the coupling to-
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gether with force and moment balances gives enough
information for an implicit calculation. Figure 2 shows
how the coupling cut forces are applied to the dif-
ferent units affected by the coupling. The forces

Fc,x,i

Fc,x,i

Fc,y,i

Fc,y,i

θi

Unit i

Unit i+1

Figure 2: Example of cut forces in coupling between
unit i (front) and i+1 (rear)

in each coupling are defined in the coordinate sys-
tem of the front unit which it affects with negative
sign. The rear unit in the coupling is affected by the
forces with positive sign transformed by the articula-
tion angle. SoFcx[i] pulls rearward on uniti and
Fcx[i]*cos(theta[i]) pulls forward on uniti+1.
Similarly, Fcy[i] pulls in the negative y direction
(rightwards) on uniti andFcy[i]*cos(theta[i])
pulls towards the left on uniti+1.

2.5 Steady state mode

To simplify steady-state analysis, substitute parame-
ters are defined for each state derivative:

MSL.Acceleration[nu] d_vx;
MSL.Acceleration[nu] d_vy;
MSL.AngularAcceleration[nu] d_wz;
MSL.AngularVelocity[nu-1] d_theta;

If the model is to be run in steady-state, all derivatives
are set to zero. For dynamic simulations they are set to
the derivative of their corresponding state variable:

if steadystate then
d_vx=zeros(nu);
d_vy=zeros(nu);
d_wz=zeros(nu);
d_theta=zeros(nu-1);

else
d_vx=der(vx);
d_vy=der(vy);
d_wz=der(wz);
d_theta=der(theta);

end if;

2.6 State equations

By using matrices and vectors, the state equations can
be formulated as matrix equations for the entire vehi-
cle combination instead of writing separate equations
for each unit. In the axle force matrices, a row,i, con-
tains all the axle forces on uniti. To get the force
sum on each unit, the force matrix is multiplied by a
column vector of ones of lengthna:



Fy,11 · · · Fy,1na

...
. . .

...
Fy,nu1 · · · Fy,nuna







1
...
1


 =




Fy,11+ ...+Fy,1na

...
Fy,nu1 + ...+Fy,nuna


 (2)

For coupling forces column vectors[Fcx;0] and
[Fcy;0] are defined for the rear coupling forces, the
0 element meaning no rear coupling force on the rear-
most unit. Similarly, vectors[0,Fcx] and[0,Fcy]
are defined for the front coupling forces where 0 here
means no front coupling force on the first unit. Then,
the force balance equations for the whole combination
can be written as a matrix equation using element-wise
multiplication. The lateral and longitudinal force bal-
ances are written as:

ay=d_vy+vx.*wz;
m.*ay=Fy*ones(na,1)-[Fcy;0]

+[0;Fcx].*sin([0;theta])
+[0;Fcy].*cos([0;theta]);

ax=d_vx-vy.*wz;
m.*ax=Fx*ones(na,1)-[Fcx;0]

+[0;Fcx].*cos([0;theta])
-[0;Fcy].*sin([0;theta]);

The moment balance around the yaw axis is done in
the same way with the added moment arms for the dif-
ferent forces:

I.*d_wz=Lcog.*Fy*ones(na,1)
-Bcog.*[Fcy;0]
+Acog.*([0;Fcx].*sin([0;theta])
+[0;Fcy].*cos([0;theta]));

whereAcog andBcog are the distance from c.g. to the
front and rear couplings, respectively andLcog is the
distance from c.g. to each axle.

2.7 Inputs

The inputs to the model are the steering angles at all
axles and the velocity of the first unit.

input MSL.RealInput[nu,na] delta_in;
input MSL.RealInput vx_in;
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Due to the kinematic constraints in the coupling, the
derivative of thevx_in input will be needed. To allow
velocity as input when exporting the model, the deriva-
tive of vx_in is set to zero with annotated derivatives
using a QuasiStatic function from the Modelon library:

vx[1] =
max(0.1,QuasiStatic.scalar(vx_in));

The output from the
QuasiStatic.scalar(vx_in) function has
the same value asvx_in but with zero derivative.
Here, the velocity is also set to be minimum 0.1 to
protect sideslip calculations from division by zero.

3 Use cases

Four use cases are presented as examples. For each use
case a different vehicle combination is used to show
how the model can be parametrized for different vehi-
cles.

A tractor-semitrailer model is inverted for feedfor-
ward control, a truck-dolly-semitrailer is linearized
and its frequency response is studied, a tractor-
semitrailer-dolly-semitrailer is run in steady-state to
evaluate its off-tracking characteristics and a five-
trailer airport baggage carrier is run in a dynamic sim-
ulation. Figure 3 shows the four vehicles used.

Figure 3: The four vehicle combinations used.

The Functional Mockup Interface, FMI, allows
modeling and simulation to be performed in sepa-
rate tools. Model development has been done in Dy-
mola and all simulations and plotting are done in Mat-
lab/Simulink using FMI Toolbox. The only parame-
ters that need to be set before exporting models are
the steadystate setting and the number of units,
nu, and axles,na, as they change the structure of the
model. Other parameters such as axle positions and
cornering stiffnesses are free to set when using the ex-
ported model.

3.1 Inverse dynamics

By using the InverseConstraints block in the Modelica
Standard Library, the inverse dynamics of the model
can be solved for. To use the model for feedforward
control, we select the lateral accelerationa_y of the
first unit as input and the steering angle at the front
axledelta[1,1] as output. Figure 4 shows the block
diagram of the inverse model.

Figure 4: Block diagram of inverse model. Inputs to
the model are lateral acceleration and longitudinal ve-
locity at the first unit. Output is the required steering
angle at the first axle.

To test the inverted model, a triangular acceleration
signal of 0.2 Hz frequency and 2 m/s2 amplitude is sent
as input. The velocity is 50 km/h. The steering output
from the inverted model is then input to a model with
normal causality to verify that the lateral acceleration
achieved will be correct. Figure 5 shows that the lat-
eral acceleration output from the controlled model is
indeed the same as the desired lateral acceleration in-
put. The resulting steering command is shown in fig-
ure 6.
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Figure 5: Desired lateral acceleration input and out-
put from vehicle controlled with steering output from
inverted model.
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Figure 6: Steering angle from inverted model.

3.2 Frequency response

The model can easily be linearized to find the fre-
quency response. An important use case for this is to
find how different parameters affect the frequency re-
sponse. Here, the coupling position between the trac-
tor and the trailer is varied to show how this affects the
stability of the vehicle combination.

The truck-dolly-semitrailer combination is lin-
earized for straight forward driving at 80 km/h. Fig-
ure 7 shows the baseline gain from steering angle to
the yaw rates of the different units in the truck-dolly-
semitrailer combination.
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Figure 7: Gain from steering angle at the front axle
to the yaw rates of the different units for the baseline
parametrization of the truck-dolly-semitrailer combi-
nation.

Often the rearward amplification is an important
measure of vehicle performance. This is defined as
the gain from the first unit yaw rate to each of the
towed units’ yaw rates. Figure 8 and figure 9 show
how the rearward amplification of the dolly and semi-
trailer changes as the coupling position on the truck is
changed. The baseline position is 0.53 m behind the
rear axle. As the coupling moves rearward the ampli-
fication increases.
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Figure 8: Yaw rate gain from first unit to second unit
when moving coupling position on first unit. Coupling
further rearward (negative adjustment) gives higher
amplification of yaw rate.
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Figure 9: Yaw rate gain from first unit to third unit
when moving coupling position on first unit. Coupling
further rearward (negative adjustment) gives higher
amplification of yaw rate.

3.3 Steady-state off-tracking

Off-tracking is an important property of a vehicle with
trailers. It is usually defined as the difference in curve
radius between the towing unit and the trailers. In the
model, the instantaneous curvature is calculated for all
axles as

for i in 1:nu loop
for j in 1:na loop

curvature[i,j] = wz[i]
/sqrt((vy[i]+Lcog[i,j]*wz[i])^2
+vx[i]^2);

end for;
end for;

To show how off-tracking varies with vehicle speed,
the vehicle is driven at a constant curve radius of 100 m
for velocities from 1 to 80 km/h. Figure 10 shows how
the curve radius of the last axle of each trailer com-
pares to that of the first axle on the tractor. The typical
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characteristic is that trailers track cuts into the curve at
low speed due to vehicle kinematics and geometry. At
high speed the trailers track a larger curve radius due
to the increased lateral load causing higher sideslip.
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Figure 10: Curve radius of the first tractor axle and the
last axle of each towed unit for varying velocity.

Off-tracking for a fixed vehicle speed also varies
with the curve radius of the first unit. To study this,
the vehicle is run at a fixed speed of 10 km/h and curve
radius of the first unit varies from 15 to 100 m. Fig-
ure 11 shows how off-tracking varies with the curve
radius of the first axle. At this relatively low speed,
vehicle kinematics cause more inward off-tracking at
smaller curve radii.
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Figure 11: Off-tracking of the last axle of each towed
unit in the A-double. First unit speed is fixed and curve
radius varies. Positive off-tracking is defined outwards
in the curve.

3.4 Dynamic simulation

The baggage carrier is simulated with a single period
sine steering input of 5◦ amplitude and 0.3 Hz fre-
quency at 18 km/h. Figure 12 shows the yaw rates of
all the units in the airport baggage carrier and figure 13
shows the position of each axle.

The parameters are only approximated and are not
measured or estimated from a specific real vehicle.
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Figure 12: Yaw rates of all the units in the baggage
carrier train
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Figure 13: Positions of each axle in the baggage carrier
train.)

The simulation results show that the model can repre-
sent multi-trailer vehicles without additional modeling
effort.

4 Conclusion

This work shows that Modelica is useful for formu-
lating simple vehicle models. Using Modelica, artic-
ulated vehicle combinations with arbitrary number of
units and axles can be modeled with the same level of
abstraction as when modeling a non-articulated single-
track vehicle model. Tool independent export and im-
port possibilities within the Functional Mockup Inter-
face greatly simplifies the use of models like this in
control design and concept studies.

By incorporating simple-but-relevant models to-
gether with higher fidelity models in development pro-
cesses infeasible concepts can be ruled out early and
only the most promising ones can be carried on to
more detailed analyses.

Vectorized single-track model in Modelica for articulated vehicles with arbitrary number of units and axles

270 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP14096265



References

[1] M. Levén, A. Sjöblom, M. Lidberg, and
B. Schofield, “Derivation of linear single-
track truck-dolly-semitrailer model with steer-
able axles,” Department of Applied Mechanics,
Chalmers University of Technology, Tech. Rep.
2011:09, 2011.

[2] M. Gäfvert and O. Lindgärde, “A 9-dof tractor-
semitrailer dynamic handling model for advanced
chassis control studies,” Department of Automatic
Control, Lund Institute of Technology, Tech. Rep.
ISRN LUTFD2/TFRT–7597–SE, 2001.

[3] S. Kharrazi, “Steering based lateral performance
control of long heavy vehicle combinations,”
Ph.D. dissertation, Chalmers University of Tech-
nology, 2012.

[4] D. Vazquez-Vega, “Directional analysis of an a-
train double with damped articulation,” Master’s
thesis, Concordia Unversity, Montreal, 2000.

Session 2B: Automotive Applications 2

DOI
10.3384/ECP14096265

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

271


