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Abstract

The growing complexity of systems, together with in-
creasing available parallelism provided by multi-core
chips, calls for the parallelization of simulation. Simu-
lation speed-ups are expected from co-simulation and
parallelization based on models splitting into loosely
coupled sub-systems in the framework of Functional
Mockup Interface (FMI). However, slackened syn-
chronization between the sub-models and associated
solvers running in parallel introduces integration er-
rors, which must be kept inside predefined bounds. In
this paper, context-based extrapolation is investigated
to improve the trade-off between integration speed-
ups, needing large communication steps, and simula-
tion precision, needing frequent updates for the mod-
els inputs. An internal combustion engine, based on
FMI for model exchange, is used to assess the paral-
lelization methodology.

Keywords: FMI; parallel simulation; signal pro-
cessing; polynomial extrapolation; real-time; context-
based decision

1 Introduction

During the design process of complex systems, such
as in automotive, simulation is proven to be an in-
disputable step between concept design and prototype
validation. Realistic simulations allow for the prelim-
inary evaluation, tuning and possibly redesign of pro-
posed solutions ahead of implementation, thus lower-
ing the risks. To be confident in the result, building
such simulations requires high-fidelity models both for
the components and for their interaction.

Currently, building high-fidelity system-level mod-
els of cyber-physical systems in general and automo-

tive cars in particular, is a challenging duty. One prob-
lem is the diversity of models, designed for different
environments, provided by various multi-disciplinary
teams. Distinctive environments are preferred for a
specific use due to specific strengths (modeling lan-
guage, libraries, solvers, cost. . . ). The FMI specifica-
tion has been proposed to improve this issue [1].

However, the simulation of high-fidelity models is
time consuming, and reaching real-time constraints is
out of the capabilities of single-threaded simulations
running on single cores. Simulation speed-ups are
needed, in particular by splitting the systems into sub-
models to be executed in parallel on currently available
multi-core chips.

Unfortunately most of the existing simulation soft-
ware are currently unable to exploit multi-core plate-
forms, as they rely on sequential Ordinary Differential
Equations (ODE) and Differencial Algebraic Equa-
tions (DAE) solvers. The co-simulation approaches
can provide significant improvements by allowing to
simulate together models coming from different areas,
and to validate both the individual behaviors and their
interaction [2]. The simulators may be exported from
original authoring tools as Functional Mock-up Units
(FMUs), and then imported in a co-simulation envi-
ronment. Hence, they cooperate at run-time, thanks to
the FMI definitions of their interfaces, and to the mas-
ter algorithms of these environments.

The “FMI for model exchange” framework allows
for solving independently the sub-models using cus-
tom solvers. In this context, several methods have
been already proposed to perform real-time distributed
simulation of complex physical models. For exam-
ple, in [3], the study focused on the case of fixed-step
solvers. Then, in [4], the study was extended to handle
the case of variable time-step solvers.

However, accounting for the dependencies between
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the sub-models needs to synchronize them at some
time intervals. Certainly, this synchronization avoids
the propagation of numerical errors in the simula-
tion results and guarantees their correctness. Unfor-
tunately, these synchronization constraints also lead
to waiting periods and idle time of some processors.
Consequently it decreases the potential efficiency of
the threaded parallelism existing in multi-core plat-
forms.

To overcome this limitation, and to more efficiently
exploit the available parallelism, the dependencies
constraints should be relaxed as far as possible while
keeping accumulated errors under control. In a first
step, this can be performed by a well done system de-
composition that minimizes the dependencies between
the sub-models. For example, a method was proposed
in [5] for distributed simulation using a technology
based on bilateral delay lines called transmission line
modeling (TLM), where the decoupling point is cho-
sen when the variables change slowly and the time-
step of the solver is relatively small.

Unfortunately, most often perfect decoupling can-
not be reached and data dependencies still exist be-
tween parallel blocks. Some synchronization between
them must be kept tight through small communica-
tion steps between models, which prevents the variable
time-step solvers to reach large integration steps.

It is proposed that the synchronization steps can be
stretched out with limited deterioration of the simu-
lation precision, thanks to a well-suited, albeit sim-
ple, context-based polynomial extrapolation of the ex-
changed data beyond the synchronization points be-
tween sub-models.

This paper is organized as follows. First, a formal
model of a hybrid dynamical system is given and a
model of the integration errors due to slack synchro-
nization is sketched in Section 2. The background on
prediction and polynomial prediction algorithms are
developed in Section 3. The principles for context-
based extrapolation, to cope with the hybrid nature of
the models, are exposed in Section 4. The method-
ology is assessed in Section 5 using the model of an
internal combustion engine.

2 Motivation for extrapolation

2.1 Model formalization

Consider a hybrid dynamical system Σ described by a
set of nonlinear differential equations:

Ẋ = f(t,X,D,U) for tn ≤ t < tn+1,
Y = g(t,X,D,U),

where X ∈ RnX is the continuous state vector, D ∈
RnD is the discrete state vector, U ∈ RnU is the input
vector, Y ∈ RnY is the output vector and t ∈ R+ is the
time.

The sequence (tn)n≥0 of strictly increasing time
instants represents discontinuity points called “state
events”, which are the roots of the equation

h(t,X,D,U) = 0.

The function h is usually called zero-crossing function
or event indicator. It is used for event detection and
location [6].

At each time instant tn, a new continuous state vec-
tor can be computed as a result of the event handler

X(tn) = I(tn,X,D,U),

and a new discrete state vector can be computed as a
result of discrete state update

D(tn) = J(tn−1,X,D,U).

If no discontinuity affects a component of X(tn), the
right limit of this component will be equal to its value
at tn.

It is assumed that Σ is well posed in the sense that a
unique solution exists for each admissible initial con-
ditions X(t0) and D(t0) and that consequently X ,
D, U , and Y are piece-wise continuous functions in
[tn, tn+1].

To execute the system in parallel, the model must be
split into several sub-models. Assume for simplicity,
that the system is decomposed into two subsystems as
in Figure 1. Our approach generalizes to any decom-
position into N blocks of system Σ.

Therefore, the system can be written as:
{
Ẋ1 =f1(X1,X2,D1,U1)
Y1 =g1(X1,X2,D1,U1)

and
{
Ẋ2 =f2(X1,X2,D2,U2)
Y2 =g2(X1,X2,D2,U2)

with X = [X1 X2]T and D = [D1 D2]T , where T

denotes the matrix transpose.
Here, U1 are the inputs needed for Σ1 and U2 are

the inputs needed for Σ2. In other words,U1∪U2 =U
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Figure 1: System splitting for parallelization.

and U1 ∩U2 can be an empty set or not according to
the achieved decoupling.

In the same way, Y1 are the outputs produced by Σ1
and Y2 are the outputs produced by Σ2. In other words,
Y1∪Y2 = Y and Y1∩Y2 = /0.

To perform the numerical integration of the whole
multivariable system, each of these simulators needs
to exchange, at communication points, the data needed
by the others (see Figure 2). To speed up the inte-
gration, the parallel branches must be as independent
as possible, so that they are synchronized at a rate P
by far slower than their internal integration step hn

(P� hn). Therefore, between communication points,
each simulator integrates at its own rate (assuming a
variable step solver), and considers that the data in-
coming from others simulators is hold as constant.

Σ1

Σ2

Initialization Exchange 1 Exchange 2

Integration step hn Communication step P

Communication step PIntegration step hn

Σ

ts ts+1tn tn+1 ts+2

Figure 2: Σ split into Σ1 and Σ2 for parallel simulation.

It is likely that large communication intervals allow
to speed up the numerical integration, but may result
in integration errors and poor confidence in the final
result. Modeling the errors induced by slack synchro-
nization is a first step to find effective directions to im-
prove the trade-offs between integration speed and ac-
curacy.

2.2 Integration errors and parallelism

To compute the next state value Xi(tn+1), i = 1,2 (see
Figure 3), the numerical solver needs at least the val-
ues of Xi(tn) and Ẋi(tn) = fi(X(tn)) (e.g. for Euler

integration). The inputs and discrete states are omitted
for clarity.

f1(X(tn))

f2(X(tn))X2(tn)

X2(tn)

X1(tn)

X1(tn) Solver

Solver

X1(tn+1)

X2(tn+1)

X1(tn)
.

X2(tn)
.

Σ1

Σ2

X=[X1 X2]
T

Figure 3: System’s internal composition.

When computing Ẋ1(tn) = f1(X(tn)), the value of
the local variable X1(tn) is always available. This is
not the case for X2(tn), which is computed in a par-
allel branch. In fact, X2 is only available in branch
1 at synchronization with interval P, which is larger
than the integration step hn. In other words, X2(tn)
is available only when the time tn corresponds with
a synchronization point ts (see Figure 2), otherwise
its estimated value is the one transmitted at the pre-
vious synchronization point. Let us evaluate the evo-
lution of integration errors due to slack synchroniza-
tion between the parallel branches when computing
Ẋ1(tn) = f1(X(tn)). The analysis on Σ1 remains valid
for Σ2.

The influence of using a delayed value of X2 in
f1(.) (respectively X1 in f2(.)) is due to the lack of
updated data during a delay τ , represented by the dif-
ference between the current integration time tn and the
last synchronization time ts as

τ = tn− ts (1)

with
ts = P

⌊ tn
P

⌋

therefore

ts =

{
lP when tn = l.P l ∈ N∗
(l−1)P when tn < l.P l ∈ N∗

leading to
{

τ = 0 when tn = ts
τ > 0 when tn > ts

Therefore, the induced error at tn+1 in the subsys-
tem Σ1, denoted E1(tn+1), is the difference between
X1(tn+1) for the unsplit model (2) and X̃1(tn+1) for
the split model (3):
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X1(tk+1) =X1(tk)+hkf1(X1(tk),X2(tk)), k ∈ {0, . . . ,n}
(2)

X̃1(tk+1) =

{
X1(tk+1) k = 0
X̃1(tk)+ hkf1(X̃1(tk),X̃2(tk− τ)) k ≥ 1

(3)
In other words,

E1(tn+1) =
n
∑

k=0
E1(tk)

+ hn[f1(X1(tn),X2(tn))−f1(X̃1(tn),X̃2(tn− τ))]
=E1,p(tn)+E1,c(tn+1)

where

E1,c(tn+1) = hn[f1(X1(tn),X2(tn))−f1(X̃1(tn),X̃2(tn− τ))]

E1,p(tn) =
n
∑

k=0
E1(tk)

(4)

HereE1,c(tn+1) is the current error generated at tn+1
whatever a synchronization or not. So, the global
decoupling error E1(tn+1) is the result of the accu-
mulation of past errors E1,p(tn) and the current error
E1,c(tn+1). As a conclusion, to achieve a correct re-
sult, two conditions must be met for the current (local)
error and the global error:

• |E1,c(tn+1)|< εloc: allowed local error

• |E1(tn+1)|< εglo: allowed global error

These conditions can be satisfied by acting on some
parameters. Indeed, in (4), the delay error depends
on the integration steps hn and on the delay τ . The
integration step hn is already adapted following the
numerical solver strategy and the user-defined solver
tolerance. The delay τ , however, depends on the last
synchronization time ts, which is function of the syn-
chronization period P.

The delay induced error tends to zero when the de-
lay τ tends to zero, which means that the delay error
can be eliminated with the synchronization interval set
equal to the integration steps. In other words, all the
parallel subsystems should be integrated at the same
adaptive rate (in the case of adaptive synchronization
period), or with same fixed time-step. These two as-
sumptions are very restrictive, as they force to choose
a global adequate time-step regardless the discontinu-
ities and the stiffness of the sub-systems. Compared
with the single-threaded simulation, the only possi-
ble speed-ups during a parallel execution would be
brought by the brute force computation power of the
multicore machine, reduced by the parallelization cost.

Therefore, considering a split model and a parallel
execution, a trade-off must be found between accept-
able simulation errors, thanks to tight enough synchro-
nization, and simulation speed-ups thanks to decou-
pling between sub-models.

To add a degree of freedom to this trade-off achieve-
ment, we propose to extrapolate model inputs to com-
pensate the stretching out of the communication steps
between sub-models. Note that in this first approach
of the polynomial extrapolation, the synchronization
interval is considered as constant. Future enhance-
ments will consider communication step size control,
for which the error analysis and estimation can be in-
spired by [7]. Extrapolation is sensitive for different
reasons:

• prediction should be efficient: causal, sufficiently
fast and reliable;

• there exist no universal prediction scheme, efficient
with every signal;

• polynomial prediction may fail in stiff cases [8] (cf.
Section 4 for details).

We choose to base our extrapolation on polynomial
prediction, which allows fast and causal calculations.
The rationale is that, in this situation, the computing
cost of a low-order polynomial predictor would be by
far smaller than the extra model computations needed
by shorten communication steps. Since such predic-
tions would be accurate neither for any signal (for in-
stance, blocky versus smooth signals) nor any signal
behavior (slow variations versus steep onsets), we bor-
row a context-based approach , common with lossless
image coders [9], such as GIF or PNG formats. The
general aim of these image coders is to predict a pixel
value based on a pattern of causal neighboring pixels.
Compression is obtained when the prediction residues
possess smaller intensity values, and more generally a
better distribution (concentrated around close-to-zero
values) than the pixels in the original image. They
may thus be coded on smaller “bytes”, using entropy
coding techniques. In images, one distinguishes ba-
sic “objects” such as smooth-intensity varying regions,
or edges with different orientations. Based on simple
calculation of the prediction pattern pixels, different
contexts are inferred (e.g. flat, smooth, +45o or −45o

edges, etc.). Look-up table predictors are then used,
depending on the context.

In the proposed approach, we build a heuristic table
of contexts (in Section 4) based on a short frame of
past samples, and affect a pre-determined polynomial
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predictor to obtain a context-dependent extrapolated
value. We now review the principles of extrapolation.

3 Causal polynomial prediction

3.1 Background on prediction

This section is dedicated to a peculiar instance of dis-
crete time series, or signal, forecasting. The neigh-
boring topics of prediction or extrapolation represent
a large body of knowledge in signal processing [10],
econometrics [11] or control [12].

In the present case, we consider a real-valued, reg-
ularly sampled signal u, with period P, known at syn-
chronization or communication intervals. Prediction
in general assumes the knowledge of signal formation
models. Since very little is assumed on the signal’s dy-
namics (no behavioral/explicit model is available, pe-
riodicity and regularity are unknown), and as we oper-
ate under real-time conditions, implying strong causal-
ity, only a tiny fraction of time series methods are
practically applicable. Zeroth-order hold or nearest-
neighbor extrapolation is probably the most natural,
the less hypothetical, and the less computationally ex-
pensive forecasting method. It consists in using the lat-
est known sample as the predicted value. It possesses
small (cumulative) errors when the time series is rela-
tively flat or its sampling rate is sufficiently high, with
respect to the signal’s dynamics. In other words, it is
efficient when the time series is sampled fast enough to
ensure small variations between two consecutive sam-
pling times. However, it indirectly leads to under-
sampling related disturbances, that affect the signal
content. They appear as quantization-like noise, off-
set or peak flattening.

In our co-simulation framework, communication in-
tervals are not chosen arbitrarily small for computa-
tional efficiency. Thus, the slow variation of inputs
and outputs cannot be ensured in practice. Hence, bor-
rowing additional samples from the past known data
and using higher-order extrapolation methods could be
beneficial, provided a trade-off of cost and error is met.
Different forecast methods of various fidelity and com-
plexity may be efficiently evaluated. We focus here on
polynomial methods, for their simplicity and ease of
implementation, following initial works in [13, Chap-
ter 16].

3.2 Notations

We denote by P(δ ,λ ) the least-squares polynomial pre-
dictor of degree δ ∈ N and prediction length λ ∈ N∗.

The prediction length λ represents the number of past
samples required for each prediction, performed in
the least-squares sense [14, p. 227 sq.]. For conve-
nience, we use a 0-last-sample-index convention: we
re-index the frame of the λ past samples such that
the last known sample is indexed by 0. Computa-
tions for the prediction at relative time τ (loosely de-
noted by u(τ)), defined in (1), thus require past sam-
ples {u1−λ ,u2−λ , . . . ,u0}. We first recall principles
and formulas for a standard least-squares, degree-two
or parabolic prediction. The general equations are de-
rived next.

3.3 Polynomial prediction of degree δ = 2

We look for the best fitting parabola, i.e. with degree
δ = 2, u(t) = aδ + aδ−1t + aδ−2t2 to approximate the
set of discrete samples {u1−λ ,u2−λ , . . . ,u0}. The pre-
diction polynomial P(2,λ ) is defined by the vector of
polynomial coefficients a= [a2,a1,a0]T . They are de-
termined, in the least-squares sense [15], by minimiz-
ing the squared or quadratic, error:

e(a) =
0

∑
l=1−λ

(
ul− (a2 + a1l + a0l2)

)2
.

Note that the l indices here are non-positive, between
1−λ and 0. The minimum error is obtained by solving
the following system of equations (zeroing the deriva-
tives with respect to each of the free variables ai):

∀i ∈ {0,1,2}, ∂e(a)

∂ai
= 0

namely:





0

∑
l=1−λ

l0 (ul− (a2l0 + a1l1 + a0l2)
)

= 0,

0

∑
l=1−λ

l1
(

ul− (a2l0 + a1il + a0l2)
)

= 0,

0

∑
l=1−λ

l2 (ul− (a2l0 + a1l1 + a0l2)
)

= 0.

(5)

The system in (5) may be rewritten as:





0

∑
1−λ

ul = a2

0

∑
1−λ

l0 + a1

0

∑
1−λ

l1 + a0

0

∑
1−λ

l2 ,

0

∑
1−λ

lul = a2

0

∑
1−λ

l1 + a1

0

∑
1−λ

l2 + a0

0

∑
1−λ

l3 ,

0

∑
1−λ

l2ul = a2

0

∑
1−λ

l2 + a1

0

∑
1−λ

l3 + a0

0

∑
1−λ

l4 .
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Let md = ∑λ−1
l=0 lδ−du−l (here the indices l are posi-

tive) denote the (δ−d)-th moment of the frame ui, and
m the vector of moments [m2,−m1,m0]T . We express
the sums of integer powers by Σd

λ = ∑λ−1
i=0 id . Closed-

form expressions exist for Σd
λ , involving Bernoulli se-

quences [16]. For instance:

• Σ0
λ = λ ,

• Σ1
λ = (λ −1)λ/2,

• Σ2
λ = (λ −1)λ (2λ −1)/6,

• Σ3
λ = (λ −1)2λ 2/4,

• Σ4
λ = (λ −1)λ (2λ −1)(3λ 2−3λ −1)/30.

We now form the matrixZ(2,λ ) of sums of powers (de-
pending on δ = 2 and λ ):

Z(2,λ ) =




Σ0
λ −Σ1

λ Σ2
λ

−Σ1
λ Σ2

λ −Σ3
λ

Σ2
λ −Σ3

λ Σ4
λ


 .

The system in (5) rewrites:




m2

−m1

m0


=




Σ0
λ −Σ1

λ Σ2
λ

−Σ1
λ Σ2

λ −Σ3
λ

Σ2
λ −Σ3

λ Σ4
λ


×




a2
a1
a0




or m = Z(2,λ )×a. Now we want to find the value
predicted by P(2,λ ) at time τ . Let τ2 = [1,τ,τ2]T be a
vector of τ powers. Then u(τ) is equal to a2 + a1τ +
a0τ2 = τ T

2 ×a. Finally, Z(2,λ ) is always invertible,
provided that λ > δ . Its inverse is denoted Z(−2,λ ).
It thus does not need to be updated in real-time. It
may be computed off-line, numerically or even sym-
bolically. Hence:

u(τ) =
(
τ T

2 ×Z(−2,λ )

)
×m .

The vector τ2 and Z(−2,λ ) are fixed, and the product
τ T

2 ×Z(−2,λ ) may be stored at once. Thus, for each
prediction, the only computations are the update of
the vectorm and his product with the aforementioned
stored matrix. It thus enables look-up-table-based pre-
dictions, which helps to reduce propagation errors in
matrix computations.

3.4 General formulas

Inferring from the previous example, we easily get a
more generic extrapolation pattern in its matrix form:

[
1 τ · · · τδ ]

u(τ) = ×




Σ0
λ −Σ1

λ · · · (−1)δ Σδ
λ

−Σ1
λ . .

.
. .
. ...

... . .
.

. .
. ...

(−1)δ Σδ
λ · · · · · · Σ2δ

λ




−1

×




mδ

−mδ−1

...

(−1)δ m0


 .

Note τδ = [1,τ, · · · ,τδ ]T , then:

u(τ) = τ T
δ Z(−δ ,λ )m .

As in the previous case, only m and one matrix prod-
uct need be computed in real-time. When δ = 0, one
easily sees that:

u(τ) =
m0

Σλ
0

=
u1−λ + · · ·+ u0

λ
,

that is, the running average of past frame values, re-
ducing to the zeroth-order hold when λ = 1. Although
the matrix formulation is convenient, actual computa-
tion does not require true matrix calculus, especially
for small degrees δ . For instance, P(1,3) yields the
simple estimator form: u(τ) = τ

2 (u0−u−2) + 1
6(5u0 +

2u−1−u−2).

4 Context-based extrapolation

Actual complex systems usually present non-
linearities and discontinuities, so that it is hard to
predict their future behavior from past observations.
Moreover the considered models are generated using
the FMI for model exchange framework, which does
not provide the inputs’ derivatives (conversely with
the FMI for co-simulation architecture). Hence the
previously described polynomial prediction cannot
correctly extrapolate along all the system trajectories.

For example, [17] studies a method based on a se-
quential implementation of continuous dynamical sys-
tems that uses a constant, linear or quadratic extrapola-
tion and a linear interpolation to improve the accuracy
of the modular time integration. The study shows that
the method is successful for non-stiff systems and it
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fails for the stiff case. The context-based extrapola-
tion is then performed to account for steps, stiffness,
discontinuities or weird behavior, and use adapted ex-
trapolation to limit excessively wrong prediction.

Keeping with the previous 0-last-sample-index con-
vention, and for the sake of simplicity, we first define
a measure of variation based on the last three samples:
d0 = u0−u−1 and d1 = u−1−u−2, the last and previ-
ous differences. Their absolute values are compared
with two thresholds, γ0 and γ−1, respectively. We then
define three complementary conditions:

• O if |di|= 0;

• Ci if 0< |di| ≤ γi;

• Ci if |di|> γi;

We can now define the six-context Table 1, and ex-
amples for their associated heuristic polynomial pre-
dictors. The six contexts form a partition, i.e. they
are mutually exclusive, and cover all possible options
for a hybrid dynamical system. They are illustrated
in Figure 4. Their names represent their behavior.
For instance, the flat context addresses steady signals,
for which a mere zeroth-order hold suffices, hence
P(0,1). The calm context represents a sufficiently sam-
pled situation, where value increments over time re-
main below fixed thresholds. In this case, the signal
is relatively regular, and could be approximated by a
quadratic polynomial, for instance P(2,5). For the “flat”
and “jump” contexts, there is an additional procedure
which consists in resetting the extrapolation to prevent
inaccurate prediction. For example, when context 1 is
chosen just after context 5, the quadratic extrapolation
P(2,5) requires 5 valid samples, whereas the last 3 only
are relevant.

Our two-threshold is relatively simple. Hence, the
choice of the thresholds γ0 and γ−1, is potentially cru-
cial. For instance, fixed values may reveal inefficient
under important amplitude or scale variation of signal.
Hence, we have chosen here to compute them, in a run-
ning manner, on the past frame {u1−ω , . . . ,u−3}. With
excessively low thresholds, high-order extrapolations
would be rarely chosen, loosing the benefits of pre-
dictions. Too high thresholds would in contrast suffer
from any unexpected jump or noise. As the contexts
are based on backward derivatives, we have used in
the simulations presented here the mid-range statisti-
cal estimator of their absolute values. This amounts to
set: γ0 = γ−1 =

1
2

max
i∈[1−ω,...,−3]

(|ui−ui+1|).

Table 1: Summary of the six-context Table.
n(ame) # |d−2| |d−1| d−2.d−1 (δ ,λ )
f(lat) 0 O O O (0,1)
c(alm) 1 C1 C2 any (2,5)
m(ove) 2 C1 C2 any (0,1)
r(est) 3 C1 C2 any (0,2)
t(ake) 4 C1 C2 > 0 (1,3)
j(ump) 5 C1 C2 < 0 (0,1)

flat calm move

rest

take

jump

x

x

xx
x

x x x x

x

x

x
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Figure 4: Illustration for context table in Table 1.

5 Case study

5.1 Engine simulator

In this study, a Spark Ignition (SI) RENAULT F4RT
engine has been modeled. It is a four-cylinder in-line
Port Fuel Injector (PFI) engine in which the engine
displacement is 2000cm3. The air path (AP) consists
in a turbocharger with a mono-scroll turbine controlled
by a waste-gate, an intake throttle and a downstream-
compressor heat exchanger.

The engine model was developed using the Mod-
Engine library [18]. ModEngine is a Modelica [19]
library that allows the modeling of a complete en-
gine with diesel and gasoline combustion models. Re-
quirements for the ModEngine library were derived
from the existing IFP-Engine AMESim1 library. Mod-
Engine contains more than 250 sub-models. It has
been developed to allow the simulation of a complete
virtual engine using a time-scale related to fractions of
the crankshaft angle. A variety of elements are avail-
able to build representative models for engine com-
ponents, such as turbocharger, wastegate, gasoline or
Diesel injectors, valve, air path, EGR loop etc. Mod-
Engine is currently functional in the Dymola tool2.

The engine model and the split parts were imported
into xMOD model integration and virtual experimen-

1www.lmsintl.com/imagine-amesim-1-d-multi-domain-
system-simulation

2www.3ds.com/products/catia/portfolio/dymola
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tation tool [20], using the FMI export features of Dy-
mola. The engine model has 118 state variables and
312 event indicators (of discontinuities).

5.2 Decomposition approach

The partitioning of the engine model is performed by
separating the four-cylinder from the air path (AP),
then by isolating the cylinders (Ci, for i ∈ [1,2,3,4])
from each other. This kind of splitting allows for the
reduction of the number of events acting on each sub-
system. In fact, the combustion phase raises most of
the events, which are located in the firing cylinder. The
solver can process them locally during the combustion
cycle of the isolated cylinder, and then enlarge its in-
tegration time-step until the next cycle.

From a thermodynamic point of view, the cylinders
are loosely coupled, but a mutual data exchange does
still exist between them and the air path. The model is
split into 5 components and governed by a basic con-
troller denoted CTRL. It gathers 91 inputs and 98 out-
puts.

6 Tests and results

Tests are performed on a platform with 16GB RAM
and 2 “Intel Xeon” processors, each running 8 cores at
3.1GHz.

6.1 Reference simulations

The model validation is based on the observation
of some quantities of interest as the intake and ex-
haust manifold pressures, air-fuel equivalence ratio
and torque. These outputs are computed using LSO-
DAR which is a variable time-step solver with a root-
finding capability to detect the events occurring during
the simulation. It has also the ability to adapt the in-
tegration method depending on the observed system
stiffness.

The simulation reference Yref is built from the in-
tegration of the entire engine model, the solver toler-
ance (tol) being decreased until reaching stable results,
which is reached for tol = 10−7 (at the cost of an un-
acceptable slow simulation speed).

Then, to explore the trade-offs between the simula-
tion speed and precision, simulations are run with in-
creasing values of the solver tolerance until reaching a
desired relative integration error Er, defined by (6)

Er(%) =
100
N
.

N−1

∑
i=0

(∣∣∣∣
Yref(i)−Y (i)

Yref(i)

∣∣∣∣
)

(6)

with N the number of saved points during 1s of sim-
ulation. Iterative runs showed that the relative error
converge to a desired error (Er ≤ 1%) for tol = 10−4.
The single thread simulation of the whole engine with
LSODAR and tol = 10−4 provides the simulation ex-
ecution time reference, to which the parallel versions
are compared. When using the split model, each of
its 5 components is assigned to a dedicated core and
integrated by LSODAR with tol = 10−4.

6.2 Effect of the context-based extrapolation
on accuracy

To explore the effect of extrapolation on accuracy, the
communication step has been set to 250µs in a first set
of experiments. This value has been chosen to provide
acceptable results for the accuracy (Er ≈ 1%), while
being large enough to make extrapolation useful.

The tests show that performing only a fixed poly-
nomial prediction (conventional first and second or-
der extrapolation) on the engine model fails, with in-
tegration errors larger than for the reference simula-
tion. This is due to the hybrid nature of the model,
for which the extrapolation failures are caused by dis-
continuities, and also by sharp variations of some vari-
ables at specific instants. These cases totally waste the
gain in precision due to successful extrapolation in the
other parts of the state trajectories.

In contrast, using the context-based polynomial pre-
dictor, the outputs of the simulation are almost always
closer to the reference trajectory than those computed
when considering the inputs hold as constant (Fig-
ure 5).
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Figure 5: Airpath output: pressure.

Figure 6 shows that using context-based extrapola-
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tion, the prediction step is discarded when there is a
discontinuous behavior in the signal, and that the de-
gree of the predictor is adapted according to the signal
slope (Figure 6).
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Figure 6: Context behavior during simulation.

The cumulative relative integration error on a long
simulation run is computed in Table 2. It shows that
the context-based extrapolation efficiently decreases
this error for the chosen variables, for example by 63%
for the temperature and by 72.5% for the fuel density.

Table 2: Relative integration error.

Outputs Er(%) Er(%)
w/o extrapolation w/ extrapolation

Pressure 0.499 0.304
Temperature 0.511 0.19
Air density 0.784 0.31
Fuel density 3.55 0.978

Burned gas density 4.99 3.47

6.3 Effect of the context-based extrapolation
on simulation time

The ultimate objective of extrapolation is to decrease
the simulation by stretching out the synchronization
interval, while keeping the relative integration error Er
inside predefined bounds. Indeed, widening the com-
munication step from 100µs to 250µs without extrapo-
lation (Figure 7) saves time but increases the error (e.g.
6.97% for the burned gas density and 340.5% for the
fuel density).

Using the extrapolation for the 250µs step fortu-
nately decreases the relative error to values close to, or

below, those measured for the 100µs step with frozen
inputs.
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Figure 7: Cumulative relative error using different
communication steps.

Table 3 shows the simulation speed-up compared
with the single-threaded reference. First note that
when splitting the model into 5 threads integrated
in parallel on 5 cores, the speed-up is supra-linear
w.r.t. the number of cores. Indeed, the containment
of events detection and handling inside small sub-
systems allows for solvers accelerations, enough to
over-compensate the multi-threading costs. Secondly,
it appears that combining the enlarged communication
step and the context-based extrapolation, the 10 % ex-
tra speed-up is reached without loss for the relative
error. Even more surprising, using the extrapolation
slightly speeds-up the simulation, possibly because the
inputs shaped by the predictor enables a faster conver-
gence of the solver step.

Table 3: Simulation speed-up.
Communication time 100µs 250µs

Extrapolation No No Yes
Speed-up 8.9 10.01 10.07

7 Conclusion and future work

The aim of this work is to speed up the numerical in-
tegration of hybrid dynamical systems, eventually un-
til reaching a real-time execution, while keeping the
integration errors inside controlled bounds. The ba-
sic approach consists in splitting the system into sub-
models, which are integrated in parallel. Using large
synchronization intervals between the branches allows
for numerical integration speed-ups. However, slack
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synchronization intervals may generate integration er-
rors in the final result.

In this paper, the errors caused by the slack syn-
chronization are modeled, giving directions to find ef-
fective trade-offs between integration speed and accu-
racy. Then, an approach of stretching out the commu-
nication steps while keeping a predefined integration
precision is proposed. Rather than using costly small
integration and communication steps, it uses extrapo-
lations of the behavior of the models over the synchro-
nization intervals. Test results on a hybrid dynamical
engine model, show that well chosen context-based
extrapolation allows for an effective speed-up of the
simulation with negligible computing overheads.

This work shows that properly-chosen context-
based extrapolation, combined with model splitting
and parallel integration, can potentially improve the
speed/precision trade-off needed to reach real-time
simulation. However, the accuracy could be widely
improved by accessing on the input derivatives of the
models. This is the case for the FMI for co-simulation,
and it would be highly useful to also integrate this fea-
ture in the FMI for model exchange. Future works in-
tend to improve the context-based extrapolation algo-
rithm, to make it more subtly aware of data freshness
and even more decrease the prediction induced inte-
gration errors. Another possibility is to process the in-
put signals to separate them into simpler components,
easier to predict with different predictors, and to cope
with noise. When it comes to polynomials, wavelet
pre-processors [21] could be useful, as they play an
important role in polynomial model fitting.
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