
Nonlinear State Estimation

with an Extended FMI 2.0 Co-Simulation Interface

Jonathan Brembeck
1
, Andreas Pfeiffer

1
, Michael Fleps-Dezasse

1
,

Martin Otter
1
, Karl Wernersson

2
, Hilding Elmqvist

2

1
German Aerospace Center (DLR), Institute of System Dynamics and Control,

82234 Weßling, Germany
2
Dassault Systèmes AB, Ideon Science Park, 22370 Lund, Sweden

Jonathan.Brembeck@dlr.de, Andreas.Pfeiffer@dlr.de, Michael.Fleps-Dezasse@dlr.de,

Martin.Otter@dlr.de, Karl.Wernersson@3ds.com, Hilding.Elmqvist@3ds.com

Abstract

In this paper we propose a method how to automati-

cally utilize continuous-time Modelica models di-

rectly in nonlinear state estimators. The approach is
based on an extended FMI 2.0 Co-Simulation Inter-

face [1] that interacts with the state estimation algo-

rithms implemented in a Modelica library [2]. Be-
sides a short introduction to Kalman Filter based

state estimation, we give details on a generic inter-

face to cooperate with FMUs in Modelica, an im-
plementation of nonlinear state estimation based on

this interface, and the Dymola prototype used for the

evaluation. Finally we show first results in a tire load

estimation application [3] for DLR’s robotic electric
research platform ROMO [4].

Keywords: FMI 2.0 Co-Simulation, FMU, Inline In-

tegration, Kalman Filter, State Estimation, Moving

Horizon Estimation, Tire Load Estimation

1 Introduction

With the raise of computational power in the last
decades the possibilities to implement complex con-

trol strategies in real world applications enhanced

tremendously. For most of them a good knowledge
of the actual states is necessary. Often these are not

directly measurable due to cost limitations or miss-

ing sensors (for example, it is not practical to meas-

ure in-tire forces). In the ITEA2 project MODRIO
[5] one aim is to develop state estimation technolo-

gies for plants that use the knowledge of complex

models of the controlled system itself. These models
are often designed, parameterized and optimized as

multidomain models in Modelica. To re-use these

models for estimation and control purposes the Func-

tional Mockup Interface [1] turns out to be very use-
ful. Three years ago, we presented a concept for state

estimation [2], [6] using FMI 1.0 Model Exchange

[7], using Modelica function pointers to separate the
prediction model from the observer algorithms and

to create an easy reconfigurable framework for state

estimation purposes. This approach had several limi-

tations and difficulties that we want to overcome
based on a slightly extended FMI 2.0 Co-Simulation

Interface [1] . Furthermore we introduced a different

way how the user interacts with the prediction model
and the desired state estimation method.

One goal of the research performed in MODRIO is
to build-up a complete tool chain so that an end-user

can utilize a complex model in a state estimation al-

gorithm and download the estimator to an embedded
target. To our knowledge such tool chains are not

available today. There are toolboxes available for the

estimation algorithms, such as [8], [9], but it is non-
trivial and time-consuming to utilize them for a con-

crete application with a nonlinear model and down-

load the result to a real-time target.

The following sections are organized as follows. In

Section 2 we briefly recap the well-known Extended

Kalman Filter, Unscented Kalman Filter and the
Moving Horizon estimator algorithms. From these

descriptions we deduce the requirements on a gener-

ic interface for nonlinear models. Afterwards, Sec-
tion 3 gives a closer look into the Modelica imple-

mentation, as well as a proposal for a user-friendly

configuration interface. Moreover, we show how the
FMI 2.0 Co-Simulation needs to be extended to fit

the requirements of the prediction steps sketched in

Section 2. As a use-case we show an automotive tire

load estimation application [3] in Section 4. To vali-
date this approach measurement data acquired with

DLR’s ROboMObil [4] are used.

DOI
10.3384/ECP1409653

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

53

2 Model Evaluations in

State Estimation Algorithms

It is assumed that the plant model to be used in state
estimation is naturally described as nonlinear contin-

uous-time state space system:

 ̇ ()
 ()

 () () ()

(1)

where is time, () is the vector of inputs, () is

the vector of states and () is the vector of outputs.

Such a model shall be provided as a Functional
Mockup Unit (FMU) [1]. In this paper plant models

are defined in Modelica and exported as FMUs using

Dymola. However, all the results are also valid if
FMUs are generated by other tools and/or non-

Modelica environments, as long as the FMU sup-

ports a slightly extended FMI 2.0 Co-Simulation In-

terface according to our proposal.

Model (1) cannot be utilized directly in a sampled
data system. Instead a discrete-time representation is

needed for use in a discrete-time state estimator. The

following discrete-time version of (1) with additive

Gaussian noise is used in the sequel:

 ()

 ()
 ()
 ()

(2)

Here is the -th sample time instant of a periodi-

cally sampled data system, (), (),
 (), , is Gaussian noise, and

 ∫ ()

 (3)

A tool chain has to support (3) because it is non-
trivial to transform the natural description (1) in (2).

2.1 The Estimation Prediction Step

In this section, we briefly summarize the steps of

Kalman Filter based state estimation and will then
have a closer look to the prediction step (compare

Figure 1) of the Extended Kalman Filter (EKF), the

Unscented Kalman Filter (UKF), and a more com-
plex Kalman Filter based algorithm the so-called

Moving Horizon Estimation (MHE) [10]. Here the

need of an efficient and reliable way for the feed
forward model simulation rises tremendously. For

further information regarding Kalman Filter tech-

niques, see especially the standard textbook [11].

This section is based on [12], [11] and [2].

In Figure 1 a cycle flow diagram of a recursive Kal-

man Filter algorithm is depicted. The filter is initial-

ized with the initial state vector guess ̂
 and the

initial guess of the state covariance matrix
 . These

can be seen as a stochastic expectation for believe in

the first guess of the estimation task.

Time Update

(Predict)

Measurement

Update

(Correct)

 ̂0
+, 0

+

 ̂
−,

−

 ̂
+,

+

𝑚

Figure 1: Principle of Kalman Filter based Estimation,

 denotes the vector of measured outputs

Afterwards the cycle of the two steps Predict and

Correct begins and is executed with a predetermined
static sample time . The additive Gaussian noise

assumption in Eq. (2) is handled by the tuning covar-

iance matrices . These enable the user to tune the
filter to the specific task. For nonlinear model state

estimation the widely used EKF algorithm is given

as pseudo code in Table 1.

Table 1: Extended Kalman Filter Algorithm

 ̂
 ()

 ((− ̂

)(− ̂
))

 :

 ̂
 (̂

)

(

|
 ̂

)

 (

)

|
 ̂

 ̂
 ̂

 (
 − (̂

))

 (−)

The red marked sections indicate where the evalua-
tion of the underlying system model equations (2) is

necessary. The calculation of ̂
 is performed by in-

tegrating model (1) from to , is the state-

transitions matrix of with respect to at ̂
 and

 is the partial derivative matrix of with respect

to at ̂
 . The Jacobians and must either be

provided directly, or they can be determined numeri-
cally, for example with a forward difference quo-

tient:

 √

()
 (̂) − (̂)

(4)

Nonlinear State Estimation with an Extended FMI 2.0 Co-Simulation Interface

54 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP1409653

2.2 UKF Sigma Point Approach

The so called Sigma Point Transformation is based

on the idea that it is easier to approximate a Gaussian

distribution, than it is to approximate an arbitrary
nonlinear function or transformation [13], [11]. The

parts of the UKF algorithm, where model evaluations

are necessary, are given in Table 2. The selection of
the Sigma Points in matrix is performed via a stat-

ic scaling factor () and the matrix square root

of the a posteriori covariance matrix. The number of
states is denoted by , is the spread around

the last state value ̂
 and is a parameter for the

stochastic distribution assumption. In total

points must be created and then used as initial values
for simulations from to to compute

 .

Table 2: UKF Prediction Step

 [̂ ̂ √
 ̂ − √

]

 ()

 ̂
 ∑

 ∑

(− ̂
)(− ̂

)

 [̂

 ̂
 √

 ̂
 − √

]

 (
)

 ̂
 ∑

The predicted values ̂
 ̂

 are calculated via

weighted sums with the predetermined weights

 (). We define ̂ ̂ ̂ ̂ and

in our notation a vector depending function (e.g.

 or) with a matrix argument returns a matrix

with columns that are equal to the evaluated columns

of the matrix argument.

It can be shown that the nonlinear approximation

accuracy of the UKF is minimum twice higher com-
pared to an EKF. This becomes important in case of

strong nonlinearities in the prediction model (for a

detailed proof see [14] – Appendix A).

2.3 MHE with NLG Method

The Moving Horizon Estimator (MHE) is very close-

ly connected to Model Predictive Control (MPC).

Instead of predicting future control inputs we have a
sliding window (with steps to the past) that moves

every one step ahead. Therefore, all past meas-

urements are taken into account.

0 2 4 6 8 10
0

1

2

3

4

5

Time [s]

y
m

𝒕𝒌
𝒕𝒌−𝟏 𝒕𝒌−𝑴−𝟏

𝒕𝒌−𝑴

Figure 2: Moving window in MHE application

In this way the estimate gets more robust against ex-

ternal disturbances, delayed measurements can be
incorporated and also constraints can be imposed

directly [10]. Neglecting the last two points, the op-

timization objective can be written as follows:

Table 3: MHE Optimization Objective

 ()

 (

)

 ̂

 () (−)

 () − ̂

 ∑
 − ()

 ∑ −

The initial constraint (first line in definition of

 ()) is calculated via a Kalman Filter step i.e. an

EKF from Table 1, wherein the information matrix

 (−

)− .

For its solution a Nonlinear Decent Search (NLG) is

useful, because only the first derivatives of the sys-
tem functions are needed, which is an important con-

straint for the available interfaces of FMI 2.0 (com-

pare [1]). The algorithm of the unconstrained NLG is
given in Table 4, for details please see [15]:

Table 4: MHE Optimization Algorithm

1. Set and define 𝒌
 (

)

2. Decent direction:

 − (

)

3. Line search to determine the step size:

 𝑚

 (

)

4. Optimization step:

5. If stop criterion not reached:

 and go to step 2;

In step 1 an initial solution 𝒌
 is needed. A good ap-

proach for its calculation is the open loop integration

of the prediction model from to . The gradi-

Session 1A: FMI 1

DOI
10.3384/ECP1409653

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

55

ent (

) of the decent direction can be calculated

as shown in Table 5 (again, all parts that need a

model evaluation are marked in red).

Table 5: MHE Gradient Calculation

 () ()

 (
 (

))(− ̂
)

 −
 ()

 (
 − ())

 −

 () ()
 ()

 (−) −
 ()

 (
 − ())

2.4 Summary of Needed Model Evaluations

In Table 6 all needed evaluations of the prediction

model (compare Eq. (1), (2)) for state estimation ap-

plications are summarized. A tool chain has to pro-
vide these model evaluations. In the right column the

name of the Modelica function is listed to trigger the

corresponding evaluation in the tool chain proposed
by this article, for details see section 3.3.

Table 6: Model evaluations for nonlinear state estimation
(in the right column the name of the Modelica functions

are defined to trigger the evaluations in the tool chain

proposed in this article, see section 3.3).

Required model evaluations Modelica

Integration

between two
sample points:

 ∫ ()

inte-

grator

Derivative

evaluation:
 ̇ () f

Output

evaluation:
 () h

Optional model evaluations
(if not provided, computed numerically by

difference quotients)

State Jacobian

matrix:

() fx

Output Jacobi-

an matrix:

() hx

3 Nonlinear Kalman Filters and FMI

In Section 2 different state estimation algorithms are

summarized. The goal of this paper is to provide a

tool chain for nonlinear state estimation based on the

model equations of a Modelica model. In [2] it is

explained why a pure Modelica solution to reach this

goal is currently not possible. Using FMI helps to

overcome this situation. In [2] we concentrated on
FMI 1.0 for Model Exchange with the drawback that

the integration algorithm for performing prediction

steps of a Kalman Filter has to be implemented in
Modelica, a non-trivial task. FMI 2.0 for Co-

Simulation [1] simplifies the implementation signifi-

cantly because the integration algorithm, including
event handling, is embedded inside the FMU. Still

some features are missing. In a Dymola prototype

these have been added in order that the “required”

functions from Table 6 are supported.

The overall process of using a state estimator in
Modelica is illustrated in Figure 3:

FMU

Container

Package

FMU

Modelica

Package

Individual

Filter

Model

FMU 2.0

Co-Sim.
Import to

Modelica

Generic

Filter

Model

Include

in

User Model

Individual

Filter

Model

Instan-

tiate
Extend

Generate

Figure 3: Process flow to generate a state estimator based

on an FMU
An FMU (usually exported from a Modelica model)

is imported into the Modelica environment by ex-

tending the package FMUImportTemplate. The im-
ported package can be included in an FMU container

package to collect several FMUs for easy access. For

such an FMU package an Individual Kalman Filter
model is generated that provides variable names on

buses and user convenient parameter menus. The

algorithmic part of the state estimation is provided in
a Generic Filter Model. Finally, the individual filter

model can be instantiated in the user’s application

model. An example is shown in the next figure:

pendulumEstimator

EKFx

y

u
y
m

Figure 4: Instance of an individual EKF Kalman filter

model generated by the process from Figure 3. The bus on

the left side contains the individual input and measure-

ment variables of the FMU and the bus on the right side

contains the individual estimated state and output varia-
bles of the FMU.

In the following sub-sections, the details of the pro-

cess from Figure 3 are described.

Nonlinear State Estimation with an Extended FMI 2.0 Co-Simulation Interface

56 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP1409653

3.1 FMI for State Estimation with Dymola

The standard FMI Co-Simulation Interface allows

integrating (1) from sample instant to with

function fmiDoStep(..) and therefore computing
(2). In standard co-simulation the continuous-time

states of a model are hidden in the co-simulation

slave. However, for state estimation the states need
to be explicit and it must be possible to reset the

states at sample instants, see Section 2. In order to

achieve this, Dymola 2014 FD01, that has already
support for FMI 2.0 Co-Simulation according to [1],

has been extended in a prototype with the needed

features. Especially,

 the continuous-time states are reported in the

modelDescription.xml file under element

ModelStructure,

 it is possible to explicitly set the continuous-time

states with fmiSetReal(..) before

fmiDoStep(..) is called,

 it is possible to inquire the actual values of all

variables with fmiGetReal(..) after fmi-

SetReal(..) was called, without an

fmiDoStep(..) in between,

 when importing an FMU for Co-Simulation in to

Modelica, Dymola generates the Modelica code

optionally according to the FMUImportTem-

plate package shown in the next section. This

package serves as interface to access the needed

FMI functionality from a Modelica model or
function.

3.2 FMUImportTemplate package

Importing an FMU means to generate a package that
contains all the functionality needed to simulate the

FMU or use it in a state estimator. For this the tem-

plate package FMUImportTemplate is provided, see
code and figure below. The imported FMU extends

from the FMUImportTemplate and redeclares all

elements.

partial package FMUImportTemplate

 constant Integer nx=1;

 …

 constant Integer id_x[nx];

 …

 constant String stateNames[nx];

 …

 replaceable model SimulationModel

 end SimulationModel;

 replaceable model InitializationModel

 fmiModel fmi;

 parameter Real fmiInitOk(fixed=false);

 end InitializationModel;

 replaceable partial class fmiModel

 extends ExternalObject;

 function constructor

 …

 end constructor;

 …

 end fmiModel;

 replaceable function fmiDoStep

 input fmiModel fmi;

 …

 end fmiDoStep;

 …

end FMUImportTemplate;

Important dimensions
of the FMU such as the

number of continuous

states nx, inputs nu and

outputs ny are set in

the imported FMU

package. Furthermore,

the FMI references are
available by the vec-

tors id_x, id_dx,

id_u and id_y for
state, state derivative,

input and output varia-

bles. It is also im-
portant to get variable

names for states, inputs

and outputs. Otherwise
the order of the com-

ponents in the vectors

x, u, y would be only

visible by user-
unfriendly reference

values instead of vari-

able names. The names
are used in the parame-

ter GUIs of the filter model in the next subsection

and in the input and output bus of a filter model.

The imported FMU package contains two models:

SimulationModel and InitializationModel.

The model SimulationModel is a fully operating

Modelica model (with inputs and outputs) that wraps

the FMU for Co-Simulation whereas in Initiali-

zationModel only the FMU is instantiated by the

external object fmiModel and the FMI initialization

phase is executed. The InitializationModel is

used in a Kalman Filter model; the Simulation-

Model is contained for completeness to use the im-

ported FMU package also for other applications like

a “real” FMU for Co-Simulation in the Modelica
simulation environment.

Session 1A: FMI 1

DOI
10.3384/ECP1409653

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

57

The FMU package

provides interface

functions to all (or

at least most) of the
functions defined in

the FMI Co-Simulation standard 2.0. For a user-

convenient handling of the FMU import process, it is
desirable to import an FMU as a sub-package into an

existing Modelica package. The default package is

the package FMUContainer that hosts several im-
ported FMUs, see figure above.

3.3 Model Functions for State Estimators

The state estimator algorithms are implemented with

Modelica functions that provide the needed model

evaluations. In partial package BaseFunctions the

interfaces of these functions are defined and in pack-

age SystemFunctions the function prototypes are
collected. The latter are replaceable functions that

provide the needed functionality of Table 6 (the right

column of this table lists the name of the function).

For example, partial function fBase is defined as:

partial function fBase "Base class of the

 state equation dx/dt = f(x,u,t)"

 input Integer nx "Number of states";

 input Integer nu "Number of inputs";

 input Real x[nx] "States";

 input Real u[nu] "Inputs";

 input Modelica.SIunits.Time t "Time";

 output Real dxdt[nx] "Derivatives";

end fBase;
The dimensions nx, nu are conceptually not neces-

sary, because the dimensions could be determined by

the size of the vectors x and u. Currently, Dymola
does not support arrays with non-fixed sizes in func-

tion calls of translated Modelica models. The func-

tion prototypes are collected in package System-

Functions:

partial package SystemFunctions

 replaceable function f

 extends fBase;

 end f;

 …

 replaceable function integrator

 extends integratorBase;

 end integrator;

end SystemFunctions;
For a particular model, an implementation of the

SystemFunctions functions has to be provided. For
FMUs, this is performed with the generic package

FMISystemFunctions. The implementation is based

on the FMUImportTemplate package and holds

therefore for every FMU that extends from this tem-
plate package.

package FMISystemFunctions

 extends SystemFunctions;

 replaceable package FMU

 constrainedby FMUImportTemplate;

 redeclare function extends f

 input FMU.fmiModel fmi;

 algorithm

 FMU.fmiSetReal(fmi, FMU.id_u, u);

 FMU.fmiSetReal(fmi, FMU.id_x, x);

 dxdt := FMU.fmiGetReal(fmi, FMU.id_dx);

 end f;

 …

 redeclare function extends integrator

 input FMU.fmiModel fmi;

 algorithm

 FMU.fmiSaveFMUState(fmi);

 FMU.fmiSetReal(fmi, FMU.id_u, u);

 FMU.fmiSetReal(fmi, FMU.id_x, x);

 FMU.fmiDoStep(fmi, t, dt, 0);

 xNew := FMU.fmiGetReal(fmi, FMU.id_x);

 FMU.fmiRestoreFMUState(fmi);

 end integrator;

end FMISystemFunctions;

The system functions f, h, integrator can be di-

rectly implemented with functions provided in

FMUImportTemplate. The Jacobians fx and hx are

implemented by computing them numerically with

finite difference quotients. Once Dymola supports
directional derivatives for imported FMUs for the

extended Co-Simulation case, that is function

fmiGetDirectionalDerivatives, then this func-

tion can be directly called and will provide a more
efficient and reliable evaluation of the Jacobians.

The Dymola prototype supports two techniques for

the FMI function fmiDoStep. Either the Sundials

solvers [16] are used (that are integrators with varia-

ble step size and error control) to numerically inte-
grate the model equations, or Inline integration [17]

is applied, that means fixed step solvers are embed-

ded in the model equations. The Kalman Filter li-
brary works with both techniques. For real-time ap-

plications, fixed-step methods have to be used and

therefore a Kalman filter will usually utilize Inline
integration.

The functions fmiSave/RestoreFMUState in the
above code fragments are auxiliary functions that

call the FMI functions fmiGet/Set/FreeFMUstate

to enable several calls of fmiDoStep starting at the
same time instant, as needed, for example, for the

UKF.

3.4 Tailored Kalman Filter Models in Modelica

Based on the imported FMU package an individual

Kalman Filter model has to be generated. In the cur-

rent version of the Kalman Filter Library this can be

performed automatically by use of a Modeli-
ca/Dymola scripting function. The idea is to define

an input bus InBus and an output bus OutBus for

Nonlinear State Estimation with an Extended FMI 2.0 Co-Simulation Interface

58 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP1409653

exchanging variables between the filter model and

higher level models. The names of the bus variables

correspond to the variable names of the imported

FMU – only “.”, “,”, “[”, “]” and “ ” are replaced by
“_” due to Modelica syntax. The bus definitions for

the use-case example in Section 4 are listed below:

encapsulated expandable connector InBus

 import Modelica;

 extends Modelica.Icons.SignalBus;

 // Model Inputs

 Real u;

 // Measured Model Outputs

 Real accBody;

 Real sRel;

 Real accArmUp;

end InBus;
encapsulated expandable connector OutBus

 import Modelica;

 extends Modelica.Icons.SignalBus;

 // Estimated Model States

 Real mass_wheel_s;

 Real mass_wheel_v;

 Real mass_body_s;

 Real mass_body_v;

 Real …FirstOrderShapingFilter_s;

 // Estimated Model Outputs

 Real accBody;

 Real sRel;

 Real accArmUp;

end OutBus;

The advantage of this approach is that not vectors of
anonymous variables are defined, but bus variables

with meaningful names tailored to each individual

FMU. The main state estimation algorithms are im-
plemented in sub-functions and in a partial filter

model, e.g. for an UKF (see Section 2.2). This model

defines several variables and parameters for the filter

algorithm that is called at each sample point of a
sampled integration time interval. In the filter model

also an instance of InitializationModel of the
imported FMU package is included. Together with

the package FMISystemFunction all necessary parts
are put together to run FMI based Kalman Filter al-

gorithms within a Modelica model.

Figure 5: Parameter menu for output variances with

names of output variables

A further improvement of the user interface com-

pared to [2] are the filter parameters like state and

output variances that are shown in lists with names

of the respective variables – instead of indices of

vectors, see Figure 5. Basically, a matrix is defined

and via Dymola specific annotations row and column
headings can be added to the parameter menu. For

example the menu in Figure 5 is defined in the fol-

lowing way:

 parameter Real yData[FMUPackage.ny,1]

 annotation(Dialog(

 __Dymola_columnHeadings =

 {"R[i,i] (outputVariance^2)"},

 __Dymola_rowHeadings =

 {"accBody", "sRel", "accArmUp"}));

In the parameter menu of the filter in Figure 6 the

user can press the button on the right side of yData

to get the menu of Figure 5. Also the model parame-

ters of the FMU may be modified by clicking on the

button on the right side of ModelParameters.

Figure 6: Menu of a UKF SR Kalman Filter model

4 Example: Vehicle Vertical

Dynamics States Estimation

As an example application, the above described
Kalman Filter Library is used to develop an ad-

vanced state estimator for the vertical dynamics of

the ROboMObil. A more detailed version of this ap-

plication case is available in [3]. This section is
based on [3], but now the method and software from

Section 3 are used. The ROboMObil is a robotic

electric vehicle concept (see Figure 7) developed at
the Robotics and Mechatronics Center of the German

Aerospace Center DLR. It is comprised of four

Wheel Robots (Figure 8 – left), which integrate trac-

tion motor, steering, brake system, spring and semi-
active damper. Further details on the ROboMObil

can be found in [4].

Session 1A: FMI 1

DOI
10.3384/ECP1409653

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

59

Figure 7: ROMO on the four-post test rig

In contrast to fully active suspension systems they
need far less energy [19]. Therefore a diversity of

control strategies for semi-active dampers is present-

ed in literature. An overview about these control
strategies can be found in [20] and [21]. As most of

these strategies need state feedback, but not all states

can be measured, state estimation becomes an im-

portant topic during the design of semi-active sus-
pension systems.

Figure 8: Left: the “Wheel Robot” concept, right: nonlin-

ear two mass system [3]

The DLR Kalman Filter Library as presented in Sec-

tion 3 offers an easy to use framework for the devel-

opment of state estimators for nonlinear systems like
this semi-active suspension system. Especially a

square root utilizing implementation of the UKF

(Subsection 2.2) algorithm SR-UKF is well suited
for highly nonlinear systems, because of its higher

order linearization accuracy of mean and covariance.

Furthermore the nonlinear parts can be taken into

account more easily than in an EKF algorithm (Sub-
section. 2.1) since no derivatives and Jacobians are

needed.

4.1 The Nonlinear Quarter Vehicle Model

The suspension system of the Wheel Robot is mod-

eled as a nonlinear two mass system (see Figure 8 –

right) as described in [3]. The corresponding imple-
mentation in Modelica is shown in Figure 9. The

model consists of the two masses mass_body and

mass_wheel, a linear spring damper component,

which approximates the wheel behavior, a road mod-

el as explained in [18] or [22] and the body_spring

and body_damper.

Figure 9: Nonlinear two mass system in Modelica

As the motion of these two components are connect-

ed to the wheel and body motion by a push rod-

rocker kinematic (compare Figure 8 – left), the mo-
tion and the force of these components is scaled by a

transmission ratio. Details on the nonlinear charac-

teristic of the body_damper are shown in [3].

The third main nonlinearity of the two mass system

besides the transmission ratio and the damper char-
acteristic is the friction of the suspension system. It

covers the friction of the damper and of all joints of

the suspension system. For the state estimation the

friction force is modeled without stiction by a

smooth -switching function:

 (⁄). (5)

Here represents a constant sliding friction.

The direction of the friction force is determined ac-

cording to the current velocity difference between

body and wheel. The parameter is used to define

the transitional behavior of the -function.

4.2 Experimental Setup and Results

The nonlinear two mass system described in Section
4.1 is integrated in an SR-UKF state estimator using

the DLR Kalman Library including the FMI 2.0 for

Co-Simulation interface and Inline-integration as
described in Section 3. Subsequently the resulting

estimators are applied to the measurement data rec-

orded with the ROboMObil on a four-post test rig.
Figure 10 shows the Modelica model of the SR-UKF

s
p

ri
n

g
D

a
m

p
e

r

d
=

d
_
w

c
=

c
_

w

m
a

s
s
_
w

h
e

e
l

m
=

m
_

w

m
a

s
s
_
b

o
d

y

m
=

m
_

b
fo

rc
e

S
e

n
s
o

r

f

accBodySensor

a

accArmUpSensor

a

relPositionSensor

s

b
o

d
y
_

d
a

m
p

e
r

b
o

d
y
_

s
p

ri
n

g

RoadModel

u

accBody

sRel

accArmUp

Nonlinear State Estimation with an Extended FMI 2.0 Co-Simulation Interface

60 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP1409653

estimator. On the left-hand side the measurement

data is read by a CombiTimeTable and on the right-

hand side the estimator, called Filter, and its corre-

sponding settings block observerControl can be
found. The estimator uses three measurement inputs:

the acceleration of the body above the wheel, the

wheel acceleration and the damper deflection.

Figure 10: SR-UKF estimator in Modelica

The parameters of the estimators, as well as the sys-

tem covariances, are tuned according to the optimi-

zation procedure presented in [3]. The measurement
covariances are set according to the sensor noise.

The experimental setup is shown in Figure 11.

The performance of the estimator, subject to a sine

sweep excitation, is shown in Figure 11 by compar-

ing the measured and the estimated tire contact forc-
es in the last plot. Please notice that the tire force

 is only available on the four-post test rig

(Figure 7). It is used for validating the estimator per-

formance and not as a measurement output to it
(compare experimental setup in Figure 10). Addi-

tionally the measurements are compared to the esti-

mated measurements. It can be seen that the estima-

tor reproduces the measurements and the tire contact
force with a good accuracy.

SR-UKF

damper map
(Fd(x))

„Wheel Robot“

y

𝑥 𝑥0

Figure 11: State estimator setup with measurement data
from the four-post test rig

As the body accelerometer has the largest noise lev-

el, the weighting of its measurements accBody was
chosen in such a way that the estimator relies more

on the damper deflection sRel and the wheel acceler-

ation accArmUp.

10.5 11.0 11.5
-4

0

4

inBus.accBody outBus.accBody

10.5 11.0 11.5
-5

0

5

10

inBus.accArmUp outBus.accArmUp

10.5 11.0 11.5
-0.01

0.00

0.01

inBus.sRel outBus.sRel

10.5 11.0 11.5

2000

3000

Time in s

F_z_measure F_z_estimated

Figure 12: Comparison of measurements to estimated

measurement (plot 1-3) and contact force estimation

(plot 4) on the four-post test rig – “sine sweep” excitation

5 Conclusions and Outlook

In this paper we have shown how the FMI 2.0 stand-
ard for Co-Simulation [1] can be extended to use its

capabilities for modern state estimation problems.

We discussed the parts of the different estimation

algorithm in detail, the needed evaluation of the sys-
tem functions and integration between two sample

instants via the FMI interface. Furthermore, we gave

implementation details on a user friendly workflow
as well as a set of necessary Modelica models and

functions. The use case example of our vertical dy-

namics state estimation [3] application for our RO-
boMObil [4] showed good results in accuracy and

computational efficiency. As a next step we plan to

test them on a commercial real-time platform for

stability and deterministic execution.

0.001 s

Discrete

sampleClock

Filter

UKF

SR

x

y

u
ym

observerControl

Observer

Control

SineSweep_Data

ROMO

const

k=0

add1add1

+
-1

1

const1

k=9.81

add2add2

+
-1

+1

const2

k=9.81

add3add3

+
-1

+1

const3

k=0.341 inBus1sRel

accArmUp

accBody

u

inBus1 outBus1

Session 1A: FMI 1

DOI
10.3384/ECP1409653

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

61

6 Acknowledgement

This paper is based on research performed within the

ITEA2 project MODRIO. Partial financial support of

the German BMBF and the Swedish VINNOVA for

this development are highly appreciated.

Furthermore, the authors would like to thank Bern-

hard Thiele from DLR for his support to implement
and cross-compile FMUs on real-time hardware and

Marcus Baur for his support in implementing Kal-

man Filter algorithms in Modelica.

References

[1] Functional Mockup Interface for Model Exchange and
Co-Simulation 2.0 RC1, Modelica Association,
18.10.2013. [Online]. Available [Accessed 25.1.2014]:
https://www.fmi-standard.org/downloads#version2.

[2] J. Brembeck, M. Otter and D. Zimmer, Nonlinear

Observers based on the Functional Mockup Interface

with Applications to Electric Vehicles, in Proceedings of
8th International Modelica Conference, Dresden, 2011.
Available [Accessed 25.1.2014]:
http://www.ep.liu.se/ecp/063/053/ecp11063053.pdf.

[3] M. Fleps-Dezasse and J. Brembeck, Model based vertical

dynamics estimation with Modelica and FMI, in IFAC
ACC, National Olympics Memorial Youth Center, Tokyo,
Japan, 2013.

[4] J. Brembeck, L. M. Ho, A. Schaub, C. Satzger, J. Tobolar,

J. Bals and G. Hirzinger, ROMO - the robotic electric

vehicle, in 22nd IAVSD International Symposium on
Dynamics of Vehicle on Roads and Tracks, Manchester,
11.-14. Aug. 2011.

[5] Modrio ITEA2, [Online]. Available [Accessed
25.1.2014]: https://modelica.org/external-projects/modrio
http://www.itea2.org/project/index/view/?project=10114.

[6] C. Engst, Object-Oriented Modelling and Real-Time

Simulation of an Electric Vehicle in Modelica, Masters
Thesis, TUM EAL Munich, 2010.

[7] Functional Mock-up Interface for Model
Exchange,Version 1.0, 25 January 2010. [Online].
Available [Accessed 25.1.2014]: https://www.fmi-
standard.org/downloads#version1.

[8] J. Hartikainen and S. Särkkä, Optimal filtering with

Kalman filters and smoothers - A Manual for Matlab

toolbox EKF/UKF, February 2008. [Online]. Available
[Accessed 25.1.2014]:
http://www.lce.hut.fi/research/mm/ekfukf/.

[9] B. Houska, H. J. Ferreau and M. Diehl, ACADO toolkit –

An open-source framework for automatic control and
dynamic optimization, Optimal Control Applications &
Methods, vol. 32, no. 3, pp. 298-312, 2010.

[10] D. Simon, Kalman filtering with state constraints: a

survey of linear and nonlinear algorithms, IET Control
Theory & Applications, vol. 4, no. 8, p. 1303+, 2010.

[11] D. Simon, Optimal State Estimation: Kalman, H

Infinity, and Nonlinear Approaches, 1. Edition ed.,

Wiley & Sons, 2006.

[12] J. Brembeck, Method to extend models for system

design to models for system operation, MODRIO First
Project Report, Munich, 2013.

[13] S. J. Julier and J. K. Uhlmann, Unscented filtering and

nonlinear estimation, Proceedings of the IEEE, vol. 92,
no. 3, pp. 401-422, March 2004.

[14] S. Haykin, Kalman Filtering and Neural Networks,
Wiley-Interscience, 2001.

[15] J. Rosen, The Gradient Projection Method for

Nonlinear Programming. Part I. Linear Constraints,
Journal of the Society for Industrial and Applied
Mathematics, vol. 8, no. 1, pp. 181-217, 1960.

[16] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee, R.
Serban and D. E. Shumaker, SUNDIALS: Suite of

Nonlinear and Differential/Algebraic Equation Solvers,

ACM Transactions on Mathematical Software, vol. 31(3),
pp. 363-369, 2005.
Software: Available [Accessed 25.1.2014]
http://computation.llnl.gov/casc/sundials/main.html.

[17] H. Elmqvist, F. Cellier and M. Otter, Inline Integration:

A new mixed symbolic/numeric approach for solving
differential-algebraic equation systems, in European
Simulation Multiconference, Prague, 1995. Available
[Accessed 25.1.2014]
http://www.inf.ethz.ch/personal/fcellier/Pubs/OO/esm_95.
pdf.

[18] M. Mitschke and H. Wallentowitz, Dynamik der
Kraftfahrzeuge, Berlin: Springer, 2004.

[19] R. Williams, Electronically controlled automotive

suspensions, Computing Control Engineering Journal,
vol. 5, no. 3, pp. 143-148, jun 1994.

[20] S. Savaresi, C. Poussot-Vassal, C. Spelta, O. Sename and
L. Dugard, Semi-Active Suspension Control Design for
Vehicles, Elsevier Science, 2010.

[21] E. Guglielmino, Semi-active suspension control -

Improved vehicle ride and road friendliness, London:
Springer, 2008.

[22] G. Koch, T. Kloiber, E. Pellegrini and B. Lohmann, A

nonlinear estimator concept for active vehicle

suspension control, in Proc. American Control Conf.
(ACC), Baltimore, 2010.

Nonlinear State Estimation with an Extended FMI 2.0 Co-Simulation Interface

62 Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

DOI
10.3384/ECP1409653

