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Abstract 

In this paper we propose a method how to automati-

cally utilize continuous-time Modelica models di-

rectly in nonlinear state estimators. The approach is 
based on an extended FMI 2.0 Co-Simulation Inter-

face [1] that interacts with the state estimation algo-

rithms implemented in a Modelica library [2]. Be-
sides a short introduction to Kalman Filter based 

state estimation, we give details on a generic inter-

face to cooperate with FMUs in Modelica, an im-
plementation of nonlinear state estimation based on 

this interface, and the Dymola prototype used for the 

evaluation. Finally we show first results in a tire load 

estimation application [3] for DLR’s robotic electric 
research platform ROMO [4]. 

Keywords: FMI 2.0 Co-Simulation, FMU, Inline In-

tegration, Kalman Filter, State Estimation, Moving 

Horizon Estimation, Tire Load Estimation 

1 Introduction 

With the raise of computational power in the last 
decades the possibilities to implement complex con-

trol strategies in real world applications enhanced 

tremendously. For most of them a good knowledge 
of the actual states is necessary. Often these are not 

directly measurable due to cost limitations or miss-

ing sensors (for example, it is not practical to meas-

ure in-tire forces). In the ITEA2 project MODRIO 
[5] one aim is to develop state estimation technolo-

gies for plants that use the knowledge of complex 

models of the controlled system itself. These models 
are often designed, parameterized and optimized as 

multidomain models in Modelica. To re-use these 

models for estimation and control purposes the Func-

tional Mockup Interface [1] turns out to be very use-
ful. Three years ago, we presented a concept for state 

estimation [2], [6] using FMI 1.0 Model Exchange 

[7], using Modelica function pointers to separate the 
prediction model from the observer algorithms and 

to create an easy reconfigurable framework for state 

estimation purposes. This approach had several limi-

tations and difficulties that we want to overcome 
based on a slightly extended FMI 2.0 Co-Simulation 

Interface [1] . Furthermore we introduced a different 

way how the user interacts with the prediction model 
and the desired state estimation method. 

One goal of the research performed in MODRIO is 
to build-up a complete tool chain so that an end-user 

can utilize a complex model in a state estimation al-

gorithm and download the estimator to an embedded 
target. To our knowledge such tool chains are not 

available today. There are toolboxes available for the 

estimation algorithms, such as [8], [9], but it is non-
trivial and time-consuming to utilize them for a con-

crete application with a nonlinear model and down-

load the result to a real-time target. 

The following sections are organized as follows. In 

Section 2 we briefly recap the well-known Extended 

Kalman Filter, Unscented Kalman Filter and the 
Moving Horizon estimator algorithms. From these 

descriptions we deduce the requirements on a gener-

ic interface for nonlinear models. Afterwards, Sec-
tion 3 gives a closer look into the Modelica imple-

mentation, as well as a proposal for a user-friendly 

configuration interface. Moreover, we show how the 
FMI 2.0 Co-Simulation needs to be extended to fit 

the requirements of the prediction steps sketched in 

Section 2. As a use-case we show an automotive tire 

load estimation application [3] in Section 4. To vali-
date this approach measurement data acquired with 

DLR’s ROboMObil [4] are used.  
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2 Model Evaluations in 

State Estimation Algorithms 

It is assumed that the plant model to be used in state 
estimation is naturally described as nonlinear contin-

uous-time state space system: 

 

 ̇   (   )  
   ( )  

     ( )       ( )       ( )       

(1) 

where   is time,  ( ) is the vector of inputs,  ( ) is 

the vector of states and  ( ) is the vector of outputs. 

Such a model shall be provided as a Functional 
Mockup Unit (FMU) [1]. In this paper plant models 

are defined in Modelica and exported as FMUs using 

Dymola. However, all the results are also valid if 
FMUs are generated by other tools and/or non-

Modelica environments, as long as the FMU sup-

ports a slightly extended FMI 2.0 Co-Simulation In-

terface according to our proposal. 

Model (1) cannot be utilized directly in a sampled 
data system. Instead a discrete-time representation is 

needed for use in a discrete-time state estimator. The 

following discrete-time version of (1) with additive 

Gaussian noise is used in the sequel: 

            (         )        

       (  )      
      (    )  
      (    )  

(2) 

Here    is the  -th sample time instant of a periodi-

cally sampled data system,       (  ),       (  ), 
      (  ),   ,    is Gaussian noise, and 

              ∫  (      )   

  

    

  (3) 

A tool chain has to support (3) because it is non-
trivial to transform the natural description (1) in (2). 

2.1 The Estimation Prediction Step 

In this section, we briefly summarize the steps of 

Kalman Filter based state estimation and will then 
have a closer look to the prediction step (compare 

Figure 1) of the Extended Kalman Filter (EKF), the 

Unscented Kalman Filter (UKF), and a more com-
plex Kalman Filter based algorithm the so-called 

Moving Horizon Estimation (MHE) [10]. Here the 

need of an efficient and reliable way for the feed 
forward model simulation rises tremendously. For 

further information regarding Kalman Filter tech-

niques, see especially the standard textbook [11]. 

This section is based on [12], [11] and [2].  

In Figure 1 a cycle flow diagram of a recursive Kal-

man Filter algorithm is depicted. The filter is initial-

ized with the initial state vector guess  ̂ 
  and the 

initial guess of the state covariance matrix   
 . These 

can be seen as a stochastic expectation for believe in 

the first guess of the estimation task.  
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Figure 1: Principle of Kalman Filter based Estimation, 

  
  denotes the vector of measured outputs 

Afterwards the cycle of the two steps Predict and 

Correct begins and is executed with a predetermined 
static sample time   . The additive Gaussian noise 

assumption in Eq. (2) is handled by the tuning covar-

iance matrices    . These enable the user to tune the 
filter to the specific task. For nonlinear model state 

estimation the widely used EKF algorithm is given 

as pseudo code in Table 1. 

Table 1: Extended Kalman Filter Algorithm 
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The red marked sections indicate where the evalua-
tion of the underlying system model equations (2) is 

necessary. The calculation of  ̂ 
  is performed by in-

tegrating model (1) from     to   ,       is the state-

transitions matrix of   with respect to   at  ̂   
  and 

   is the partial derivative matrix of   with respect 

to   at  ̂ 
 . The Jacobians      and    must either be 

provided directly, or they can be determined numeri-
cally, for example with a forward difference quo-

tient:  

                   √    

(    )  
 ( ̂             ) −  ( ̂        )

 
 

 

(4) 
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2.2 UKF Sigma Point Approach 

The so called Sigma Point Transformation is based 

on the idea that it is easier to approximate a Gaussian 

distribution, than it is to approximate an arbitrary 
nonlinear function or transformation [13], [11]. The 

parts of the UKF algorithm, where model evaluations 

are necessary, are given in Table 2. The selection of 
the Sigma Points in matrix   is performed via a stat-

ic scaling factor  (     ) and the matrix square root 

of the a posteriori covariance matrix. The number of 
states is denoted by     ,   is the spread around 

the last state value  ̂   
  and   is a parameter for the 

stochastic distribution assumption. In total      

points must be created and then used as initial values 
for      simulations from      to    to compute 

      . 

Table 2: UKF Prediction Step 
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The predicted values  ̂ 
    ̂ 

     
  are calculated via 

weighted sums with the predetermined weights 

  
   (     ). We define   ̂    ̂  ̂    ̂        and 

in our notation a vector depending function (e.g. 

       or  ) with a matrix argument returns a matrix 

with columns that are equal to the evaluated columns 

of the matrix argument.  

It can be shown that the nonlinear approximation 

accuracy of the UKF is minimum twice higher com-
pared to an EKF. This becomes important in case of 

strong nonlinearities in the prediction model (for a 

detailed proof see [14] – Appendix A). 

2.3 MHE with NLG Method 

The Moving Horizon Estimator (MHE) is very close-

ly connected to Model Predictive Control (MPC). 

Instead of predicting future control inputs we have a 
sliding window (with   steps to the past) that moves 

every    one step ahead. Therefore, all past   meas-

urements are taken into account. 
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Figure 2: Moving window in MHE application 

In this way the estimate gets more robust against ex-

ternal disturbances, delayed measurements can be 
incorporated and also constraints can be imposed 

directly [10]. Neglecting the last two points, the op-

timization objective can be written as follows: 

Table 3: MHE Optimization Objective 
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The initial constraint (first line in definition of 

 (  )) is calculated via a Kalman Filter step i.e. an 

EKF from Table 1, wherein the information matrix 

     
  (  − 

 )− .  

For its solution a Nonlinear Decent Search (NLG) is 

useful, because only the first derivatives of the sys-
tem functions are needed, which is an important con-

straint for the available interfaces of FMI 2.0 (com-

pare [1]). The algorithm of the unconstrained NLG is 
given in Table 4, for details please see [15]: 

Table 4: MHE Optimization Algorithm 

1. Set     and define  𝒌
  (        

          
 )

 
 

2. Decent direction: 

   −  (  
 
) 

3. Line search to determine the step size: 

      𝑚  
   

 (  
 
     ) 

4. Optimization step: 

  
   

   
 
      

5. If stop criterion not reached: 

       and go to step 2;  

In step 1 an initial solution  𝒌
  is needed. A good ap-

proach for its calculation is the open loop integration 

of the prediction model from      to   . The gradi-
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ent   (  
 
) of the decent direction can be calculated 

as shown in Table 5 (again, all parts that need a 

model evaluation are marked in red).  

Table 5: MHE Gradient Calculation 
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2.4 Summary of Needed Model Evaluations 

In Table 6 all needed evaluations of the prediction 

model (compare Eq. (1), (2)) for state estimation ap-

plications are summarized. A tool chain has to pro-
vide these model evaluations. In the right column the 

name of the Modelica function is listed to trigger the 

corresponding evaluation in the tool chain proposed 
by this article, for details see section 3.3. 

Table 6: Model evaluations for nonlinear state estimation 
(in the right column the name of the Modelica functions 

are defined to trigger the evaluations in the tool chain 

proposed in this article, see section 3.3). 

Required model evaluations Modelica 

Integration  

between two 
sample points: 

            

  ∫  (      )   

  

    

 

inte-

grator 

Derivative 

evaluation:  
 ̇   (   ) f 

Output 

evaluation: 
   ( ) h 

Optional model evaluations 
(if not provided, computed numerically by 

difference quotients) 
 

State Jacobian 

matrix: 

  

  
(   ) fx 

Output Jacobi-

an matrix: 

  

  
( ) hx 

3 Nonlinear Kalman Filters and FMI 

In Section 2 different state estimation algorithms are 

summarized. The goal of this paper is to provide a 

tool chain for nonlinear state estimation based on the 

model equations of a Modelica model. In [2] it is 

explained why a pure Modelica solution to reach this 

goal is currently not possible. Using FMI helps to 

overcome this situation. In [2] we concentrated on 
FMI 1.0 for Model Exchange with the drawback that 

the integration algorithm for performing prediction 

steps of a Kalman Filter has to be implemented in 
Modelica, a non-trivial task. FMI 2.0 for Co-

Simulation [1] simplifies the implementation signifi-

cantly because the integration algorithm, including 
event handling, is embedded inside the FMU. Still 

some features are missing. In a Dymola prototype 

these have been added in order that the “required” 

functions from Table 6 are supported. 

The overall process of using a state estimator in 
Modelica is illustrated in Figure 3:  

FMU 

Container 

Package

FMU 

Modelica 

Package

Individual 

Filter 

Model

FMU 2.0

Co-Sim.
Import to

Modelica

Generic 

Filter 

Model

Include

in

User Model

Individual 

Filter 

Model

Instan-

tiate
Extend

Generate

Figure 3: Process flow to generate a state estimator based 

on an FMU 
An FMU (usually exported from a Modelica model) 

is imported into the Modelica environment by ex-

tending the package FMUImportTemplate. The im-
ported package can be included in an FMU container 

package to collect several FMUs for easy access. For 

such an FMU package an Individual Kalman Filter 
model is generated that provides variable names on 

buses and user convenient parameter menus. The 

algorithmic part of the state estimation is provided in 
a Generic Filter Model. Finally, the individual filter 

model can be instantiated in the user’s application 

model. An example is shown in the next figure: 

pendulumEstimator

EKFx

y

u
y
m

  
Figure 4: Instance of an individual EKF Kalman filter 

model generated by the process from Figure 3. The bus on 

the left side contains the individual input and measure-

ment variables of the FMU and the bus on the right side 

contains the individual estimated state and output varia-
bles of the FMU. 

In the following sub-sections, the details of the pro-

cess from Figure 3 are described. 
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3.1 FMI for State Estimation with Dymola 

The standard FMI Co-Simulation Interface allows 

integrating (1) from sample instant      to    with 

function fmiDoStep(..) and therefore computing 
(2). In standard co-simulation the continuous-time 

states of a model are hidden in the co-simulation 

slave. However, for state estimation the states need 
to be explicit and it must be possible to reset the 

states at sample instants, see Section 2. In order to 

achieve this, Dymola 2014 FD01, that has already 
support for FMI 2.0 Co-Simulation according to [1], 

has been extended in a prototype with the needed 

features. Especially,  

 the continuous-time states are reported in the 

modelDescription.xml file under element 

ModelStructure,  

 it is possible to explicitly set the continuous-time 

states with fmiSetReal(..) before 

fmiDoStep(..) is called, 

 it is possible to inquire the actual values of all 

variables with fmiGetReal(..) after fmi-

SetReal(..) was called, without an 

fmiDoStep(..) in between, 

 when importing an FMU for Co-Simulation in to 

Modelica, Dymola generates the Modelica code 

optionally according to the FMUImportTem-

plate package shown in the next section. This 

package serves as interface to access the needed 

FMI functionality from a Modelica model or 
function. 

3.2 FMUImportTemplate package 

Importing an FMU means to generate a package that 
contains all the functionality needed to simulate the 

FMU or use it in a state estimator. For this the tem-

plate package FMUImportTemplate is provided, see 
code and figure below. The imported FMU extends 

from the FMUImportTemplate and redeclares all 

elements. 

partial package FMUImportTemplate  

  constant Integer nx=1; 

  …   

  constant Integer id_x[nx]; 

  … 

  constant String stateNames[nx]; 

  … 

  replaceable model SimulationModel 

  end SimulationModel; 

 

  replaceable model InitializationModel 

    fmiModel fmi; 

    parameter Real fmiInitOk(fixed=false); 

  end InitializationModel; 

  

 

 

  replaceable partial class fmiModel 

    extends ExternalObject; 

    function constructor 

      … 

    end constructor; 

  … 

  end fmiModel; 

 

  replaceable function fmiDoStep 

      input fmiModel fmi; 

      … 

  end fmiDoStep;     

  … 

end FMUImportTemplate; 

Important dimensions 
of the FMU such as the 

number of continuous 

states nx, inputs nu and 

outputs ny are set in 

the imported FMU 

package.  Furthermore, 

the FMI references are 
available by the vec-

tors id_x, id_dx, 

id_u and id_y for 
state, state derivative, 

input and output varia-

bles. It is also im-
portant to get variable 

names for states, inputs 

and outputs. Otherwise 
the order of the com-

ponents in the vectors 

x, u, y would be only 

visible by user-
unfriendly reference 

values instead of vari-

able names. The names 
are used in the parame-

ter GUIs of the filter model in the next subsection 

and in the input and output bus of a filter model. 

The imported FMU package contains two models: 

SimulationModel and InitializationModel. 

The model SimulationModel is a fully operating 

Modelica model (with inputs and outputs) that wraps 

the FMU for Co-Simulation whereas in Initiali-

zationModel only the FMU is instantiated by the 

external object fmiModel and the FMI initialization 

phase is executed. The InitializationModel is 

used in a Kalman Filter model; the Simulation-

Model is contained for completeness to use the im-

ported FMU package also for other applications like 

a “real” FMU for Co-Simulation in the Modelica 
simulation environment.  

 

Session 1A: FMI 1

DOI
10.3384/ECP1409653

Proceedings of the 10th International ModelicaConference
March 10-12, 2014, Lund, Sweden

57



The FMU package 

provides interface 

functions to all (or 

at least most) of the 
functions defined in 

the FMI Co-Simulation standard 2.0. For a user-

convenient handling of the FMU import process, it is 
desirable to import an FMU as a sub-package into an 

existing Modelica package. The default package is 

the package FMUContainer that hosts several im-
ported FMUs, see figure above. 

3.3 Model Functions for State Estimators 

The state estimator algorithms are implemented with 

Modelica functions that provide the needed model 

evaluations. In partial package BaseFunctions the 

interfaces of these functions are defined and in pack-

age SystemFunctions the function prototypes are 
collected. The latter are replaceable functions that 

provide the needed functionality of Table 6 (the right 

column of this table lists the name of the function). 

For example, partial function fBase is defined as: 

partial function fBase "Base class of the 

          state equation dx/dt = f(x,u,t)" 

  input Integer nx "Number of states"; 

  input Integer nu "Number of inputs"; 

  input Real x[nx] "States"; 

  input Real u[nu] "Inputs"; 

  input Modelica.SIunits.Time t "Time"; 

  output Real dxdt[nx] "Derivatives"; 

end fBase; 
The dimensions nx, nu are conceptually not neces-

sary, because the dimensions could be determined by 

the size of the vectors x and u. Currently, Dymola 
does not support arrays with non-fixed sizes in func-

tion calls of translated Modelica models. The func-

tion prototypes are collected in package System-

Functions: 

partial package SystemFunctions 

  replaceable function f 

    extends fBase; 

  end f; 

  … 

  replaceable function integrator 

     extends integratorBase; 

  end integrator; 

end SystemFunctions; 
For a particular model, an implementation of the 

SystemFunctions functions has to be provided. For 
FMUs, this is performed with the generic package 

FMISystemFunctions. The implementation is based 

on the FMUImportTemplate package and holds 

therefore for every FMU that extends from this tem-
plate package. 

 

 

package FMISystemFunctions 

  extends SystemFunctions; 

  replaceable package FMU  

           constrainedby FMUImportTemplate; 

  redeclare function extends f 

   input FMU.fmiModel fmi; 

  algorithm  

    FMU.fmiSetReal(fmi, FMU.id_u, u); 

    FMU.fmiSetReal(fmi, FMU.id_x, x); 

    dxdt := FMU.fmiGetReal(fmi, FMU.id_dx); 

  end f; 

  … 

  redeclare function extends integrator 

    input FMU.fmiModel fmi; 

  algorithm  

    FMU.fmiSaveFMUState(fmi); 

    FMU.fmiSetReal(fmi, FMU.id_u, u); 

    FMU.fmiSetReal(fmi, FMU.id_x, x); 

    FMU.fmiDoStep(fmi, t, dt, 0); 

    xNew := FMU.fmiGetReal(fmi, FMU.id_x); 

    FMU.fmiRestoreFMUState(fmi); 

  end integrator; 

end FMISystemFunctions; 

The system functions f, h, integrator can be di-

rectly implemented with functions provided in 

FMUImportTemplate. The Jacobians fx and hx are 

implemented by computing them numerically with 

finite difference quotients. Once Dymola supports 
directional derivatives for imported FMUs for the 

extended Co-Simulation case, that is function 

fmiGetDirectionalDerivatives, then this func-

tion can be directly called and will provide a more 
efficient and reliable evaluation of the Jacobians. 

The Dymola prototype supports two techniques for 

the FMI function fmiDoStep. Either the Sundials 

solvers [16] are used (that are integrators with varia-

ble step size and error control) to numerically inte-
grate the model equations, or Inline integration [17] 

is applied, that means fixed step solvers are embed-

ded in the model equations. The Kalman Filter li-
brary works with both techniques. For real-time ap-

plications, fixed-step methods have to be used and 

therefore a Kalman filter will usually utilize Inline 
integration. 

The functions fmiSave/RestoreFMUState in the 
above code fragments are auxiliary functions that 

call the FMI functions fmiGet/Set/FreeFMUstate 

to enable several calls of fmiDoStep starting at the 
same time instant, as needed, for example, for the 

UKF. 

3.4 Tailored Kalman Filter Models in Modelica 

Based on the imported FMU package an individual 

Kalman Filter model has to be generated. In the cur-

rent version of the Kalman Filter Library this can be 

performed automatically by use of a Modeli-
ca/Dymola scripting function. The idea is to define 

an input bus InBus and an output bus OutBus for 
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exchanging variables between the filter model and 

higher level models. The names of the bus variables 

correspond to the variable names of the imported 

FMU – only “.”, “,”, “[”, “]” and “ ” are replaced by 
“_” due to Modelica syntax. The bus definitions for 

the use-case example in Section 4 are listed below: 

encapsulated expandable connector InBus 

  import Modelica; 

  extends Modelica.Icons.SignalBus; 

  // Model Inputs 

  Real u; 

  // Measured Model Outputs 

  Real accBody; 

  Real sRel; 

  Real accArmUp; 

end InBus; 
encapsulated expandable connector OutBus 

  import Modelica; 

  extends Modelica.Icons.SignalBus; 

  // Estimated Model States 

  Real mass_wheel_s; 

  Real mass_wheel_v; 

  Real mass_body_s; 

  Real mass_body_v; 

  Real …FirstOrderShapingFilter_s; 

  // Estimated Model Outputs 

  Real accBody; 

  Real sRel; 

  Real accArmUp; 

end OutBus; 

The advantage of this approach is that not vectors of 
anonymous variables are defined, but bus variables 

with meaningful names tailored to each individual 

FMU. The main state estimation algorithms are im-
plemented in sub-functions and in a partial filter 

model, e.g. for an UKF (see Section 2.2). This model 

defines several variables and parameters for the filter 

algorithm that is called at each sample point of a 
sampled integration time interval. In the filter model 

also an instance of InitializationModel of the 
imported FMU package is included. Together with 

the package FMISystemFunction all necessary parts 
are put together to run FMI based Kalman Filter al-

gorithms within a Modelica model.  

 
Figure 5: Parameter menu for output variances with 

names of output variables 

A further improvement of the user interface com-

pared to [2] are the filter parameters like state and 

output variances that are shown in lists with names 

of the respective variables – instead of indices of 

vectors, see Figure 5. Basically, a matrix is defined 

and via Dymola specific annotations row and column 
headings can be added to the parameter menu. For 

example the menu in Figure 5 is defined in the fol-

lowing way: 

  parameter Real yData[FMUPackage.ny,1] 

    annotation(Dialog( 

      __Dymola_columnHeadings = 

        {"R[i,i] (outputVariance^2)"}, 

      __Dymola_rowHeadings =  

        {"accBody", "sRel", "accArmUp"})); 

In the parameter menu of the filter in Figure 6 the 

user can press the button on the right side of yData 

to get the menu of Figure 5. Also the model parame-

ters of the FMU may be modified by clicking on the 

button on the right side of ModelParameters.  

 
Figure 6: Menu of a UKF SR Kalman Filter model 

4 Example: Vehicle Vertical  

Dynamics States Estimation 

As an example application, the above described 
Kalman Filter Library is used to develop an ad-

vanced state estimator for the vertical dynamics of 

the ROboMObil. A more detailed version of this ap-

plication case is available in [3]. This section is 
based on [3], but now the method and software from 

Section 3 are used. The ROboMObil is a robotic 

electric vehicle concept (see Figure 7) developed at 
the Robotics and Mechatronics Center of the German 

Aerospace Center DLR. It is comprised of four 

Wheel Robots (Figure 8 – left), which integrate trac-

tion motor, steering, brake system, spring and semi-
active damper. Further details on the ROboMObil 

can be found in [4].  
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Figure 7: ROMO on the four-post test rig 

In contrast to fully active suspension systems they 
need far less energy [19]. Therefore a diversity of 

control strategies for semi-active dampers is present-

ed in literature. An overview about these control 
strategies can be found in [20] and [21]. As most of 

these strategies need state feedback, but not all states 

can be measured, state estimation becomes an im-

portant topic during the design of semi-active sus-
pension systems. 

 
Figure 8: Left: the “Wheel Robot” concept, right: nonlin-

ear two mass system [3] 

The DLR Kalman Filter Library as presented in Sec-

tion 3 offers an easy to use framework for the devel-

opment of state estimators for nonlinear systems like 
this semi-active suspension system. Especially a 

square root utilizing implementation of the UKF 

(Subsection 2.2) algorithm SR-UKF is well suited 
for highly nonlinear systems, because of its higher 

order linearization accuracy of mean and covariance. 

Furthermore the nonlinear parts can be taken into 

account more easily than in an EKF algorithm (Sub-
section. 2.1) since no derivatives and Jacobians are 

needed. 

4.1 The Nonlinear Quarter Vehicle Model  

The suspension system of the Wheel Robot is mod-

eled as a nonlinear two mass system (see Figure 8 – 

right) as described in [3]. The corresponding imple-
mentation in Modelica is shown in Figure 9. The 

model consists of the two masses mass_body and 

mass_wheel, a linear spring damper component, 

which approximates the wheel behavior, a road mod-

el as explained in [18] or [22] and the body_spring 

and body_damper.  

 
Figure 9: Nonlinear two mass system in Modelica 

As the motion of these two components are connect-

ed to the wheel and body motion by a push rod-

rocker kinematic (compare Figure 8 – left), the mo-
tion and the force of these components is scaled by a 

transmission ratio. Details on the nonlinear charac-

teristic of the body_damper are shown in [3]. 

The third main nonlinearity of the two mass system 

besides the transmission ratio and the damper char-
acteristic is the friction of the suspension system. It 

covers the friction of the damper and of all joints of 

the suspension system. For the state estimation the 

friction force    is modeled without stiction by a 

smooth     -switching function: 

                (    ⁄ ). (5) 

Here          represents a constant sliding friction. 

The direction of the friction force is determined ac-

cording to the current velocity difference    between 

body and wheel. The parameter    is used to define 

the transitional behavior of the     -function.  

4.2 Experimental Setup and Results 

The nonlinear two mass system described in Section 
4.1 is integrated in an SR-UKF state estimator using 

the DLR Kalman Library including the FMI 2.0 for 

Co-Simulation interface and Inline-integration as 
described in Section 3. Subsequently the resulting 

estimators are applied to the measurement data rec-

orded with the ROboMObil on a four-post test rig. 
Figure 10 shows the Modelica model of the SR-UKF 
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estimator. On the left-hand side the measurement 

data is read by a CombiTimeTable and on the right-

hand side the estimator, called Filter, and its corre-

sponding settings block observerControl can be 
found. The estimator uses three measurement inputs: 

the acceleration of the body above the wheel, the 

wheel acceleration and the damper deflection. 

 
Figure 10: SR-UKF estimator in Modelica 

The parameters of the estimators, as well as the sys-

tem covariances, are tuned according to the optimi-

zation procedure presented in [3]. The measurement 
covariances are set according to the sensor noise. 

The experimental setup is shown in Figure 11. 

The performance of the estimator, subject to a sine 

sweep excitation, is shown in Figure 11 by compar-

ing the measured and the estimated tire contact forc-
es in the last plot. Please notice that the tire force 

         
 is only available on the four-post test rig 

(Figure 7). It is used for validating the estimator per-

formance and not as a measurement output    to it 
(compare experimental setup in Figure 10). Addi-

tionally the measurements are compared to the esti-

mated measurements. It can be seen that the estima-

tor reproduces the measurements and the tire contact 
force with a good accuracy. 

SR-UKF

damper map 
(Fd(x))

„Wheel Robot“

y

𝑥  𝑥0 

 
Figure 11: State estimator setup with measurement data 
from the four-post test rig 

As the body accelerometer has the largest noise lev-

el, the weighting of its measurements accBody was 
chosen in such a way that the estimator relies more 

on the damper deflection sRel and the wheel acceler-

ation accArmUp. 
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Figure 12: Comparison of measurements to estimated 

measurement (plot 1-3) and contact force estimation  

(plot 4) on the four-post test rig – “sine sweep” excitation 

5 Conclusions and Outlook 

In this paper we have shown how the FMI 2.0 stand-
ard for Co-Simulation [1] can be extended to use its 

capabilities for modern state estimation problems. 

We discussed the parts of the different estimation 

algorithm in detail, the needed evaluation of the sys-
tem functions and integration between two sample 

instants via the FMI interface. Furthermore, we gave 

implementation details on a user friendly workflow 
as well as a set of necessary Modelica models and 

functions. The use case example of our vertical dy-

namics state estimation [3] application for our RO-
boMObil [4] showed good results in accuracy and 

computational efficiency. As a next step we plan to 

test them on a commercial real-time platform for 

stability and deterministic execution. 
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