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Abstract

Recent advances in medical imaging technology enable dynamic acquisitions of objects under movement. The
acquired dynamic data has shown to be useful in different application scenarios. However, the vast amount of time-
varying data put a great demand on robust and efficient algorithms for extracting and interpreting the underlying
information. In this paper, we present a gpu-based approach for feature tracking in time-varying volumetric data
set based on the Scale Invariant Feature Transform (SIFT) algorithm. Besides, the improved performance, this
enables us to robustly and efficiently track features of interest in the volumetric data over the time domain. As a
result, the proposed approach can serve as a foundation for more advanced analysis on the features of interest in
dynamic data sets. We demonstrate our approach using a time-varying data set for the analysis of internal motion
of breathing lungs.

1. Introduction

As the major focus of medical imaging has been the un-
derstanding of anatomical structures, vast research efforts
has been dedicated to the acquisition and interpretation of
anatomical modalities. While these techniques enable inter-
pretation of high-resolution static anatomical images, time-
varying data is now becoming more important, as the diag-
nostic workflow can be significantly improved by better un-
derstanding of organ function. This has led to the emergence
of many functional modalities, which allow multimodal
imaging of physiological processes alongside the anatomi-
cal image data serving as a context. In some cases the func-
tional information is extracted from originally anatomical
modalities,. The most prominent case of this development
is probably fMRI (functional magnetic resonance imaging)
that enables imaging of brain activity by detecting oxygen
level changes in the blood flow.

The latest exploitation of anatomical modalities in a func-
tional context arose with the recent advances in CT (com-
puted tomography) imaging. Driven by the demands of
imaging the beating heart, the scanning times of modern
CT scanners nowadays enable a dynamic acquisition under
movement. Through this technological advancement, new
application cases become possible. For instance, 4D CT and
4D MRI can depict the breathing motion of the internal or-
gans. As the amount of acquired data increases, there has

been a great demand on new techniques that enable robust
and efficient ways to interpret the vast amount of data under
investigation.

In this work, we present a GPU-based implementa-
tion of the scale invariant feature transform (SIFT) algo-
rithm [Low99, Low04] applied to the analysis time-varying
volumetric data. The advantage of the proposed approach is
two fold. First, it supports interactive feature detection. Sec-
ond, it enables us to robustly and efficiently track features of
interest in volumetric data over the time domain.

The remainder of the paper is structured as follows. In
the next section, we review works that are related to our ap-
proach. In Section 3, we present an overview of the SIFT al-
gorithm. We then present our GPU-based implementation in
Section 4. We report the result of the proposed approach ap-
plied to the analysis of the internal motion of a time-varying
volumetric data set of the lung in Section 5, and conclude
the paper in Section 6

2. Related Work

In order to track features throughout a time-varying volumet-
ric data sets as well as across different acquisitions, a robust
feature tracking approach is mandatory. The SIFT algorithm
proposed by Lowe fulfills this criterion [Low99]. SIFT fo-
cuses on extracting points of interest with a high saliency,
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and that are stable across different scales. These points of
interest are then represented by feature descriptors, which
are invariant with respect to scaling, translation, and orienta-
tion. Since its introduction, SIFT has been widely used in the
field of computer vision for image matching. While initially
proposed for 2D images, SIFT has been extended to work
with higher dimensional data and has been applied to dif-
ferent applications involving salient feature localization and
matching such as motion tracking [SAS07,AKB⇤08], group-
related studies [TWICA10], volumetric ultrasound panora-
mas [NQY⇤08], and complex object recognition [FBMB].
As an extension to the standard SIFT algorithm, Lowe pro-
posed a guideline for optimal parameter settings that im-
prove the accuracy as well as the performance [Low04]. To
further improve its performance and make it interactively ap-
plicable, Heyman et al. proposed a GPU-based implemen-
tation of the SIFT algorithm enabling real-time feature de-
tection and matching between images [HMS⇤07]. Although
this algorithm was designed for, and tested on, 2D images
of 3D objects, the underlying mathematical theory does not
limit its extension to handle higher dimensional data. Sco-
vanner et al. proposed a new approach to the creation of
SIFT descriptors for the application of action recognition
in video (2D images + time domain) [SAS07]. Cheung et
al. generalized the scale space principle and applied SIFT
to n-dimensional dataset [CH07,CH09]. Their extension has
been applied to 3D MR images of the brain and 4D CT of
a beating heart. In order to extend SIFT to handle high di-
mensional data set, they proposed the use of hyperspherical
coordinate representations for volume gradients as well as
multi-dimensional histograms to capture the distribution of
gradient orientations in the neighborhood of detected fea-
ture locations. To improve the quality of the detected fea-
ture locations, Allaire et al. made use of the 3⇥3 Hessian
matrix to compute the principle curvature at the detected
feature locations [AKB⇤08]. This enables the filtering of
features that are of less interest in medical data, such as
non-blob and edge-like locations. In addition, the authors
presented a technique that takes into account the tilt an-
gle at the detected feature locations during the construction
of SIFT descriptors to achieve full rotation invariance. The
proposed extensions have been applied to complex object
recognition in 3D volumetric CT data [FBMB]. Paganelli et
al. further reported the result of the preliminary feasibility
study on the application of SIFT to feature tracking in time-
varying data sets [PPP⇤12]. Recently, Yu et al. compared
SIFT to other feature detection algorithms and showed that
SIFT achieve a balanced result between stability and perfor-
mance [YWC12].

As we are interested in interactive feature tracking, be-
sides the robustness, also the performance of the feature
tracking is of interest. In comparison to previous works, we
exploit the computing performance of the GPU through a
GPU-based implementation applied to 4D data sets (3D vol-
ume + time domain).

3. 3D SIFT

While the SIFT algorithm has been initially proposed for 2D
data, our work is based on recent extensions which have gen-
eralized it to 3D [CH07, SAS07, CH09]. The algorithm is
performed in three successive stages: feature location detec-
tion, feature descriptor construction, and feature identifica-
tion.

Feature location detection. In the first stage, the volumet-
ric input data, I(x,y,z), is convoluted with variable-scale
Gaussian functions, G(x,y,z,ks), to generate a scale space,
L(x,y,z,ks), as follows:

L(x,y,z,ks) = G(x,y,z,ks)⇤ I(x,y,z) (1)

where k is a constant multiplicative factor for separating
scales in the scale-space.

The local extrema of the difference-of-Gaussian functions
applied to this scale space are considered to be potential lo-
cal features in the original volumetric data:

D(x,y,z,kis) = L(x,y,z,ki+1s)�L(x,y,z,kis) (2)

Lindeberg and colleagues could show that these local ex-
trema are a close approximation to the scale normalized
Laplacian-of-Gaussian [Lin94], s2 52 G, which are the
most stable features in the input image [MTS⇤05].

In order to improve the stability of the detected feature
location in volumetric data sets, Allaire et al [AKB⇤08] pro-
posed the principal curvature thresholding technique to filter
out the blob-like features, which are usually of no interest.
The proposed technique is based on the analysis of the Hes-
sian matrix, which describes the local curvature at a detected
feature location:

H =

2

4
Dxx Dxy Dxz
Dxy Dyy Dyz
Dxz Dyz Dzz

3

5

The elements of H are computed using finite differences at
the detected feature location in the corresponding scale, tak-
ing the anisotropy of the image into account. Let tmax be the
curvature threshold, which is the ratio between the largest
magnitude eigenvalue and the smaller one, the following
conditions help to filter out blob-like features and improve
the stability of the detected feature locations:

(1) tr(H)det(H)> 0 and ÂdetP
2 (H)> 0

(2)
tr(H)3

det(H)
<

(2tmax +1)3

t2
max

where detP
2 (H) is the sum of second-order principal minors

of H, tr(H), and det(H) are the trace and the determinant of
the Hessian matrix, H, respectively.
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Figure 1: The formulation of a 3D SIFT descriptor with its
corresponding sub-volume.

Feature descriptor construction. The aim of the second
stage is to construct a unique descriptor to represent the de-
tected feature location in such a way that it is most invariant
with respect to rotation, scaling, and translation. The con-
struction of such a descriptor is based on the gradient ori-
entations in the neighborhood of the detected feature loca-
tions and presented as a histogram of gradient orientations.
In 3D volumetric images, there are three angles that need
to be handled during the construction of a descriptor: az-
imuth, elevation, and tilt angles. Consequently, while in 2D
a 1D histogram can be used to describe a feature descrip-
tor, in 3D a 2D histogram is required to capture the distribu-
tion of the azimuth and elevation angles. It is worth pointing
out that while the azimuth and elevation angles can be de-
rived directly from the orientation of the gradient, the tilt an-
gles require more complex analysis [AKB⇤08]. A Gaussian-
weighted kernel is commonly applied to the gradient magni-
tudes in order to put less emphasis on the gradients that are
further away from the detected feature location during the
construction of the feature descriptor. Figure 3 illustrates the
formulation of a 3D SIFT descriptor with its corresponding
sub-volume.

During the construction of a feature descriptor, the
maximum peak in the histogram of gradient orientations
represents the dominant orientation of the neighborhood
around the detected feature location. As a result, the gradient
orientations in the neighborhood region are then rotated in
relation to the identified dominant orientation to attain a
rotation invariance descriptor. While the resulting descriptor
is a unique representation of the detected feature, discarding
the other gradient orientations of lower magnitude can have
negative impact on the feature identification stage. For in-
stance, by creating additional descriptors for smaller peaks,
which are of 80% the maximum peak in the histogram of
gradient orientations, the result in the feature identification
can be improved [Low04].

Feature identification. Once the features descriptors have
been constructed for two data sets to be compared, they
can be used to identify matching features. Therefore, dif-
ferent techniques such as RANSAC [FB81], Best-Bin-First
(BBF) [BL97] have been used. Since a descriptor is basi-
cally a multi-dimensional histogram built in a special way,
the Euclidean distance between descriptors is usually used,
as it is a good indicator for a high probability match:

d(p,q) =

vuut
N

Â
i=1

(pi �qi). (3)

Here, p and q are two descriptors, pi and qi are the i-th ele-
ments of these descriptors, and N is the size of the descrip-
tors. To find the matching features in the two data sets, I1 and
I2, the Euclidean distances from each descriptor in I1 to all
descriptors in I2 are computed. The minimum distance value
is an indicator of a high probability match.

4. GPU-based Implementation

In 2007 Heymann et al. have proposed a GPU-based im-
plementation of SIFT supporting real-time feature detection
and feature matching for 2D images [HMS⇤07]. However, its
extension to handle time-varying 3D volumetric data poses
some additional challenges. As a result, within this section,
we discuss and present our GPU-based implementation to
address the issue when applying the SIFT algorithm to time-
varying volumetric data sets.

Feature detection. During the construction of the scale-
space representation of the input, the convolution operator is
the most computational demand factor. Fortunately, the par-
allelism nature of GPU allows us to overcome this problem.
For instance, the performance of the Gaussian convolution
operator can be dramatically improved by using separable
kernels. Additionally, the gradient calculation as well as the
hyperspherical representation calculation can also be paral-
lelized through the GPU-based approach. This enables us to
improve the performance on the feature detection stage by a
factor of 10 to 20.

Feature descriptor construction. In 2D, the neighborhood
of size 8⇥8 is commonly use. The experimental findings
from [Low04] show that the best results were achieved with
a 4⇥4 array of histograms with 8 orientation bins in each
which capture 45 degrees orientation differences. Conse-
quently, each descriptor contains 128 elements. This allows
a straightforward implementation of histogram calculation
on the GPU that exploit the performance of the global and
local memory architecture of the hardware.

In 3D, the neighborhood of a larger size, 16⇥16⇥16, is
commonly used. The neighborhood is divided into 64 sub-
regions of 4⇥4⇥4 voxels. Thus, a 1D representation of the
descriptor contains 4096 elements. The size of the histogram
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makes it difficult to have a GPU-based implementation of
the histogram calculation process that exploits the perfor-
mance of the memory architecture on the GPU. Moreover,
it is worth noting that the size of the neighborhood needs
to be adapted to the input data and the application in mind.
Therefore, standard optimized histogram calculation on the
GPU can not be easily adapted as the size of the histogram is
large than the size local memory on the GPU. To overcome
the hardware limitation, a multi-pass approach for histogram
construction is required.

To avoid disruptive changes in the histogram of gradient
orientations, the neighborhood around a detected feature lo-
cation is usually divided into sub-regions. The histograms
of gradient orientations of these sub-regions are first calcu-
lated and then combined together to form the final feature
descriptor [Low04]. This poses a challenge to standard his-
togram calculation techniques on the GPU. Therefore, in this
work, we implemented a generic OpenCL kernel that sup-
ports descriptor construction of an arbitrary neighborhood
size. Moreover, the algorithm automatically switches to the
optimized implementation based on the size of the descrip-
tor.

In the initial SIFT operator, a smoothing operator is ap-
plied to the constructed histograms to include interpolation
effects. In our implementation, we avoid this smoothing, and
instead rotate the neighborhood around the feature locations
to the dominant orientation. This enables us to achieve a bi-
linear interpolation by default through a GPU-based imple-
mentation. With these modifications, we were able to real-
ize an interactive GPU implementation with OpenCL, which
runs ten times faster then previous approaches (see Sec-
tion 5). Thus, we can not only use the SIFT algorithm for
matching the different time steps on a global scale, but also
can use it for interactive tracking of points of interest.

Feature identification. In the matching process, the Eu-
clidean distances between each descriptor in the first input
image and all the descriptors in the second one are calcu-
lated. Then the minimum Euclidean distance is identified to
determine the highest probability match. The finding of the
minimum distance is a reduction problem, which does not
exploit the power of the parallelism nature of the GPU. As
a result, we implemented a hybrid approach to the problem
of feature identification. For instance, the computation of the
Euclidean distance between one descriptor in the first input
image and all the descriptors in the second image are per-
formed in parallel using the GPU. This result is then passed
to the CPU implementation to identify the minimum dis-
tance that serves as an indicator of a high probability match.

5. Test Case

To show the impact of our introduced SIFT algorithm, we
compare the results of our GPU-based implementation to the
results achieved with the recent approach presented by Pa-
ganelli et al. [PPP⇤12]. We have tested our approach with the

same data set, a 4D CT thorax scan† [CCG⇤09, CCZG09].
The data is given by ten equally sampled phases of the res-
piratory cycle in which the maximum exhale phase and the
maximum inhale phase are denoted as L0 and L5 respec-
tively. The reconstructed volumes have the dimensions of
512⇥512⇥128 voxels of 0.97⇥0.97⇥2.5 mm, while the ref-
erence landmarks in L0, and L5 were manually setup by an
expert [CCZG09, CCG⇤09]. While the parameters used in
our SIFT algorithm were set to match the ones used by Pa-
ganelli et al. [PPP⇤12], our approach allows more than one
descriptors per detected feature location by considering ori-
entations that are above 80% of the maximum peak in the
histogram. In addition, due to the advantage of the GPU-
based implementation, we do not apply smooth operator to
the histogram to avoid disruptive changes of gradient ori-
entations but instead rotate the neighborhood region to the
dominant orientation, which implicitly takes advantage of
the bi-linear interpolation on the GPU.

Feature location detection. We have evaluated the 4D CT
SIFT matches, whereby we have computed the error as 3D
residual distance between matching SIFT feature locations at
the L0 and the L5 phase (SIFT L0–L5). Figure 2 illustrates
the visualization of the inhale lung overlain with features of
interest. While the detected features from the SIFT algorithm
are colored as red spheres in Figure 3(a), the manually input
reference landmarks from the data set are colored as blue
spheres in Figure 3(b). The Mann-Whitney U test [MW47]
was applied to this error distribution and the error distribu-
tion in the reference landmarks. Table 1 shows our results in
comparison to the results reported in [PPP⇤12].

Besides the slightly higher number of matches between
the maximum exhale and maximum inhale phase, the pro-
posed approach has shown to improve the accuracy in the
descriptor matching process, as we have achieved a lower
median, 11.14 compared to 13.23, as well as a lower vari-
ability. In addition, the Mann-Whitney test confirms that the
distributions of the residual distances in the reference land-
marks and in the result of the enhanced SIFT operator are
not significantly different (p-value = 0.736), which means
that the proposed approach can be used to identify the fea-
ture locations.

Feature identification. To measure the impact on feature
identification, we detect the feature locations in the time-
series data and apply SIFT to consecutive volumes with two
different variants. First, we always use the maximum ex-
hale phase, L0, as a reference. Second, we move step-by-
step along the breathing cycle such that the previous breath-
ing phase is served as the reference for tracking the feature
locations in the next breathing phase. For each approach,
we computed the number of feature locations between all
phases. Table 2 reports the number of detected feature loca-
tions which were preserved along the breathing cycle. While

† The data set is available at www.dir-lab.com.
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(a) (b)

Figure 2: Visualization of the inhale lung. (a) is the visu-
alization of the lung overlain with the detected features (in
red) from the SIFT algorithm, (b) is the visualization of the
inhale lung with the manually edited landmarks (in blue).

#Matches Median Variability
(mm) (mm)

L0–L5 300 12.98 18.22
SIFT (L0–L5) 509 13.23 17.90
GPU-based 525 11.14 12.78SIFT (L0–L5)

Table 1: Number of matches, median and variability of error
distributions at maximum exhale, L0, and maximum inhale,
L5, phases obtained by the proposed enhanced SIFT com-
pared to the manual reference landmarks. Variability is the
difference between the 25th and 75th percentiles.

tracking along the breathing cycle allows us to achieve a
higher number of preserved feature locations and excludes
the trailing ones, tracking referred to a reference phase ex-
clude the most stable feature locations over time. As seen in
Table 2, the proposed approach provides more landmarks as
feature locations, which makes it better suitable for motion
estimation as well as visualization.

(a) (b)

Figure 3: Visualization of the inhale lung overlain with the
displacement vectors representing the transition of the de-
tected features from L0 to L5. (a) is the visualization from
the front, and (b) is the visualization from the side.

Figure 4: Visualization of the inhale lung overlain with the
displacement vectors representing the transition of the man-
ually edited landmarks from L0 to L5 (courtesy of Castillo et
al [CCG⇤09, CCZG09]).

SIFT GPU-based SIFT
(L0–L5) (L0–L5)

Reference (Phase 0) 117 243
Along breathing cycle 9 264

Table 2: Number of preserved feature locations along the
breathing cycle from the maximum exhale, L0, to the maxi-
mum inhale, L5, phase.

As reported in Table 1 and Table 2, the proposed enhanced
descriptor construction helps to increase the uniqueness of
the descriptors at feature locations. Thus, it helps to improve
the accuracy of the feature matching process in time-series
data. It is also worth noting that by exploiting the power of
the GPU implementation, we also achieved a much better
performance in time. For instance, the overall time required
for descriptors generation for each volume and descriptors
matching between volumes is approximately 5.5 minutes.
This is almost ten times faster than the result in [PPP⇤12],
which is 50 minutes. As for the interactive visual analysis,
we can precompute the feature descriptors, we can perform
this process interactively.

Figure 3 shows the result of the proposed SIFT to track the
detected features over the time domain. The displacement
vectors (in white) show the transition of the detected fea-
tures from the maximum inhale and exhale phases. Although
the visual result is not very close to the visualization using
manually input reference landmarks in Figure 4, the Man-
Whitney test shows that there is no significant difference in
residual distance distribution between the two results. As a
result, this shows that the proposed SIFT is applicable to the
application of automatic landmarks identification and track-
ing in time-varying dataset. This allows the proposed SIFT
to serve as a tool for initial landmarks identification in dif-
ferent deformable image registration algorithms. Moreover,
it can also be used to evaluate the results of different de-
formable image registration techniques.
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6. Conclusion

In this paper, we presented a GPU-based implementation of
the SIFT algorithm. By exploiting the power of the GPU, we
do not only achieve better performance but also better re-
sults in comparison to the previously published work. The
performance improvement of the algorithm enables us to
investigate the effect of different parameters settings, such
as s in the scale-space construction, the level of the scale-
space pyramid, to the quality of the detected features as well
as the quality of the feature identification process in the fu-
ture work. Furthermore, we would like to apply the proposed
technique to the analysis of different dynamic data sets.
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