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Abstract 
 

We present our experiments on attitude 
detection based on annotated multi-modal 
dialogue data1. Our long-term goal is to 
establish a computational model able to 
predict the attitudinal patterns in human-
human dialogue. We believe, such prediction 
algorithms are useful tools in the pursuit of 
realistic discourse behavior in conversational 
agents and other intelligent man-machine 
interfaces. The present paper deals with two 
important subgoals in particular: How to 
establish a meaningful and consistent set of 
annotation categories for attitude annotation, 
and how to relate the annotation data to the 
recorded data (audio and video) in 
computational models of attitude prediction. 
We present our current results including a 
recommended set of analytical annotation 
labels and a recommended setup for extracting 
linguistically meaningful data even from noisy 
audio and video signals. 
 
Keywords: attitude detection, prediction of 
attitude flow, attitude annotation, multimodal 
speech cues 

 
Introduction 
 
Sharing of content and alignment of attitudes 
are two of the basic features and goals of 
human communication, most clearly in face-to-
face communication. These features and goals 
are also present in human-computer interaction, 
especially when the computer is represented by 
an ”embodied communicative agent” (ECA). 
To be a natural and smooth communication 
partner, an ECA has to be sensitive to the 
attitudes of its interlocutor, thus it has to have 
processes for recognizing and producing 
attitudes. This we will call attitude 
administration below. We here present an 
analysis of the acoustic features of attitude 
expression in the Swedish part of the Nordic 
NOMCO project database. 
 

 In this paper we first discuss the challenges 
of attitude administration in a simplified 
experimental setting, viz. the prosodic 
component of a typical TTS system (text-to-
speech). We then approach the even more 
difficult realm of dialogue. We believe, models 
of attitude administration in man-machine 
dialogues should build on annotated recordings 
of human-human conversations. We present 
some ideas for detecting and exploiting the 
correlates between the acoustic features of the 
speech signals and the communicated attitudes, 
using a subset of the Swedish NOMCO data 
(audio files and anvil-annotated video-files). 
Based on recorded naturalistic examples, we 
discuss how to pre-process the raw audio files 
and the original annotation files (ANVIL-
format) preparing an automatic attitude 
recognizer. 
 
Attitude administration in monologue 
 
It is a well-established experience among 
constructors of synthetic voices (TTS, Text-To-
Speech systems) that an incoherent or unnatural 
prosodic contour is extremely disturbing to the 
listener. Human listeners will, in general, be 
fairly forgiving of clumsily spliced phonetic 
segments and sudden clicks and cracks to the 
sound image; after all, we are often exposed to 
badly encoded speech signals in our mobile 
phones, and as long as the prosodic contour is 
authentic and the words reconstructable, we 
manage to compensate without too much 
cognitive effort. In contrast, a speech signal 
with a prosodic encoding out of sync with the 
intended message cannot be compensated by 
subconscious means since it is no longer 
redundant, but contradictory, the reconstruction 
effort now depending on an intellectual 
decision procedure. For this reason, naturally 
sounding prosody has a high priority in any 
ambitious TTS project. Unfortunately, the 
principles of prosody assignment are anything 
but simple and mechanically applicable. 
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Prosody is the quintessential parameter for 
emotions and attitudes in speech; by a subtle 
change in prosodic outline, an utterance may 
shift it's psychological effect entirely, from 
earnest to ironic, happy to sad, tentative to 
confident, or even communicating several 
emotions-attitudes simultaneously. 

Prosody assignment, then, is ultimately an 
AI complete enterprise. Since genuinely 
intelligent reasoning systems are probably still 
decades away, or centuries, we currently have 
no better option than mimicry. By simulating 
human behavior through prosodic models 
trained on conversational data, at least we may 
be able to avoid unwanted attention traps as 
discussed above. Modern commercial TTS 
systems invariably employ large databases of 
human read-aloud data (usually 100+ hours). 
The sound repositories are, of course, aligned 
with phonetic transcriptions, but may also be 
annotated for parameters like style, mood, voice 
(assertive/interrogative/imperative), discourse 
function, and so on. By analyzing an input text 
through these parameters and using the result as 
an advanced multi-dimensional search query, a 
best-match for each text element is identified in 
the sound database. When successful, the 
speech produced is thus composed of played-
back sound instances where the human reader 
was in a state matching the requirements of the 
text, not only phonetically, but in a generalized 
sense reflecting even the attitude. The best 
modern TTS systems often approach a 'nature 
identical' prosody when the input text conforms 
to the style and vocabulary supported in their 
sound database. Recent examples of TTS 
projects with highly conscious approaches to 
the psychological factors of prosody 
assignment include Aylett et al (2008), Oparin 
et al (2008), and Henrichsen (2012). 
 
Attitude administration in dialogue 
 
In TTS systems, a naturally-sounding prosodic 
rendering of an input text can often be 
determined through rule-based text analysis and 
intelligent database querying, as explained 
above. When entering the realm of dialogue, 
however, prosody assignment becomes far 
more challenging. Speaker A's attitude pattern 
must now be determined by speaker B within a 
very short time frame based on a wealth of 
multi-modal sensory data, or speaker B will be 
at risk of producing bizarre feedback (or other 
attention traps). Such attitude administration 

may not be perceived by humans as a great 
challenge, but in spoken language agents, any 
rules for xyz must be made explicit. Inspired by 
the success of data driven TTS, one could 
suggest to compile xyz, but no (manageable) 
database could ever cover the potential 
attitudinal variation in live conversations. What 
cues, then, can be computerized and exploited 
by an automatic agent tracking the attitude of 
the human interlocutor? 

One approach is to build computational 
models trained on human-human data, applying 
them to recordings of dialogues. We 
concentrated on a sub-part of the NOMCO 
material consisting of eight dialogues from the 
"first-encounters" corpus. Our reason for 
selecting these eight were that (only) these 
conformed to these requirements: 
 
• video+sound recording 
• two extra sound tracks using high-quality 

chin mounted mics 
• individual anvil tiers including markup for a 

range of attitudes (introduced shortly) 
• mixed population of male and female 

informants 
 
The experimental setup 
 
All of the eight recordings contained two 
students meeting for the first time. Their 
instructions were to get to know each other. For 
most interactions this meant that they 
exchanged information about names, present 
occupation and interests. Both participants were 
standing up about 50 cm away from each other, 
face to face at an angle of about 90 degrees, and 
were filmed against a white background. They 
could move freely in all directions. They were 
typically friendly and attentive to each other. 
 
Multi-modal corpus data - a computational 
challenge 
 
As is often the case with speech signals 
recorded under quasi-ecological conditions, the 
acoustic quality leaves something to be desired 
with respect to signal to noise ratio, channel 
separation, reverberation, and so forth.  In our 
recordings, there are several instances of over-
steering (clipped samples), and the 
reverberation is measured to about 250dB/s 
corresponding to an echo of approximately 400 
ms. These facts combined with a modest 
channel separation at 20 dB makes it difficult to 
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perform pitch tracking for the individual 
speakers (see below). Regarding the functional 
coding, all files were checked by a separate 
person than the annotator. The synchronization 
of the audio and video streams were out of sync 
by >1% in some instances and in these cases 
had to be manually assessed. 

To these circumstantial challenges come the 
tractability issues. As mentioned, computational 
attitude prediction must be quick and 
responsive. CPU-heavy decoding methods are 
therefore not feasible (e.g. automatic speech 
recognition) leaving us with the 'easy', low-
level acoustic parameters such as F0 (pitch), 
intensity, spectral tilt, and Harmonicity-to-
Noise ratio (HNR). We introduce each of them 
in the following section. They are all very well 
understood in a linguistic frame of reference. 
 
 
 Fundamental frequency (Hz) 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  F0 tracing of a two-syllable word 
(NOMCO informant V8649L, t=6.44-6.69, 
utterance “eller”) 
 
Among the acoustic features exploited by 
linguists, the fundamental frequency (F0) is 
probably the most popular, its interpretation in 
the audiological domain being so 
straightforward: The pitch. The difference 
between pitch and F0 should however be noted, 
the former being a psychological quality and 
the latter, a physically well-defined2 property 
that can be determined by a measuring 
instrument independent of the human ear. A 
discriminating example is the so-called 
overtone singing. When listening to an overtone 
singer one experiences a succession of pitches 
corresponding to a certain melodic line; this 
line is however quite independent of the actual 
F0 progression and is achieved by the singer 
changing the filtering effect of his upper speech 
organs rather than changing the tension of his 
vocal cords. In ordinary speech, however, F0  
 

tracings usually represent the experienced 
prosodic contour fairly reliably. 

Fig. 1 above shows an F0 analysis of a 
NOMCO speech sample. The 250 ms sample 
represents the two-syllable Swedish word 'eller' 
(Eng. translation or) pronounced by a male 
speaker. This word consists of sonorants only 
so F0 is defined throughout. Usually, only a 
fraction of a speech signal will be defined for 
fundamental frequency since silent passages 
and passages without phonation (e.g. obstruents 
like [s] and [k]) do not produce meaningful F0 
values. Observe in particular the 'wild' values, 
which have to be filtered away prior to the 
prosodic analysis. In our project, high cut-off 
points at 300Hz for male voices were used, 
400Hz for female voices, and low cut-off points 
at 80Hz for both (fig.2). Even if most of the 
derived F0 values thus have to be abandoned as 
undefined or meaningless, the resulting data 
sparseness is not necessarily a problem for 
prosody analysis since the missing values can 
often be interpolated. Movements in the 
prosodic domain are, after all, relatively slow 
compared to the succession of phones. 

Intensity is another parameter often used in 
acoustic-phonetic analysis. As a computational 
data type, this parameter has a quite different 
profile from F0 being always defined (even 
when the speaker is silent). In fig. 3 an intensity 
graph is shown for the same sound sample. 
Comparing the two projections it is obvious 
that most of the speaker's own activity is 
represented in the intensity range above 50dB 
(utterances around t=6.5”, t=11.0”, t=12.0”) 
while the activity of the other speaker (counting 
as noise in this audio channel) dominates the 
range 30-50dB. The limited channel separation 
adds to the challenges when interpreting the 
intensity data. 

 
 
 
 
 

Figure 2. F0 graph, 10 seconds including the 
“eller” incident discussed above (t=6.45-6.70).  
 
The two red bars indicate the filter for 
meaningful pitch values (80Hz<P<300Hz). 
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Figure 3.  Intensity graph. 10 seconds' 
recording including the same “eller” incident as 
above.  
 
The other acoustic parameters we have 
mentioned are both variants of the intensity 
parameter. Harmonicity-to-Noise ratio (HNR) 
corresponds roughly to the phonetic 
'voicedness'. HNR calculation is performed by 
separating the harmonic components of the 
physical sound signal from its noise 
components, determining the ratio of their 
individual intensity (amount of energy per time 
unit). Language sounds with no harmonic 
components at all such as [s][f][h][p][t][k] and 
other obstruents produce very low values for 
HNR, due to their lack of harmonics in contrast 
to full vowels scoring high. The final acoustic 
parameter under consideration, the spectral tilt, 
may for instance be determined by comparing 
the intensity of a sound signal in two distinct 
frequency bands. Language sounds with much 
energy in its lower frequencies and less energy 
in the higher end will, under this interpretation, 
show a relatively large tilt. Depending on the 
instantiation of the filter values, various 
phonetic oppositions (e.g. front-back, open-
close, labial-dorsal) and other features can be 
traced. 
 
Acoustic parameters for prosodic analysis 
and attitude determination 
 
Among the parameters we have considered, F0 
is probably the most relevant for attitude 
detection, lending itself readily to prosodic 
interpretation. It should be supplemented by at 
least one other parameter, though, since data 
sparseness for F0 becomes a problem with 
declining acoustic quality (e.g. background 
noise or poor channel separation for 
overlapping speech). The other three candidate 
parameters are all robust in the sense of being 

defined everywhere, even for silent passages, so 
in a narrow sense they all serve well for data 
completion. However, after some initial 
experiments neither HNR nor spectral tilt 
proved suitable for our purposes. They both 
tend to respond more closely to the phonetic 
fluctuations than to the slower prosodic 
oscillation while of course the latter is the more 
important information source for attitude 
detection. 

For these reasons we settled on a 
computational framework based on 
fundamental frequency and intensity 
measurements only.  
 
The anvil annotation format for multi-modal 

transcription 

The recordings were transcribed and annotated 
using the anvil annotation format for 
multimodal transcription (Kipp 2001). This 
format allows simultaneous viewing of the 
video recording , its transcription/annotation 
and listening to the audio recording. It also 
allows viewing of imported acoustic analysis of 
the audio recording from PRAAT (Boersma & 
Weenink 2005). 

The purpose of the format is to allow 
analysis of different features of multimodal 
communicative behavior in synchronized 
relation to each other, e.g. the relationship of 
prosody to gestures and spoken words. 

The annotation is done by a single annotator 
and then checked by another annotator. The 
annotators follow the GST+MSO transcription 
standard (Nivre 2001, 2004) and the MUMIN 
standard for multimodal annotation (Allwood et 
al. 2007). 
 

Preparing the anvil annotations for 

machine learning 
As mentioned, the study reported here used a 
sub-corpus of eight NOMCO recordings of 
Swedish first-encounters. The test material 
includes, for each encounter, one video+sound 
recording, two individual mono-recordings 
using good-quality portable microphones, and 
one anvil annotation tier per speaker. 

The team of NOMCO annotators were, to a 
large degree, free to choose their own attitude 
labels and delimitation. As a result, the 
annotation material is extremely heterogeneous. 
The eight anvil files contain 439 reported 
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attitude events, the shortest lasting only a small 
fraction of a second (0.04”), and the longest 
stretching over almost three minutes (173”). 
The overall distribution of event durations is 
shown in fig. 4. Not surprisingly, the set of 
applied attitude labels is large and diverse: 55 
English and Swedish terms, distributed over 
several grammatical categories. 

 
Figure 4. Distribution of attitude events as a 
function of their individual duration. Attitude 
events longer than one minute are accumulated 
at x=61”. Average duration = 12.7”; median = 
8.0”. 
 
A suitable subset of the attitude tags had to be 
extracted for machine learning purposes. As the 
effectiveness of learning algorithms stand or 
fall by the cardinality and consistency of data 
types represented in the training set, we 
excluded all sparsely used tags. In addition 
even some relatively densely populated 
attitudes (labels with many occurrences in the 
anvil files) had to be excluded due to the 
relatively low accumulated duration they 
represent (amount of acoustic data in terms of 
time frames). Since our investigations are based 
partly on F0 measurements, this data type being 
particularly fragile as discussed above, the 
accumulated duration for each attitude under 
investigation is thus at least as significant as a 
selection criterion as is the amount of 
associated events. Fig. 5 shows the set of 
applied attitude labels sorted by accumulated 
duration. 
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Figure 5. Applied attitude labels. The labels are 
sorted by accumulated duration (number of 5ms 
time frames). 
 

After some formal considerations, semantic 
reflections, and initial experiments, we settled 
on a test set A10 of ten attitudes.  
 
A10 = 

  {Interested, Friendly, Casual, Bored, 

Thoughtful, Confident, Amused, Enthusiastic, 

Uninterested, Impatient} 

 
Each of the A10 terms is richly represented in 
the ANVIL files, both in terms of amount and 
accumulated duration. For reasons of 
dissemination the Swedish terms were excluded 
altogether (e.g. 'ifrågasättande'); also most of 
these were used very infrequently. 
 

A Formal Model of Attitude Prediction 
 
Relating the A10-based annotation data to the 
acoustic data based on F0/INT measurements, 
we arrive at the attitude profiles shown in Table 
1.  The profiles are based on three statistical 
parameters (I-III). 
 
I. F0, standard deviation for each attitude event 

('meaningful values' only, see fig. 2)3 
II. INT, average for each attitude event (values 

relativized to the most silent time slice 
in the track) 

III. INT, standard deviation for each 
attitude event 
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Average-based statistics (mean value and 
standard deviation) is a convenient way of 
minimizing the influence of irrelevant sound 
incidents caused by poor channel separation, 
echoic distortion, random acoustic events not 
related to the conversations, and other signal-to-
noise problems. Also extreme variation in 
duration does not present an analytical problem 
in this perspective. On the flip-side, any contact 
is lost with the micro-structure of the attitude 
events when analyzing them as informational 
atoms, so the attitude model presented here 
must be a rather coarse one.4 
 
Atti-
tudes AM BO CA CO EN 

I 26.09 17.01 23.13 28.60 19.05 
II 48.14 41.60 41.70 44.52 47.18 
III 14.00 12.27 12.17 14.16 11.83 
 
 FR IM IN TH UN 

I 34.65 24.8 33.0 33.0 10.0 
II 41.15 45.2 29.9 41.8 38.7 
III 11.13 12.6 11.1 12.6 10.2 
 
Table 1. Attitude Profiles. The A10 attitudes: 
AM=Amused, BO=Bored, CA=Casual, 
CO=Confident, EN=Enthusiastic, FR=Friendly, 
IM=Impatient, IN=Interested, TH=Thoughtful,   
UN=Uninterested. 
 
Attitude Profiles as predictors 
 
Each column in table 1 is interpreted as the 
formal profile representing the attitude in 
question. Consider a few examples. The A10 
label 'Uninterested' is represented in the table 
by the vector (I, II, III) = (10.00, 38.77, 10.27), 
these values in turn representing a relatively 
low standard deviation for F0 ('little 
modulation') in conjunction with low values for 
intensity, both on average ('soft voice') and on 
standard deviation ('inactive articulation'). In 
contrast, the vector (26.09, 48.14, 14.00) for 
'Amused' suggests a far more lively modulation, 
higher volume, and more active articulation. 

Quantifying over all attitude events in the 
anvil files, we build a prediction table. Each 
event (i.e. its values for I, II, and III) selects its 
own attitude label among A10 as its nearest 
neighbor in the three-dimensional vector space. 
By way of example, consider the attitude event 
in anvil file v8649 from t=220.44 to t=224.12. 
Let us call it E'. This particular event – or 
rather, its vector – selects a label 'Enthusiastic' 
due to the relatively short geometrical distance 
between E' and 'Enthusiastic' in the three-

dimensional data space spanned by I, II and III. 
No other attitude profile came closer to E' than 
'Enthusiastic', this being the predicted attitude 
for E'. 

We are now in a position to compare the 
annotated attitude for E' to the predicted 
attitude for the same event. In this case, the 
annotated and predicted attitudes were 
identical. Repeating this exercise for all attitude 
events, we arrive at the prediction table 
summarized in fig. 6. 
 
Interested: Interested > Confident > Amused > Enthusiastic >> 
Bored 
Friendly: Casual > Amused > Impatient > Confident >> Bored 
Casual: Friendly > Confident > Amused > Casual >> Thoughtful 
Bored: Uninterested > Bored > Thoughtful > Casual >> 
Enthusiastic 
Thoughtful: Uninterested > Bored > Casual > Friendly >> 
Confident 
Confident: Impatient > Interested > Amused > Friendly >> 
Thoughtful 
Amused: Confident > Interested > Friendly > Impatient >> Bored 
Enthusiastic: Enthusiastic > Interested > Confident > Amused >> 
Bored 
Uninterested: Bored > Casual > Thoughtful > Impatient >> 
Enthusiastic 
Impatient: Interested > Confident > Friendly > Casual  >> 
Thoughtful 
 
Figure 6. Attitude prediction table. Anvil labels 
are on the left, followed by the predicted labels 
sorted by geometrical distance. 
 
The prediction table is best explained by an 
example. Attitude events labeled by the 
annotators as 'Interested' are categorized by 
attitude predictor as 'Interested' (1st choice), 
then as 'Confident' (2nd choice), then 'Amused', 
et cetera, down to 'Bored' as the least likely 
choice. In a standard winner-takes-it-all regime, 
an automatic prediction algorithm would of 
course select the attitude minimizing the 
distance between the measured profile and the 
trained profile. 

On a slightly more speculative note, one 
could read the interior of the prediction table as 
a set of  'gracefully declining' synonymy lists. 
Each line would then constitute a semantic 
theory about a particular attitude. The emerging 
relations between the various attitudes – 
'Interested' associated with 'Amused' and 
'Enthusiastic' and opposed to 'Bored', et cetera – 
seem to correspond fairly closely to our 
common sense understanding. Notice also that 
an intuitively weak predictor as 'casual' is also a 
statistically weak predictor. The suggested 
associations are the broadly-positive attitude 
qualities rather than any near-synonyms, in 
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contrast to the cases of e.g. 'Enthusiastic' and 
'Bored' for which the suggested synonyms are 
much closer semantically related, and the 
semantic contrast to the antonyms at the other 
end much clearer (e.g. 'Enthusiastic' opposed to 
'Bored'). In short, some generic knowledge on 
attitudes seems to have been transferred from 
the annotators to the trained model. 
 
Conclusion 
 
Building a conversational agent, we believe that 
attitude administration is indispensable. Since 
conversational partners are extremely sensitive 
to delayed or inadequate attitudinal response 
(e.g. showing indifference when presented with 
positive news, or enthusiasm when empathy 
was appropriate), attitude detection must be 
robust and effective within a short time frame. 
For these reasons we recommend that attitude 
predictions be based on acoustic measurements 
for F0 and Intensity for quick and robust data 
extraction under sub-optimal recording 
conditions (high-echoic and/or noisy 
surroundings). 

An interesting off-spin of our investigation 
is the user-driven decision procedure in the 
design of the basic annotation scheme. As 
discussed, the annotators where allowed to 
select freely among all words in their 
vocabulary, unbiased by the academic purposes 
of the annotation activity. Based on our 
experience with the derived annotation scheme 
A10, we suggest this tag base for future 
annotation projects. 
 Finally, we have shown how anvil-
transcribed video recordings of human-human 
dialogues can be used as data for training an 
automatic attitude detector. The trained attitude 
model even seemed to inherit some generic 
knowledge on attitudes from the human experts 
(the annotators) which is exactly what one 
hopes for in a data-driven competence model. 
As far as this preliminary experiment can tell, 
effective attitude prediction may hence be 
within reach even under sub-optimal recording 
conditions and extreme time pressure. 
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