
Operational Semantics for a Modular Equation Language

Christoph Höger
Department of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Germany,

christoph.hoeger@tu-berlin.de

Abstract
Current equation–based object–oriented modeling lan-
guages offer great means for composition of models and
source code reuse. Composition is limited to the source
level, though: There is currently no way to compose pre-
compiled model fragments. In this work we present t(n,p), a
language which aims to overcome this deficiency. By using
automatic differentiation directly in the language seman-
tics, t(n,p)offers the ability to implement index-reduction
and causalisation of equation-terms without knowing their
source-level representation. The semantics of t(n,p)allow
for calculation of arbitrary-order partial and total deriva-
tives of pre-compiled terms.

Keywords Composition, Equation, DAE, Separate Com-
pilation, Automatic Differentiation

1. Introduction
Equation based modeling languages offer great means for
model composition and reuse. Unfortunately, this feature
vanishes during classical model instantiation. There is no
such thing as a Functional Mockup Unit ([1], a standard for
composing compiled ordinary differential equations) for a
differential algebraic equation (DAE).

The reason for this seems to be an implementation detail
in the most common implementations: Usually e.g. a Mod-
elica implementation will interpret the global model once
and afterwards compile the resulting DAE into efficient ex-
ecutable code.

This "one-time instantiation" approach has some down-
sides:

• It favors a whole-model approach for static analysis:
As there is no necessity for any interface abstraction,
errors caused by wrong composition are only detected
just prior to simulation.

• The code generation tends to scale badly in the case
of large, uniform models [5, 13], because the symbolic

The 4th Analytic Virtual Integration of Cyber-Physical Systems Workshop
December 3, 2013, Vancouver, Canada.
Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings are available at:
http://dx.doi.org/10.3384/ecp13090

AVICPS website:
http://www.analyticintegration.org/

manipulation of every equation leads to huge amounts
of generated code.

• It prevents highly dynamic structural models: If a model
computes (i.e. by a Turing-complete language) its suc-
ceeding mode, it is in general impossible to predict all
modes of operation.

One way to overcome all those limitations is to find
a way to compile equations separately into a form that
can be instantiated arbitrarily often. Yet the attempt to
do so reveals that the one-time approach is not just an
implementation detail, since simulation often depends on
the manipulation of the global system of equations. Thus,
separate compilation needs to preserve the possibility to
apply these manipulations.

As we will show, the main operation of index-reduction
–differentiation of terms– can be implemented by au-
tomatic differentiation. Additionally, our method allows
for sorting the compiled equations and solving them effi-
ciently.

The rest of this paper is organized as follows: First we
motivate the need for arbitrary-order differentiation and pa-
rameter selection of equations in a compiled setting. After-
wards we formally define t(n,p), a family of languages that
allows for arbitrary order differentiation of mathematical
terms, which we have implemented in a a general purpose
DAE library called jdae1. We prove that the evaluation of
this language indeed yields correct partial and total deriva-
tives of a function. Finally, we show how t(n,p) can be im-
plemented recursion-free.

1.1 Notation
In this paper we will use some short cuts to enhance the
readability of formulas:

First, as we are talking about continuous functions, we
will usually name them with the letters f, g, h. Domain and
codomain are written in a blackboard style, i.e. f : R→ R
means that f is a function mapping real numbers to real
numbers. Arguments are usually vectors (x̄) or scalars (v).
When the context is clear, we extend primitive operations
over continuous functions: (f + g)(v, x̄) ≡ f(v, x̄) +
g(v, x̄). For function application we use a "flat" format: If
f : Rn+1 → R, v ∈ R and x̄ ∈ Rn, then we write f(v, x̄)
to denote the application of f to the concatenation of v to
x̄.

1 https://github.com/choeger/jdae

5

2. Motivation
To understand the two most important operations on sys-
tems of differential and algebraic equations (namely index-
reduction and causalisation), we resort to the classic higher
index example, the cartesian pendulum:

x2 + y2 = 1 (1)

ẍ = Fx (2)

ÿ = Fy − 9.81 (3)

As always, x and y denote the pendulum’s coordinates
while F is the tension force. In this example, we set the
length of the pendulum and its mass to 1 to enhance read-
ability.

2.1 Index Reduction
It is well known, that the above model cannot be solved
directly by an ODE solver. The reason is obviously that
both x and y appear differentiated but only one of them
can be solved by equations 2 or 3, as one these equations is
required to solve for F .

The solution to this problem is naturally to differentiate
equation 1. By application of simple arithmetic laws the
above model also implies:

ẋx+ ẏy = 0 (4)

ẋ2 + ẍx+ ẏ2 + ÿy = 0 (5)

As one can easily see, the augmented system of equa-
tions can be solved as an ODE (by choosing either x or y
as state).

This result can be obtained by using an index-reduction
algorithm like e.g. Pantelides’ method [10], the dummy
derivative method [8] or Pryce’ method [11]. Any such
method will result in the number of times a given equation
or variable needs to be differentiated (explicitly as vectors d
and c in Pryce’ algorithm). Thus a compiled equation needs
to be able to, given an arbitrary n, compute the n-th total
derivative of itself.

2.2 Causalisation
In addition to the total derivative, it is usually necessary to
compute the partial derivatives of an equation. This is due
to the fact that most models will require to solve some al-
gebraic parts iteratively. To do so efficiently, it is a common
requirement to calculate the Jacobian of the equations.

In our example (assuming we choose x as state), we
might solve y and ẏ directly by equations 1 and 4 (as x
and ẋ are known by numerical integration), but finding a
valid solution for F , ẍ and ÿ requires the iterative solution
of equations 2, 3 and 5.

The process of finding such a partitioning of the system
is called causalisation or equation-sorting. Given an index-
1 DAE, the process is equivalent to the contraction of all
strongly connected components in the dependency graph
of equations.

This process raises an interesting problem in the setting
of compiled equations: As the causalisation is applied after
compile time, it is unknown for a given equation, which of

the occurring variables are true iteration variables (e.g. F
in the algebraic loop above) during simulation and which
become constants (e.g. y).

2.3 Automatic Differentiation
In summary, a compiled equation needs to be able to com-
pute for any order of total derivation and any subset of its
variables the value and the partial derivatives of its resid-
ual. As we do not know neither the subset of variables nor
the final degree of derivation, the only practical solution to
this requirement is automatic (or algorithmic) differentia-
tion. This technique is based on the fact that the derivation
rules for primitive operations like addition or sine are well
known (up to an arbitrary degree) and the chain rule shows
how any composition of those primitive operations can be
derived.

In this work we present a novel approach that em-
beds AD into a small term-language and prove its cor-
rectness. Our approach is hand-tailored to compute exactly
the derivatives needed by a DAE solver. For any further
reading about automatic differentiation we refer to section
7.3.

3. The term language t

In this section we define the simple term language t. We
define language syntax in form of an EBNF-grammar. t is
defined as:

τ ::= un,d
| τ ⊕ τ
| τ ⊗ τ
| φ τ
| r ∈ R

t is a rather simple language: Terms (in the following
sections abbreviated by variables τi) are either multipli-
cation (written ⊗ to distinguish multiplication-terms from
multiplication on real numbers which we will write as ×
further down), addition (written as ⊕), real values (r) and
primitive functions φ ∈ P, where P is a not further de-
fined set of n-times continuously differentiable (i.e. of class
Cn) single-argument real-valued functions. Terms describ-
ing the application of a primitive function φ on a term τ are
written as juxtaposition φ τ while parentheses (i.e. φ(r) in-
dicate the result of the actual application on real-numbers.

A notable feature of t is the availability of unknowns
un,d. Informally an unknown, written by u subscripted by
two natural numbers, e.g. un,d, represents the d-th total
derivative of the n-th variable of a system of equations.

3.1 Semantics
The operational semantics of t is given below in the form
of natural semantics. For an open interval D ⊆ R, a vector
x̄ = (x1, . . . , xp) ∈ (D → R)p of functions of class Cn

and a free variable v ∈ D, the evaluation relation ⇓ is
defined. We write (D, x̄, v) ` τ ⇓ r to denote that under
(D, x̄, v) τ evaluates to r. Intuitively, (D, x̄, v) denotes the
domain of a ideal residual computation: x̄ is the vector
of unknowns, v is the independent variable and D is the

6

interval upon which the model is well-posed (i.e. n-times
continuously differentiable).
⇓ is defined inductively by rules in form of a natural

(or big-step) semantics. Each rule contains zero or more
premises (the part above the bar) and one conclusion (the
part below). The whole rule forms an implication: If the
premises are true, the same holds for the conclusion. Mul-
tiple premises form an implicit conjunction. We also write
side-conditions as part of the premises to save some space.

(D, x̄, v) ` r ⇓ r
(REAL)

(D, x̄, v) ` τ1 ⇓ r1
(D, x̄, v) ` τ2 ⇓ r2

(D, x̄, v) ` τ1 ⊕ τ2 ⇓ r1 + r2
(ADD)

(D, x̄, v) ` τ1 ⇓ r1
(D, x̄, v) ` τ2 ⇓ r2

(D, x̄, v) ` τ1 ⊗ τ2 ⇓ r1 × r2
(MUL)

r ∈ dom(φ) (D, x̄, v) ` τ ⇓ r
(D, x̄, v) ` φ τ ⇓ φ(r)

(PRIM)

n ∈ 0 . . . p

(D, x̄, v) ` un,d ⇓ x(d)n (v)
(UNK)

Definition 1. Let f : (D → R)p × D → R be an n-times
differentiable function, then:

(D, x̄, v) ` τ f :⇔ (D, x̄, v) ` τ ⇓ f(x̄, v)

(τ computes f)

To conclude this section, we state an observation about
the well-formedness of terms of t. We call a term well
formed (under (x̄, v)) if there is an r ∈ R such that
(D, x̄, v) ` τ ⇓ r. It should be obvious that the only form
of non-reducing terms can occur due to E-PRIM-REAL or
E-UNK. For the proofs further below, we eliminate this
possibility by the following lemma (which could be easily
shown, since t is a strict language):

Lemma 1. Well formed terms always compute a function
and terms that compute a function are well-formed.

4. The t(n,p)Family
To implement automatic differentiation, we lift the simple
language t into a family of languages t(n,p).
t(n,p)is syntactically very similar to t. Again, we see ad-

dition, multiplication, primitive functions and unknowns:

τ (n,p) ::= um,d

| τ (n,p) ⊕ τ (n,p)
| τ (n,p) ⊗ τ (n,p)
| φ τ (n,p)

| A ∈ R(n+1,p+1)

The only visible difference to t is that the domain of
real values is exchanged with a domain of real-valued ma-
trices (which we abbreviate with capital latin letters). φ still
denotes real-valued functions. The intuitive explanation is
that a t(n,p)-term calculates not only a value, but also the n
total derivatives and the p partial derivatives (of every total
derivative) of a function.

Two terms of different instances of t(n,p)can only differ
in the shape of the constants. It is important to note that if a
term does not contain any constants, it is a valid t(n,p)-term
for any given concrete n and p.

4.1 Fundamental Definitions
Before we can explain the semantics of t(n,p), we need to
introduce some helper functions. First, we define a lifting
operator denp that allows us to map a t-term into a t(n,p)-
term:

dre(n,p) =

∣∣∣∣∣∣∣
r 0 · · · 0
...

...
. . .

...
0 0 · · · 0

∣∣∣∣∣∣∣
dτ1 ⊕ τ2e(n,p) = dτ1e(n,p) ⊕ dτ2e(n,p)

dτ1 ⊗ τ2e(n,p) = dτ1e(n,p) ⊗ dτ2e(n,p)

dum,de(n,p) = um,d

dφ τe(n,p) = φ dτe(n,p)

Additionally we introduce two reduction operations on
real-matrices called ∆ (for differentiation) and I (for in-
tegration). The naming will be obvious once we define the
operational semantics of t(n,p), but for now they are defined
by elimination of the first and last row respectively:

I

∣∣∣∣∣∣∣
r0,0 · · · r0,p

...
. . .

...
rn,0 · · · rn,p

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
r0,0 · · · r0,p

...
. . .

...
rn−1,0 · · · rn−1,p

∣∣∣∣∣∣∣

∆

∣∣∣∣∣∣∣
r0,0 · · · r0,p

...
. . .

...
rn,0 · · · rn,p

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
r1,0 · · · r1,p

...
. . .

...
rn,0 · · · rn,p

∣∣∣∣∣∣∣
For the definition of the semantics as well as the proof

of correctness, we will require a notion of mixed total
and partial derivation. To reduce syntactical noise we will
stick with the well-known d and ∂ notations, but omit any
fractions:

∂0f = f

∂jf =
∂f

∂xj
, i ∈ 1 . . . p

d(i)f =
dif

dvi

This notation ignores the partial derivative ∂f
∂x0

. The rea-
son for this decision is the matrix layout used further down:
It is convenient to use the same index-set for the delta oper-
ator as in the matrix. To reconcile this restriction with our

7

general mathematical model, we introduce the convention
that x0(v) = v, thus the missing partial derivative is iden-
tical to the first total derivative.

Matrix values will be abbreviated with capital latin let-
ters, so A ∈ Rn+1,p+1 in the context of t(n,p). When we
index a matrix with one number, we select the correspond-
ing row-vector, i.e.A0 is the vector containing the elements
of the first row of A.

To store partial and total derivatives, we introduce
the n, p-dimensional derivative-matrix D(n,p)(f, x̄, v) of
a function f .

D(n,p)(f, x̄, v) ∈ Rn+1,p+1

D(n,p)(f, x̄, v)(i,j) = ∂jd
(i)f(x̄, v)

In case the context is clear, we omit the x̄, v arguments
for brevity.

This definition enables the formulation of a correctness
theorem on the evaluation of t(n,p)-terms. It needs to be
based on the fundamental assumption that a term actually
computes a function. If this was not the case, the output
of the reduction might still yield values but they are hardly
meaningful in the sense of derivation.

Theorem 1 (correctness).

(D, x̄, v) ` τ f ⇒ (D, x̄, v) ` dτenp ⇓(n,p) D(n,p)(f)

(the result of computing a function is the matrix of its
derivatives)

The formal definition of ⇓(n,p) (the evaluation semantics
of t(n,p)as a binary relation between t(n,p)-terms) follows
below. As we will show, it fulfills this theorem.

We also introduce a special vector operator ? : Rp+1 ×
Rp+1 → Rp+1, which is defined as follows:

(ā ? b̄)0 = a0 × b0
(ā ? b̄)i = ai × b0 + bi × a0 i ∈ 1 . . . p

The motivation of this definition lies in the following
fact:

Lemma 2. Let g, h : (D→ R)p×D→ R be differentiable
functions with p parameters each, then:

D(0,p)(g, x̄, v) ?D(0,p)(h, x̄, v) = D(0,p)(g × h, x̄, v)

A second operator, • : ((R → R) × Rp+1) → Rp+1,
takes a differentiable function and a p+1 vector and returns
a p+ 1 vector:

(φ • ā)0 = φ(a0)

(φ • ā)i = φ′(a0)× ai i ∈ 1 . . . p

This composition operator is also motivated by an asso-
ciated corollary:

Lemma 3. Let φ : R → R, g : (D → R)p × D → R be
differentiable functions, then:

φ • D(0,p)(g, x̄, v) = D(0,p)(φ ◦ g, x̄, v)

4.2 Semantics
The operational semantics of t(n,p)is also parametric over
n and p. It is defined by the evaluation relation ⇓(n,p). Al-
though the defining rules of ⇓(n,p) might seem fairly com-
plex, the reader should notice how their structure reflects
the derivation rules for addition, multiplication and com-
position of real valued functions.

(D, x̄, v) ` A ⇓(n,p) A
(AD-REAL)

The evaluation of unknowns is now extended to also
evaluate derivatives accordingly:

(D, x̄, v) ` um,k ⇓(n,p) D(n,p)(d(k)xm, x̄, v)
(AD-UNK)

Addition in t(n,p)is simply defined as matrix addition:

(D, x̄, v) ` τ1 ⇓(n,p) A
(D, x̄, v) ` τ2 ⇓(n,p) B

(D, x̄, v) ` τ1 ⊕ τ2 ⇓(n,p) A+B
(AD-ADD)

Multiplication in t(n,p)is defined recursively over the
parameter n.

(D, x̄, v) ` τ1 ⇓(0,p) ā
(D, x̄, v) ` τ2 ⇓(0,p) b̄

(D, x̄, v) ` τ1 ⊗ τ2 ⇓(0,p) ā ? b̄
(AD-MULT-0)

(D, x̄, v) ` τ1 ⇓(n+1,p) A
(D, x̄, v) ` τ2 ⇓(n+1,p) B

(D, x̄, v) ` ∆(A)⊗ I(B) ⇓(n,p) C
(D, x̄, v) ` ∆(B)⊗ I(A) ⇓(n,p) D

(D, x̄, v) ` τ1 ⊗ τ2 ⇓(n+1,p)

∣∣∣∣A0 ? B0

C +D

∣∣∣∣ (AD-MULT-N)

Composition (the application of primitive functions) is
also defined recursively:

(D, x̄, v) ` τ ⇓(0,p) ā a0 ∈ dom(φ)

(D, x̄, v) ` φ τ ⇓(0,p) φ • ā
(AD-COMP-0)

The general rule also relies on the definition of multipli-
cation:

(D, x̄, v) ` τ ⇓(n+1,p) A A0,0 ∈ dom(φ)
(D, x̄, v) ` (φ′ I(A))⊗∆(A) ⇓(n,p) B

(D, x̄, v) ` φ τ ⇓(n+1,p)

∣∣∣∣φ •A0

B

∣∣∣∣
(AD-COMP-N)

It remains to show that these rules are actually meaning-
ful and compute the derivatives of a function correctly.

8

5. Correctness of t(n,p)

Recall, that theorem 1 is defined about a t-term that is
lifted into a t(n,p)-term. Thus it can be proven by structural
induction over t. To do so, we show that if the property
holds for every sub-term of a term it also holds for the term
itself.

Case 1 (τ ≡ r). By definition of lifting, we know that
drenp =

∣∣ai,j∣∣ with a0,0 = r and ai,j = 0 if (i, j) 6= (0, 0).
By definition of , it holds that f must be the constant
function f(x̄, v) = r and thus ∂jd(i)f(x̄, v) = 0 if (i, j) 6=
(0, 0).

Therefore: ai,j = D(n,p)(f, x̄, v)i,j for any x̄, v

Case 2 (τ ≡ um,k). We know by rule AD-UNK that:

(D, x̄, v) ` dum,kenp ⇓(n,p) D(n,p)(d(k)xm, x̄, v)

By definition of it follows that f(x̄, v) = d(k)xm(v).
Therefore: D(n,p)(d(k)xm, x̄, v) = D(n,p)(f, x̄, v)

Case 3 (τ ≡ τ1⊕τ2). We know by Lemma 1 and (D, x̄, v) `
τ f that both τ1 and τ2 are well-formed (and compute a
function each):

(D, x̄, v) ` τ1 g ∧ (D, x̄, v) ` τ2 h

Application of the induction hypothesis to τ1 and τ2 and
insertion into AD-ADD yields:

(D, x̄, v) ` dτ1enp ⇓(n,p) G
(D, x̄, v) ` dτ2enp ⇓(n,p) H

(D, x̄, v) ` dτ1 ⊕ τ2enp ⇓(n,p) G+H

Where G = D(n,p)(g, x̄, v)

H = D(n,p)(h, x̄, v)

Since G+H = D(n,p)(g+ h, x̄, v) and (by definition of t)
f = g + h:
G+H = D(n,p)(g + h, x̄, v) = D(n,p)(f, x̄, v)

To prove the correctness of multiplication, we need to
take two steps. First, we will show the correctness in case
of n = 0. Afterwards we apply natural induction to show
the general case.

Case 4 (τ ≡ τ1 ⊗ τ2 n = 0). As for the addition, we
notice that by Lemma 1 (D, x̄, v) ` τ1 ⊗ τ2 f implies
that:

(D, x̄, v) ` τ1 g ∧ (D, x̄, v) ` τ2 h ∧ f = g × h

Therefore, because both terms are well-formed, we can
insert the induction hypothesis into rule AD-MULT-0 and
get:

(D, x̄, v) ` dτ1e0p ⇓(0,p) D(0,p)(g, x̄, v)

(D, x̄, v) ` dτ2e0p ⇓(0,p) D(0,p)(h, x̄, v)

(D, x̄, v) ` dτ1 ⊗ τ2e0p ⇓(0,p) D(0,p)(g) ?D(0,p)(h)

And by Lemma 2 and f = g × h:
(D, x̄, v) ` dτ1 ⊗ τ2e0p ⇓(0,p) D(0,p)(f, x̄, v)

Case 5 (τ ≡ τ1 ⊗ τ2, general case). In the general case,
we make the same observation about f, g and h:

(D, x̄, v) ` τ1 g ∧ (D, x̄, v) ` τ2 h ∧ f = g × h

Additionally, we know by the application of the structural
induction hypothesis:

(D, x̄, v) ` dτ1en+1
p ⇓(n+1,p) D(n+1,p)(g, x̄, v)

(D, x̄, v) ` dτ2en+1
p ⇓(n+1,p) D(n+1,p)(h, x̄, v)

As we have seen earlier, ∆ and I map matrices from
t(n+1,p) into t(n,p):

∆(D(n+1,p)(g, x̄, v)) = D(n,p)(g′, x̄, v)

I(D(n+1,p)(g, x̄, v)) = D(n,p)(g, x̄, v)

Application of the structural induction to τ1 and τ2 yields:

(D, x̄, v) ` dτ1en+1
p ⇓(n+1,p) D(n+1,p)(g)

(D, x̄, v) ` dτ2en+1
p ⇓(n+1,p) D(n+1,p)(h)

When we set G = D(n+1,p)(g) and H = D(n+1,p)(h), the
natural induction hypothesis yields:

(D, x̄, v) ` ∆(G)⊗ I(H) ⇓(n,p) D(n,p)(g′ × h)

(D, x̄, v) ` ∆(H)⊗ I(G) ⇓(n,p) D(n,p)(h′ × g)

If we apply these results to rule AD-MULT-N we can see
that:

(D, x̄, v) ` dτ1en+1
p ⇓(n+1,p) G

(D, x̄, v) ` dτ2en+1
p ⇓(n+1,p) H

(D, x̄, v) ` ∆(G)⊗ I(H) ⇓(n,p) D(n,p)(g′ × h)
(D, x̄, v) ` ∆(H)⊗ I(G) ⇓(n,p) D(n,p)(h′ × g)

(D, x̄, v) ` dτ1 ⊗ τ2enp ⇓(n+1,p)

∣∣∣∣ H0 ? G0

D(n,p)(h× g′ + g × h′)

∣∣∣∣
Thus we can apply calculus to the derivation of products:
D(n,p)(h× g′ + g × h′) = D(n,p)((h× g)′) = D(n,p)(f ′)

A similar technique can be used to proof correctness
over composition. Again, we start with the basic case n =
0:

Case 6 (τ ≡ φ τ1 n = 0). Again, Lemma 1 provides us
with the guarantee that τ and thus τ1 is well-formed:

(D, x̄, v) ` φ τ1 f ⇒ (D, x̄, v) ` τ1 g ∧ f = φ ◦ g

Therefore, we can apply the structural hypothesis and
Lemma 3 to rule AD-COMP-0:

(D, x̄, v) ` dτ1e0p ⇓(0,p) D(0,p)(g, x̄, v)

(D, x̄, v) ` dφ τ1e0p ⇓(0,p) D(0,p)(φ ◦ g, x̄, v)

and since: D(0,p)(f) = D(0,p)(φ ◦ g)

9

Case 7 (τ ≡ φ τ1, general case). As usual we start with
our well-formedness observation:

(D, x̄, v) ` φ τ1 f ⇒ (D, x̄, v) ` τ1 g ∧ f = φ ◦ g

This allows us to apply the structural induction hypothesis:

τ1 ⇓(n+1,p) G

G = D(n+1,p)(g)

Also, by definition of ∆ and I:

∆(G) = D(n,p)(g′)

I(G) = D(n,p)(g)

If we apply our observations about ∆ and I from case 5 to
our natural induction hypothesis, we see:

(D, x̄, v) ` φ′(I(G)) ⇓(n,p) D(n,p)(φ′ ◦ g)

As we have already shown, multiplication is also correct.
Thus (by application of the chain-rule, since φ is a single-
argument function):

(D, x̄, v) ` D(n,p)(φ′ ◦ g)⊗∆(G) ⇓(n,p) D(n,p)((φ ◦ g)′)

Applying both results to AD-COMP-N, we can conclude
that:

(D, x̄, v) ` τ1 ⇓(n+1,p) G
(D, x̄, v) ` φ′ I(G)⊗∆(G) ⇓(n,p) D(n,p)((φ ◦ g)′)

(D, x̄, v) ` φ τ ⇓(n+1,p)

∣∣∣∣ φ •G0

D(n,p)((φ ◦ g)′)

∣∣∣∣
With this proof completed, we can state that a t(n,p)term

can be evaluated to yield any wanted total derivative and all
partial derivatives of a function. Naturally, the programmer
remains responsible to ensure the correctness’ premise,
the correspondence between the implied (differentiable)
function f and the given term t for the used interval D.

6. Implementation
In this section we will assume that equations have to be
solved in a concrete host language (like Java, C, Haskell
etc.) and t-terms are compiled into this host-language be-
fore lifting.

6.1 jdae
t(n,p)has been implemented in a general purpose DAE li-
brary called jdae2. jdae offers the means to implement mod-
els directly in form of Java-classes. Those classes can be
composed in any possible way to define a system of equa-
tions at runtime. jdae then also offers facility to index-
reduce and simulate the global model.

The choice fell to Java mostly because of its bytecode
access that allows for a simple implementation of the run-
time specialization. We assume that t(n,p)can be imple-
mented quite naturally in any other language like ANSI-C
or C++ as well.
2 https://github.com/choeger/jdae

6.2 Basic Operations
Lifting into t(n,p)can be implemented directly rather eas-
ily: Most languages provide the means to dynamically cre-
ate and modify a matrix of real-values at runtime (either
as an array or a list of floating point numbers). Lifting a
t-term can thus be implemented by introducing n and p
as object-level parameters into the built-in operations ad-
dition, multiplication, composition, unknown loading and
constant creation. So before one evaluates a t(n,p)term for
a given n and p in the host language, one simply passes
these arguments towards the term.

Neither addition nor constants render any problems:
Filling a matrix with zeros but for the top-most, left-most
element should be as simple to implement as matrix addi-
tion.

Loading an unknown is a slightly more complex case.
Here, the implementation carefully needs to provide the
different derivatives, depending on the context. First, one
needs to take into account that higher order derivatives
might be present implicitly in a term: If for example, one
has compiled the equation a(v)2 + b(v)2 = 1 and wants to
evaluate it as a t(1,1) term, then the implicit presence of a′

yields x̄ = (a, a′). So in that case, the result of loading a
by u1,0 should yield: ∣∣∣∣a(v) 1 0

a′(v) 0 1

∣∣∣∣
Since t(n,p)is a language for DAE-simulation, the values
of a and a′ are either already known or part of an iterative
solution process. It is only important to correctly reflect the
dependencies between different unknowns.

Implementing multiplication and composition is a dif-
ferent story, though. The definition of their semantics hints
towards a recursive implementation strategy quite directly:
If one already has to implement multiplication and com-
position as functions of n, then it is obviously not a prob-
lem to implement them recursively. So multiplication of a
t(n,p)term relies on the implementation of the multiplica-
tion of t(n−1,p) and so on.

Unfortunately, this approach is hardly efficient. Not only
may it involve a large amount of data copying between the
recursive calls, but it also avoids an elementary optimiza-
tion:

If we take a look at the multiplication, we see that every
direct application of AD-MULT-N, requires two recursive
invocations. This would yield O(2n) applications. On the
other hand, we know by the General Leibniz rule that we
should be able to compute the n-th total derivative of a
composed function by means of a sum of n elements:

(f · g)(n) =
n∑

k=0

(
n

k

)
f (k)g(n−k)

This can be achieved for t(n,p)-terms as well: It is easy to
observe that the pattern of primitive calculations (+,×)
does not change depending on the numbers being multi-
plied:

10

Every field of the resulting matrix of a multiplication is
calculated by a sum of products of the form:

(A⊗B)i,j =
∑

(q,r,s,t)∈Fi,j

aq,r × bs,t

i ∈ 0 . . . n,∈ 0 . . . p

F can be computed recursively:

F0,0 = {(0, 0, 0, 0)}
F0,j = {(0, j, 0, 0), (0, 0, 0, j)}

Fi+1,j = A ∪B
where

A = {(q + 1, r, s, t)|(q, r, s, t) ∈ Fi,j}
B = {(q, r, s+ 1, t)|(q, r, s, t) ∈ Fi,j}

We omit a proof of correctness for this iterative imple-
mentation for brevity. It should suffice to state that F0 is an
implementation of ? and the union of A and B reflects the
addition in the conclusion of AD-MULT-N. The increase of
the first and third indices are the iterative version of ∆.

If one precomputes F once for every combination of n
and p, the implementation of t(n,p)-multiplication can be
handled inside a tight loop, increasing performance and
decreasing memory usage. Note, that this precomputation
does not need to occur prior to compilation, but can as
well be done on link- or runtime. Additionally, algebraic
optimization (e.g. merging of summands with the same
factors) can be applied to the precomputed elements of F ,
finally yielding a result similar to Leibniz’ formula.

A similar approach (leading to a variant of Faà di
Bruno’s formula) can be implemented for the composition
case.

6.3 Runtime Specialization
A way to optimize the AD-operations even further is to
think of the precomputed patterns F as a form of a tiny
language that is interpreted at runtime to calculate the el-
ement of the result matrix. This view yields an interest-
ing result: As every partial derivative in the result matrix is
computed in the same way (only differing in the column),
there are essentially only two different methods for every
operation and every concrete n (namely to compute the n-
th total derivative and any given partial derivative of it).

For any concrete n, the operations remain constant for
any evaluation. So after index reduction we can create spe-
cialized methods for every required n (in fact, we can even
create some beforehand, e.g. n = 0). This kind of run-
time specialization allows us to eliminate the interpretative
overhead generated by the application of the precomputed
operations. So instead of calculating a sum e.g. by means
of a for-loop, we can directly issue a sum-expression that
contains all summands, etc.

7. Conclusion
We have shown that differential algebraic equations can be
given a compositional operational semantics. This seman-
tics can be used to compile equations (and thus models)
separately and still simulate them efficiently.

7.1 Example
The Cartesian pendulum model from section 2 can be com-
piled to t as follows (using residuals and setting x ≡
u1,0, y ≡ u2,0, F ≡ u3,0) :

u1,0 ⊗ u1,0 ⊕ u2,0 ⊗ u2,0 ⊕−1 (6)

u1,2 ⊕ u1,0 ⊗ u3,0 ⊗−1 (7)

u2,2 ⊕ (u2,0 ⊗ u3,0 ⊕−9.81)⊗−1 (8)

As we have seen, index-reduction of the model requires
us to differentiate equation 6 two times. To do so, we
simply replace it by the following t2,p equation:

du1,0 ⊗ u1,0 ⊕ u2,0 ⊗ u2,0 ⊕−1e23 (9)

Using this method, all equations of the model can be
compiled separately and instantiated according to index re-
duction, without using symbolic or numeric differentiation.

7.2 Consequences
t(n,p)allows for modular semantics of compiled models:
There is no need to fallback to symbolic differentiation at
any time for the computation of derivatives. This allows to
instantiate compiled equations in any context and greatly
reduces the size of the generated code (avoiding the scala-
bility problem of traditional implementations).

It also enhances the expressiveness of DAE modeling by
including models with fully variable structure. At the same
time it allows for a clean separation of modules during
development of models, increasing safety and reliability.

7.3 Related Work
The principle of n-th order automatic derivation in this
work is based on the multivariate automatic differentiation
by Kalman [6], which in turn is a generalization of Rall’s
numbers [12]. Kalman’s operators V,D and L inspired ∆
and I in this work. An early prototype of this work was
developed using an implementation (by the apache com-
mons project 3) of Kalman’s Derivative Structures. Also
the idea of precomputed basic operations for multiplication
and composition is based on that implementation.

Yet the fact that Kalman computes all mixed partial
derivatives induces a large inefficiency for our application
case: Inevitably, the containing Derivative Structure would
also compute ∂21∂i, ∂1∂2∂i and so on (which are all un-
needed for the semi-explicit solution of a DAE). So from
the perspective of automatic differentiation, this work is a
specialized implementation of Kalman’s technique to a cer-
tain problem-domain.

The opposite approach of the implementation of n-th
order automatic differentiation is the infinite computation
of total derivatives as Karczmarczuk demonstrated it in
[7]. The elegant, recursive style in this work inspired the
formulation of the operational semantics of t(n,p). Albeit,
Karczmarczuk does neither handle partial derivatives nor
provide an iterative implementation.

Modularity of modeling languages has been researched
e.g. by Zimmer [13] and Furic [3]. The former preferred an

3 http://commons.apache.org/math

11

after-compilation approach to "rescue" as much modularity
as possible, while the latter restricts the modeling formal-
ism itself in a way that renders most symbolic manipula-
tion needless. Both approaches differ from this work, since
t(n,p)allows to retain complete modularity without sacrific-
ing certain modeling techniques.

Another strategy is to embed a modeling language
into an established general purpose language as shown by
Giorgidze and Nilsson in [4]. This can even go so far as to
formally define a complete host language specialized for
this task, as Broman’s Modelyze [2]. Both lead to modular,
formally defined modeling semantics (either by inheriting
from an established language or by formally defining the
host language).

The main difference to our work lies in the treatment
of equations: There, they are handled as data structures
in the host language and interpreted (or JIT-compiled) for
simulation, while in our case they can be directly translated
into terms of the target language.

Finally, it should be noted that variable structure sys-
tems have been researched for a while now. In [9], Mehlhase
presents an approach for systems with finite (in fact small)
amounts of modes, where the symbolic manipulation can
be applied to each mode separately (yielding efficient simu-
lation code for every mode). In [14], Zimmer avoids compi-
lation completely and shows, how runtime index reduction
can concisely express certain simulation scenarios.

8. Future Work
As simulation performance is paramount, it is an obvious
research topic for t(n,p). Simulating a set of real-world
models and comparing the performance to existing imple-
mentations should be an interesting field of study.

It is an open question, how efficient index-reduction can
be applied in the case of structurally variable models. As
this is a non-trivial problem, any efficient solution will
probably make use of an incremental approach. But until
now it remains unclear, how such an approach might be
implemented.
t is obviously (due to the lack of recursion) not Turing-

complete. Neither is any member of t(n,p). To overcome
this limitation, one could extend t(n,p)to a Turing-complete
language e(n,p), containing all elements of t(n,p)plus the
simple lambda calculus, general recursion (e.g. via a fixed-
point operator), non-strict conditionals etc.

For any such extension of t(n,p), evaluation would be
defined as usual (i.e. in non-AD languages). Intuitively,
the automatic differentiation still "works" as in the case
of t(n,p). Yet, it remains an interesting question how one
would formulate a corresponding proof.

A second possible extension is to think in terms of mod-
eling: Here it would be interesting to see, how a model com-
putes different t(n,p)terms. For instance one could easily
define the derivation operator used in modeling languages
by operating on t(n,p)-unknowns.

Another interesting aspect of t(n,p)is that it opens the
door for a deeper use of precompiled models in the style of
FMI. Using t(n,p)it should even be possible to introduce the

concept of external equations into a language like Modelica
(i.e. equations that are completely hidden in a precompiled
library without any limitations to their usage).

References
[1] Torsten Blochwitz, M Otter, M Arnold, C Bausch, C Clauß,

H Elmqvist, A Junghanns, J Mauss, M Monteiro, T Neid-
hold, et al. The functional mockup interface for tool inde-
pendent exchange of simulation models. In Modelica’2011
Conference, March, pages 20–22, 2011.

[2] David Broman and Jeremy G. Siek. Modelyze: a gradually
typed host language for embedding equation-based mod-
eling languages. Technical Report UCB/EECS-2012-173,
EECS Department, University of California, Berkeley, Jun
2012.

[3] Sébastien Furic. Enforcing model composability in
modelica. In Proceedings of the 7th International Modelica
Conference, Como, Italy, pages 868–879, 2009.

[4] George Giorgidze and Henrik Nilsson. Mixed-level
embedding and jit compilation for an iteratively staged
dsl. In Proceedings of the 19th international conference on
Functional and constraint logic programming, WFLP’10,
pages 48–65, Berlin, Heidelberg, 2011. Springer-Verlag.

[5] Christoph Höger. Separate compilation of causalized equa-
tions -work in progress. In François E. Cellier, David Bro-
man, Peter Fritzson, and Edward A. Lee, editors, EOOLT,
volume 56 of Linköping Electronic Conference Proceed-
ings, pages 113–120. Linköping University Electronic
Press, 2011.

[6] Dan Kalman. Doubly recursive multivariate automatic
differentiation. Mathematics magazine, 75(3):187–202,
2002.

[7] Jerzy Karczmarczuk. Functional differentiation of computer
programs. In ACM SIGPLAN Notices, volume 34, pages
195–203. ACM, 1998.

[8] Sven Erik Mattsson and Gustaf Söderlind. Index reduction
in differential-algebraic equations using dummy derivatives.
SIAM Journal on Scientific Computing, 14(3):677–692,
1993.

[9] A. Mehlhase. A Python Package for Simulating Variable-
Structure Models with Dymola. In Inge Troch, editor,
Proceedings of MATHMOD 2012, Vienna, Austria, feb
2012. IFAC. submitted.

[10] Constantinos C Pantelides. The consistent initialization of
differential-algebraic systems. SIAM Journal on Scientific
and Statistical Computing, 9(2):213–231, 1988.

[11] John D Pryce. A simple structural analysis method for daes.
BIT Numerical Mathematics, 41(2):364–394, 2001.

[12] L.B. Rall. The Arithmetic of Differentiation. MRC TSR.
Defense Technical Information Center, 1984.

[13] Dirk Zimmer. Module-preserving compilation of mod-
elica models. In Proceedings of the 7th International
Modelica Conference, Como, Italy, 20-22 September 2009,
Linköping Electronic Conference Proceedings, pages 880–
889. Linköping University Electronic Press, Linköpings
universitet, 2009.

[14] Dirk Zimmer. Equation-based Modeling of Variable-
structure Systems. PhD thesis, ETH Zürich, 2010.

12

