
Workflow Management in CLARIN-DK

Bart Jongejan

Copenhagen University

bartj@hum.ku.dk

ABSTRACT

Clarin.dk, the infrastructure maintained by the CLARIN-DK project, is not only a
repository of resources, but also a place where users can analyse, annotate, reformat
and potentially even translate resources, using tools that are integrated in the
infrastructure as web services. In many cases a single tool does not produce the desired
output, given the input resource at hand. Still, in such cases it may be possible to reach
the set goal by chaining a number of tools. The approach presented here frees the user
of having to meddle with tools and the construction of workflows. Instead, the user
only needs to supply the workflow manager with the features that describe her goal,
because the workflow manager not only executes chains of tools in a workflow, but also
takes care of autonomously devising workflows that serve the user’s intention, given the
tools that currently are integrated in the infrastructure as web services. To do this, the
workflow manager needs stringent and complete information about each integrated
tool. We discuss how such information is structured in clarin.dk. Provided that many
tools are made available to and through the clarin.dk infrastructure, the automatically
created workflows, although simple linear programs without branching or looping
constructs, can cover a large swath of users’ needs. It is rewarding for both users and
tool developers that the infrastructure takes advantage of new tools from the moment
they are registered, because there is no need to wait for human expert users to
construct and save for later use workflows that incorporate new tools.

KEYWORDS: NoDaLiDa 2013, workflow, tools, automation.

Bart Jongejan 2013. Workflow management in CLARIN-DK. Proceedings of the workshop on Nordic language research

infrastructure at NODALIDA 2013. NEALT Proceedings Series 20 / Linköping Electronic Conference Proceedings 89: 11–20.

11

1 Introduction

Using computer software to analyse resources in the field of humanities can be a
difficult to attain goal, because software packages often require a good deal of technical
stamina. Even if all software is available to a researcher, the prospect of having to deal
with technical details may deter many, for example because output from one piece of
software not necessarily can be used as input for another piece of software due to a
technical issue such as a format mismatch. Very powerful and versatile workflow
managers exist that are used to alleviate the burden of finding viable combinations of
tools, but usually this is done by assisting the user in selecting tools for each step in a
possibly long chain of tools. Even though such workflow managers take care of the
fitting-together, users still have to learn to use a workflow editor to program a tool
chain. Examples of such workflow managers are WebLicht (Hinrichs et al., 2010), and
Taverna (Kemps-Snijders et al., 2012), Kepler and Triana (Funk et al., 2010).

Reuse of existing technology for workflow management in clarin.dk1 (Offersgaard et al.,
2011, Offersgaard et al., 2013) was seen as problematic. WebLicht was mostly text only,
whereas the clarin.dk repository had to be populated with resources of many types,
some of which had little to do with text, such as videos. Also, from the outset it was
decided to work with stand-off annotations, each annotation being a resource in its own
right. This design did not match very well with WebLichts preferred TCF-format that
combines all annotations in one file that is passed on from tool to tool, getting enriched
on its itinerary until the end of the tool chain is reached. Other workflow managers
would require that at least one user knew the tools that were integrated and became
expert in using the workflow editor. Not before this expert user had made a set of
workflows, other, less technically minded users, could reap the fruits of the integrated
tools. In a relatively small NLP community like the Danish, this was not an attractive
prospect. The minimal requirement was that new tools for any kind of resource could
be integrated into the infrastructure without the need to make changes to the
infrastructure’s software and with the possibility for all users to easily apply tools to the
resources of their choice.

2 Baseline for handling workflows

From a user’s perspective, our baseline is the web site2 where we have made available a
number of NLP tools for on-line use. Here, researchers and students, but also
consultants and IT-people all over the world, can get acquainted with some of our
software. This web site is a small user-friendly laboratory where the user can pick tools
and chain them into a workflow. Where needed, tools are automatically, yet visibly,
added to the tool chain to fulfil the prerequisites of the selected tools further down the
road. Only valid combinations of tools can be made, because tools that are
incompatible with the current choices are ‘greyed out’ and made ineligible. See Fig. 1.

1 https://www.clarin.dk/
2 http://cst.dk/tools/index.php?lang=en

12

The interface is attractive because it is kept very simple and transparent at a level that
is interesting for the user, while boring details are hidden away. In this way, users are
gently drawn into the world of NLP and can do simple experiments without all the
technical fuzz.

FIGURE 1: The user has chosen the lemmatiser. The system has automatically added the
prerequisite tokeniser. The tools in grey text are disabled.

This site has however also its disadvantages. Each new tool has to be integrated by
hand, checking out all combinations of tools with the newcomer that are meaningful
and above all, disabling all those combinations that aren’t. Here, errors are easily made.
Another shortcoming is that the web site only takes text, flat or RTF, as input. If we
would have to implement support for a wider range of input types, an enormous
programming task would lie ahead. And finally, the earlier mentioned focus on tools
can also turn into a disadvantage. For many students and researchers the results are
what counts and not the tools that are needed to create those results.

3 Tool handling in clarin.dk

Clarin.dk’s workflow manager has the same advantages as our base line: tools can be
chained into a workflow, tools are automatically added if required by other tools and
only valid combinations of tools can be put together in a workflow. There are three big
improvements, though. The first is that the system is indifferent to the type of input and
output. Not only text, but also pictures, audio and video can be handled. The second
improvement is the much easier integration of new tools, which basically takes place by
telling the workflow manager how the input must look like, how the output will look
like and where the tool, as a web service, is found. This information is stored in a few
tables, instead of being expressed in program code as was the case in the baseline. For
describing input and output, the tool provider must specify a small number of features
by choosing values from predefined lists. If the need arises, an administrator can add
values and even features without having to change the workflow algorithms at all.
Some feature values can be subspecified, again using any of a number of predefined
values. Besides this registration, a tool provider also has to wrap the tool in a web
service that is able to communicate with the clarin.dk infrastructure. Because tools are
described in a neutral, uniform language, each tool can be seen as isolated from all
other tools. Problematic interactions between tools must be solved by correcting the

13

registered information, or by improving the terminology used for the registration and
adapting tools so they better match the expectations as registered in the specifications.
For each tool, its service URL and its input/output specification is the only contract
with the infrastructure that is vital for employing the tool.

The last and, from a user’s perspective, most important improvement is that the user
only has to specify a goal by choosing values from a few (four, at the moment) drop-
down lists (see Fig. 2.) and can leave it to the workflow manager to find a route to that
goal from the given input, in the same way that route planning software finds a route
between two locations.

FIGURE 2: Goal specification in clarin.dk

Our approach is reminiscent of the ALPE model (Cristea & Pistol, 2008), which also
supports automatic creation of workflows. In contrast to ALPE, however, the I/O
specifications in clarin.dk’s workflow manager are not hierarchically structured, and the
output from a tool is not necessarily an augmented version of the input.

4 Registration of tools

The tool registration facility has two sections, a boilerplate section, and a section
dedicated to I/O specification where one or more features are specified. The workflow
manager stores all registered tool information in a dedicated database. Most fields in
the boilerplate section and a summary of the I/O specifications are replicated as CMDI
metadata in the repository. The user can search and view the CMDI metadata, like the
metadata of any other resource. Sensitive data are not publicly visible.

A number of boilerplate fields are essential for the operation of the workflow manager:
the short ToolID, the PassWord, which is used to pass maintenance responsibility to
another person, the ServiceURL, XMLparms, to tell the workflow manager that the tool
cannot handle simple HTTP parameters but requires parameters in XML-format,
PostData, telling whether requests should be sent using the GET or POST HTTP method,
and Inactive, telling whether the tool is off line at the moment.

There can be several I/O specification sections for each boilerplate section, and within
an I/O specification section it is also possible to enter several alternative I/O feature
specifications. The need for different sections arises in those cases where a choice of
one feature has an influence on what can be chosen for another feature. An example is
a tool that can take part-of-speech tags as an extra input, but only if the language is
Danish or English. In that case there would be two sections, one for Danish and English
saying that part-of-speech tags can be taken as input as well, and another section for all
other languages, where part-of-speech tags are not mentioned as an option. In other

14

frameworks one may have to register each possible combination of specifications as
separate profiles, which can be a lot of work if a tool supports e.g. ten languages, two
file formats and three ways of presenting the output, which by multiplication result in
tens of profiles.

The workflow algorithms treat all features on a par; there is no ‘most important’
feature. If a feature is not relevant for a tool, it should not be specified. In the current
system we have good experiences with the following features: language, file format, facet
and presentation. The facet feature describes the type of content, e.g. whether data is
text, a part-of-speech annotation of a text, or gestures occurring in a video. The
presentation feature is to humans what file format is to the computer. With it, we want to
express that for example the tokens in a text can be presented in the ‘normal’ way
(‘running text’), or as lists sorted alphabetically or according to frequency. The same
choice of presentation can be made for several other facets, such as part of speech tags
and lemmas, so presentation and facet are truly orthogonal features.

The last example highlights the working hypothesis that features are and must be
orthogonal and vice versa, that characteristics that can be combined rather freely are
indicative of the existence of several features. As another example, a resource with facet
feature text can be expressed in several file formats, such as an image of a page of a
book, a flat sequence of characters or an audio file with spoken words. And from an
abstract stance, one could say that some texts exist in several languages.

FIGURE 3: Part of registration form, showing fields for facet and presentation features.
The values tokens and PoS-tags are subspecified as Penn Treebank. Where needed fields

can be added by checking the square check boxes.

Besides values for each of these features, a tool provider in some cases also is offered
the possibility to further specify a feature, in the same way as MIME types3 consist of a
media type and a media subtype. For example, once the value image is chosen for the
feature format, one can choose image subspecies like JPEG, TIFF, GIF, etc. Here the
ruling idea is that subspecifications belong to the realm of technical details that we
don’t want to disturb the user with unnecessarily. This is in keeping with everyday
software. For example, image viewers handle wide ranges of image formats but do not

3 http://www.iana.org/assignments/media-types

15

require that the user knows or even is aware of these formats. Also NLP-software may
be able to read and write data in a range of formats. Nonetheless, if it is known that a
tool is restricted to or has a preference for a narrow set of formats, it is possible to
enumerate these during tool registration. This information helps the workflow manager
getting around I/O mismatches between tools. See Fig. 3.

It is clear that devising the lists of features and feature subspecies is more of an art than
science, and it is also clear that such lists will evolve in different directions in different
communities, if no co-ordination is done. We have chosen to let the lists grow and
evolve as new tools pose requirements that are not expressible with the current values.
For interoperability between infrastructures, when adding new features we always
attempt to reuse existing terminology.

The possible values for each of the four features format, language, facet and presentation
are as follows.

The format feature can take the values Anvil, audio, CSV, flat, HTML, image, PDF, RDF,
RTF, TEIP5, TEIP5DKCLARIN, TEIP5DKCLARIN_ANNOTATION, XML, or video.

The language feature can take 50 values. Only one of these, Xhosa (xh) is not explicitly
supported by any currently integrated tool.

The facet feature can take the values anonymized named entities, head movements,
keywords, lemmas, lexicon, multiple word terms, N-gram frequencies, named entities, noun
phrases, paragraphs, PoS tags, repeated phrases, segments, tagged terms, text, tokens, and
morphemes. This list represents the characteristics offered by the currently integrated
tools and some tools that are not integrated, but which we are considering.

The presentation feature can have the values alphabetic list, frequency list and the
intentionally vague ‘normal’.
Some combinations of feature values may seem far-fetched and can cast doubt on the
tenability of the whole idea of orthogonality of features. An example is the combination
of the video format and the N-gram frequencies facet. On the other hand, this may be an
acceptable characterization of a video resource that lists short sequences of hand
movements, sorted by frequency. Such a resource may be useful in the study of e.g. sign
language. That is not to say that all combinations must be meaningful, but the great
majority of combinations should make sense.

Currently twelve tools are installed as web services on several servers and made
integral part of the infrastructure. Some tools have narrow sets of specifications,
whereas others would expand into hundreds of profiles, if registering alternative I/O
specifications for the same tool hadn’t been allowed. The tools cover a range of formats,
languages and facets.

1) Cuneiform4, OCR for 23 languages,

2) RTFreader, a basically language insensitive program that reads rtf or flat text and
writes segments, optionally tokenised, in flat text format,

4 http://cognitiveforms.com/ru/products_and_services/Cuneiform.html

16

3) Flat2cbf, a program that converts flat text into an implementation of TEIP5, the
CLARIN-DK basis text format TEIP5DKCLARIN.

4) - 7) tokenisers and segmenters for Danish and for English, taking TEIP5DKCLARIN-
formatted text as input and producing stand-off annotations in another TEIP5
implementation, the TEIP5DKCLARIN_ANNOTATION format.

8) Brill’s POS-tagger for Danish and English,

9) CST’s lemmatiser for 10 languages, also capable of producing a sorted list of lemmas

10) espeak, a very basic TTS-system for 42 languages,

11) a utility bundling tokens, lemmas and part of speech tags into CoNLL-X format, and

12) Bohnets parser5, a syntactic dependency parser, currently for Danish only.

5 Computation of workflows

The computation of a workflow is a recursive process that starts from the user’s goal
and that works towards the input specification. Given a goal, the algorithm checks
whether it is compatible with what is known about the input. If that is the case, a
workflow solution is found. If the goal is not compatible with the know input features,
the algorithm finds all tools that produce output that match the goal’s features, also
taking subspecifications of features into account. The input requirements of these tools
are new goals, each of which is analysed in a recursive manner. See Fig. 4 for an
example where two workflows were generated that both can satisfy the goal as
specified in Fig. 1

FIGURE 4: The workflows that satisfy the goal that is set in Fig. 1. By clicking a radio
button, the user can choose between a tool chain of a tokeniser, a segmenter, a PoS-
tagger and a lemmatiser, or a tool chain consisting of a tokeniser and a lemmatiser.

We let the recursion halt at an arbitrarily chosen maximum recursion depth of 20,
which means that we do not want to ever see workflows with more than 20 tools in a
chain. Once an unbroken chain of tools connects the input with the output, any features
that are not specified in the goal, but specified in the input or in any of the
intermediate stages, are percolated through the chain. For example, if the goal does not
state the language, but it is known that the input’s language feature has the value
French, then this value is percolated until it arrives at the goal or until it stumbles into a
tool that for example translates from French to Danish, in which case the value Danish
would percolate further in the direction of the goal. Any parameters (features or
subspecifications of features) that are still unresolved hereafter are not decidable for the
workflow manager. In such cases the workflow manager constructs all fully specified
workflows that are compatible with the underspecified workflow and the user is given
the choice between these alternatives. If the user did not specify all four goal features,

5 http://code.google.com/p/mate-tools/

17

she can normally reduce the number of generated workflow candidates by specifying
more features. However, workflows can contain parameters that cannot be resolved by
refining the goal specification. Such parameters must either be resolved by the user or
by a heuristic implemented in the software. This is not yet done in the current system.
Therefore we see that goals, especially those that need many steps, sometimes generate
pages full of workflows.

6 Execution of workflows

The workflow manager functions as the hub in the execution of a workflow. The
workflow manager starts with sending a request to the web service that takes the initial
input. Eventually, the web service returns its result, or, if something went wrong, an
HTTP error status code. In the first case, the workflow manager inspects a list of
pending workflow steps, picking out and executing those that can be executed given the
returned data. When there are no more pending workflow steps, the workflow manager
creates a report of the workflow process, step by step naming all tools and the inputs
and outputs the tools produced. Also, metadata is constructed for each result,
describing how the data was created from earlier results or from the input. These
provenance data, together with the intermediary and final results, is compressed in a
zip-archive and stored for a limited time, currently a few days. The user receives an
email with a link to a web page. When clicking the link, the web page opens in the
user’s browser. The user will see the report and a download link to the zip file.

For data security reasons, the user is given only one opportunity to download the zip
file, which is deleted from the server as soon as it has been fetched by someone. We
have chosen this rigid strategy to make it difficult to intercept the data undetected. If
there is an eavesdropper on the line who fetches the results before the user tries to do
that, the user will notice that something went wrong and likely ring an alarm.

After inspecting the results, the user has the opportunity to deposit the result in the
clarin.dk repository, together with the intermediary results, provided that they are of a
type that can be deposited. Before depositing results, the user must check and complete
the metadata, because the automatically created metadata necessarily lack background
knowledge that only the user can provide. The depositing of results is taken care of by a
service dedicated to the depositing of resources in general, and not the workflow
manager itself.

The workflow manager can asynchronously send requests to several web services at the
same time, provided that the web services return immediately with an HTTP status
code 202 Accepted and send results later.

If a web service returns another status code than 200 OK or 202 Accepted, the
remainder of the workflow is aborted and the user receives an email telling where the
workflow got off track. The user still receives the results that were created successfully.

7 Limitations and solutions

The chosen approach has its problems and disadvantages, like any robotic system that
tries to replace a human expert.

18

Whereas user-friendliness and accepted standards are good organizing forces, there is
also a bad, but at times inescapable, disorganizing force. Sometimes, when we try to
register a new tool, we may discover that a subspecification of a feature value itself
needs further specification. But since the architecture only allows two levels of
specification, we are forced to heighten the status of the subspecification to that of a
feature value, and to introduce the further specifications as subspecifications of the new
feature value. If this causes too much terminological pain and exposes too much
technical detail to the user, we may have to reconsider the integration of the tool that is
in need of the extra distinction. Is the tool really mature, or should it be adapted to
accept a wider range of inputs before we attempt to integrate it in the infrastructure? It
must be added that changing the existing terminology should not be done light-
heartedly, because not only will some tools have to be re-registered, the web services
that wrap around these tools will have to be fixed as well, because they will receive
parameters with altered names.

On a more theoretical level, we may question whether all goals can be stated in only a
few (1-4) words. However, adding even a single extra field to supplement the goal
description can easily be more confounding than of help, because after the features
language and file format it is very hard to define generic features that feel natural for
users.

Because workflows are created on the fly, they do not have persistent metadata and
identity of their own. Yet, together with the output, the user receives a full specification
of each step in the workflow, so the same workflow can be chosen the next time the
user wants to do a similar task. This workflow documentation only partly compensates
for the lack of persistent workflows. Therefore we have plans to make a resource type
‘Workflow’ that can be stored in the repository and reused later. This will make it easier
to repeat a workflow at a later time.

Certain tools and kinds of input do not easily fit in the chosen scheme. Tools that
require user interaction cannot be integrated, because the execution of workflows is in
batch mode. Neither can tools that output metadata rather than data, such as language
guessers, be incorporated in our workflows, because they would constitute decision
points in workflows that cannot be computed on beforehand. As mentioned before, the
automatically generated workflows are linear sequences of instructions, without the
possibility to react to conditions that arise at run time, such as taking one or the other
workflow branch depending on the outcome of a language guesser.

8 Conclusion and Outlook

The clarin.dk workflow manager is fully and reliably functioning, and response times of
the user interface are very fast. We already have a modest number of tools, some of
which are very versatile and can be seen as Swiss Army knifes among NLP tools. We
have concrete plans to add more tools and also welcome contributions from other tool
providers.

The chosen approach cannot completely replace workflow strategies as implemented in
full scale workflow editors, because workflows created by the clarin.dk workflow
manager are chains without branching points that depend on the results of earlier steps,

19

but the workflows that can be realised, are made available in a user friendly manner,
not requiring expert knowledge and making optimal use of the available tools.

From a programmer’s point of view, it is very rewarding to see that an accurate
description of a tool is enough to see it pop up as a step in a workflow, and it is even
more rewarding to see that it works. We think that tool providers appreciate this
interaction, and that they invest time in improvements to their tools to make them
more general, robust and of higher quality.

Acknowledgments

DIGHUMLAB Digital Humanities Lab Denmark is supported by Danish Agency for
Science, Technology and Innovation, Ministry of Science, Innovation and Higher
Education.

The preparatory project DK-CLARIN was also supported by the Danish Agency for
Science, Technology and Innovation, as well as by all eight partner institutions. We
want to thank all partners for their contribution.

References

Cristea, D., Pistol, I. (2008): Managing Language Resources and Tools Using a
Hierarchy of Annotation Schemas. In Proceedings of the Workshop on Sustainability of
Language Resources, LREC-2008, Marrakech.

Funk, A., Bel, N., Bel, S., Büchler, M., Cristea, D., Fritzinger, F., Hinrichs, E., Hinrichs,
M., Ion, R., Kemps-Snijders, M., Panchenko, Y., Schmid, H., Wittenburg, P., Quasthoff,
U. and Zastrow, T. (2010): Requirements Specification Web Services and Workflow
Systems. Available at: http://www-sk.let.uu.nl/u/D2R-6b.pdf

Hinrichs, E., Hinrichs, M., Zastrow, T. (2010) WebLicht: web-based LRT services for
German. In ACLDemos '10 Proceedings of the ACL 2010 System Demonstrations, Pages 25-
29, Association for Computational Linguistics Stroudsburg, PA, USA.

Kemps-Snijders, M., Brouwer, M., Kunst, J. P. and Visser, T. (2012): Dynamic web
service deployment in a cloud environment. In: Proceedings of the Eighth International
Conference on Language Resources and Evaluation (LREC-2012), Istanbul, Turkey, May
23-25, 2012: 2941-2944, European Language Resources Association (ELRA)

Offersgaard, L. Jongejan, B. and Maegaard, B. (2011). How Danish users tried to
answer the unaskable during implementation of clarin.dk. In SDH 2011 – Supporting
Digital Humanities, Copenhagen.

Offersgaard, L., Jongejan, B., Seaton, M. and Haltrup Hansen, D. (2013). CLARIN DK –
status and challenges. In Proceedings of the Nordic Language Research Infrastructure
Workshop at NoDaLiDa, Oslo, May 22, 2013

20

