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Abstract
State-of-the-art debugging techniques for equation-based
languages follow a low-level approach to interface users
with the complex interactions between equations and al-
gorithms that describe cyber-physical processes. Although
these techniques are useful for understanding the low-level
behaviors, they do not provide the means for creating a
system-level understanding that is often necessary during
the early concept product design phase. In this paper, we
present a novel debugging technique for equation-based
languages based on a high-level approach to facilitate
the system-level understanding of complex cyber-physical
processes. Our debugging interface is based on functional
models that describe what the system does in a formal
language that uses natural language elements to improve
inter-disciplinary communication. Our novel technique,
referred to as functional debugging, can be used in the
context of the current systems engineering industrial prac-
tice in order to identify system-level problems and explore
design alternatives during the early concept design phase.
We present a working implementation of our functional
debugger and we discuss the benefits of our approach using
an automotive use-case.

Keywords Functional modeling, debuggers, equation-
based languages, simulation, cyber-physical systems,
concept design

1. Introduction
Product development, from consumer products to military
systems, is a highly competitive area where companies
are constantly challenged to meet quality targets, revenue
targets, and launch dates for new and innovative prod-
ucts [2]. In order to reduce the product development cycle,
companies use systems engineering methodologies that
attempt to parallelize and detect errors in the design as early
as possible. For example, DARPA’s META-II project [59]
has the qualitative goal to compress the system design,
development, test, and evaluation of mission critical design
applications by a factor of 5x or more by identifying
system-level and component interaction problems early in
the design cycle. Currently, most computer-based design
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tools are suitable for detail design and it is very difficult
or impossible to effectively front-load the detection of
system-level design flaws [10, 17].

Products characterized by a blend of multiple disciplines
including mechanical, electrical, thermal, software, and
control are often referred to as cyber-physical systems
(CPS). CPS are often characterized by the use of dy-
namic architectures (e.g. based upon the availability of
elements such as sensors) that produce online, emergent,
and on-the-fly unprecedented behavior. Therefore, CPS
design, analysis, validation necessitates a new systems
science that encompasses both physical and computational
aspects [1]. Object oriented equation-based languages are
often used to describe CPS because they can be used to
model the behavior of both continuous (physical-) and
discrete (cyber-) processes. To facilitate physical modeling
in terms of energy conservation principles, these languages
are implemented as declarative programming languages
that describe what the goal is. Debugging these programs
is very challenging because during execution or simulation,
these programs are highly optimized and transformed [44]
into imperative programs that instruct the computer how to
reach the goal. Unfortunately, these debugging techniques
expose the user with the low-level details of the model and
therefore, it is difficult to incorporate these techniques in
tools for the early concept design phase.

In this paper, we introduce a new debugging technique
suitable for the concept design phase. Based on the obser-
vation that functional models describe what the system is
supposed to do, and models in equation-based languages
describe what the cyber-physical process is, we provide a
functional debugging interface that helps users understand
complex processes in a high-level of abstraction. Our
implementation couples a functional model (functionality)
with an underlying simulation model (behavior). This en-
ables, for the first time, a dynamic functional representation
of the system that serves as a quick validation tool for
new design concepts. The functional debugging technique
can be integrated into the systems engineering process by
reusing functional and simulation components and allow-
ing the identification of system-level problems early in the
design. Specifically, the novel contributions of this paper
are:

• A model-based debugging methodology, referred to
as functional debugging, that interprets the results of
simulation models written in equation-based languages
in a high-level manner and allows the identification of
system-level errors and integration problems early in the
design cycle.
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• The observation that declarative equation-based lan-
guages fundamentally describe what the system does
and therefore can be naturally mapped to functional
models that also describe what the system is supposed
to do but in a higher-level of abstraction that is suitable
for communication and design space exploration of new
concepts.

• An implementation of the functional debugging method-
ology that, for the first time, provides a dynamic or
executable functional model that effectively combines
functionality and behavior in the same model.

The rest of the paper is organized as follows. Section 2
puts our work into context with an overview of the state-
of-the-art in equation-based languages and their debugging
techniques, and functional modeling. Section 3 introduces
our new functional debugging approach and provides the
details of our implementation. Section 4 presents how
the functional debugger can be integrated into a systems
engineering process with an automotive use-case. Section 5
summarizes our findings and provides the outlook for
future work.

2. Background and Related Work
2.1 Physical Modeling with Equation-based

Languages
In recent years, companies from all sectors are designing
complex products through physical modeling – the combi-
nation of components that correspond to physical objects in
the real world (e.g. pipes, motors, resistors, software). This
approach is very attractive because reusable components
encapsulate an associated behavioral description according
to the laws of physics and principles of energy conserva-
tion. The interconnection of components in a model creates
complete mathematical models that effectively combine
different disciplines. Thus, by focusing the design on
the structure of the system and automatically finding the
equations that describe its behavior, physical modeling
eliminates the need for manually finding mathematical
descriptions of systems [51]. Equation-based languages
such as Bond Graphs [12], Modelica [33], Simscape [28]
have been developed to provide the syntax and semantics
for physical modeling. Most equation-based languages
are declarative programming languages that describe what
the program should accomplish. It is the responsibility
of the compilers and optimizers to transform equation-
based declarative programs into an imperative program that
specifies how to accomplish the goal as most numerical
solvers require an imperative program to simulate the
dynamic behavior of the system. Due to the extensive
transformations that a declarative program suffers when
converted into its imperative equivalent, what the user sees
(equations in the declarative model) is NOT what the user
gets (code in the imperative simulation), and therefore it is
very challenging to debug these applications.

2.2 State-of-the-art Debugging Techniques for
Equation-based Languages

Debugging equation-based languages is a challenging
problem that requires a combination of classical debugging
techniques and other special techniques. In [44], the
authors provide a comprehensive survey of the state-of-

the-art in techniques for debugging declarative equation-
based languages typically used in physical modeling. These
debugging techniques are categorized as static (compile-
time) and dynamic (run-time). Static techniques focus on
tracing the complex process of symbolically transforming
declarative code into highly optimized imperative code to
provide explanations regarding problematic code. Novel
and innovative static debugging techniques using graph-
theoretic methods have been developed [9]. Dynamic
techniques, on the other hand, are similar to classical
debugging and focus on interactively inspecting the
imperative parts of the model that relate to functions and
algorithms typically used to describe control code and
embedded software. Hybrid approaches [44] that combine
static and dynamic methods are the most advanced
debugging techniques for equation-based languages.

Although these techniques are invaluable for identifying
errors in models and code during the detail design phase,
they must focus on the low-level aspects of modeling
and simulation. Integrating these debugging techniques to
the first iterations of the systems engineering processes is
difficult because a high-level of abstraction, rather than
a low-level, is preferred during the early concept design
phase of modern cyber-physical systems [25]. In this pa-
per, we present a debugging technique that deals with
the functional aspects of equation-based languages and
presents to the user a high-level interface to complex cyber-
physical processes to facilitate the conceptual design space
exploration of complex products. In the following Sections
we discuss how our high-level debugging approach and
state-of-the-art low-level debugging techniques are com-
plementary in a systems engineering context.

2.3 Functional Modeling
Functional modeling is a systems engineering activity
where products are described in terms of their func-
tionalities and the functionalities of their subsystems.
Fundamentally, a functional model reflects what the
system does and, therefore, we observe that functional
models are strongly related to declarative equation-based
languages. Because a Functional Model decouples the de-
sign intentions (functions) from behavior and/or structure
(logical components1), it can be used as the basis for
communication among engineers of different disciplines.
Functional modeling reflects the design intentions that are
typically driven by the product requirements and the human
creativity.

Functional modeling is acknowledged by many re-
searchers and practitioners to be a subjective process [17],
therefore suitable for concept design. Defining a system
in terms of its functionality2 may seem simplistic and
unnecessary but this is exactly what improves the systems
engineering process by consolidating multiple engineering
paradigms (e.g. electrical, mechanical, software, thermal
engineering) into a unified system representation. By
making explicit the implicit knowledge of the engineers,
a functional model exposes the obvious facts about the
system that people can easily understand, regardless of
their domain of expertise. This improves the communi-

1 Logical components (and models) are often used as the guidelines for
the creation of simulation models.
2 Functionality of a system is defined as its purpose, intent, or goal.
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cation among different disciplines because it brings the
minds of the domain experts and designers to a system-
level abstraction that is facilitated by natural language.
In this paper, we introduce a novel high-level debugging
technique suitable for early concept design phases that
uses functional modeling as a debugging interface for
equation-based languages. Compared to existing research
on functional modeling [17, 10, 46, 8, 25, 61], we are
the first to demonstrate the use of functional models for
debugging simulation models.

3. Functional Debugging
In this paper, we define functional debugging of equation-
based languages as the mechanism by which states and
variables of a running simulation are visualized through a
functional model to create an implementation independent
understanding of a cyber-physical process. As shown in
Figure 1, a functional debugger relies on three components
: a functional editor, a simulation model synthesizer, and
a simulation runtime3. The functional editor is a visual
programming environment for users to author functional
models that describe what the system does. The functional
editor is also used as the debugger user interface that
allows users to visualize and interact with the simulation
in a high-level of abstraction. Our implementation uses
Microsoft Visio as the functional editor. The simulation
model synthesizer is a computer program (automatic) or a
simulation expert (manual) that takes a functional model as
an input and generates a corresponding simulation model
that realizes or embodies the system’s functionality. This
simulation model provides the executable semantics to the
functional model. In addition to the simulation model, the
synthesizer also generates a mapping model that associates
functions to simulation components. Finally, the simulation
runtime simulates the simulation model and calculates the
dynamic behavior of the system. It is important to note that
different simulation runtimes may be used to simulate the
same functional model. For example, the thermal-vibration
facet of a functional model may be simulated using a finite
element analysis solver, and its 1D electro-mechanical
facet may be simulated using Modelica or Simscape.

The functional debugger takes a functional model, a
simulation model, and a mapping model as inputs. The
mapping model specifies how functions and flows in the
functional model associate to simulation components and
effort/flow variables in the simulation model. This infor-
mation is used during debugging (dotted lines in Figure 1)
to relate the simulation output to visualization in the
functional model, and to relate user interaction debug-
ging commands to the running simulation. For interactive
debugging, the functional debugger should be capable
of controlling a simulation through pausing, stopping,
resuming, advancing time to the next integration step, and
querying simulation variables. The rest of this Section
describes our implementation of the functional debugger
architecture.

3.1 Functional Editor
Visual programming languages are suitable for authoring
functional models [56, 21, 42, 48, 17, 66, 23] because a

3 In this paper, we use simulation runtime and simulation engine
interchangeably.

Figure 1. Functional Debugging Architecture consists of
three main components: a functional editor, a synthesizer,
and a simulation runtime. Different models are necessary
for the functional debugger to relate functions to behavior.

Table 1. Functional modeling shapes in Visio stencil.
Visio Shape Syntax

Function Block

Material Flow

Energy Flow

Signal Flow

diagrammatic representation facilitates the understanding
of the system as a collection of functionalities interacting
through the exchange of material, energy, and signals. Al-
though a functional model can be also expressed textually,
or as a design matrix [31], we believe that a visual func-
tional editor improves the productivity of designers and
our implementation provides an editor based on Microsoft
Visio ActiveX control that can be easily embedded in other
systems engineering tools. We have extended Visio with a
C# implementation to improve the user-interaction and to
manage the communication and data transfer between the
displayed interface and the simulation runtime.

The functional modeling types are provided as shapes
in a Visio stencil as shown in Table 1. We use the de-
facto functional modeling syntax consisting of a block-flow
diagram where blocks represent functions (process) that
transform inputs into outputs (flows) [21, 42]. Blocks and
flows use the Functional Basis syntax [56] to categorize
functions into 8 categories and a total of 32 primitive
functions, and flows into 3 categories (material, energy,
and signal and a total of 18 flow subtypes. Constraining
the vocabulary for functional modeling is beneficial for
the systems engineering process because it normalizes
the understanding and consistency of the models across
the computer-aided tools and the organization. Although
functional modeling is a highly subjective and creative
process [17], the use of a constrained vocabulary does not
affect the expressiveness of the functional models.
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In the functional editor, a functional model can be
refined into more specific descriptions in a process referred
to as functional decomposition. For example, in the
functional model of an automobile shown in Figure 2,
the “transport people” function can be decom-
posed into sub-functions such as “Store Chemical
Energy” and “Convert Chemical Energy to
Rotational Mechanical Energy” implying the
design of an internal combustion engine car. Furthermore,
sub-functions can be decomposed to create a functional
decomposition tree where the root node represents the
top-level function and the leaf-nodes represent elemen-
tary functions such as “Transfer Translational
Mechanical Energy (TME)”.

Although our implementation uses the Functional Ba-
sis vocabulary, we use different semantics and we have
added additional function types to facilitate the model-
ing of modern cyber-physical systems. For example, the
original Functional Basis specifies that functional mod-
els are executed from left-to-right [56]. This causality
rule, unfortunately, prohibits the coupling of functional
models to acausal equation-based simulation languages
because a change in the direction of energy flow during
simulation is not expressible in the original Functional
Basis semantics. Moreover, this causality rule does not
allow for feedback loops, an essential construct for con-
trol theory modeling. To overcome these limitations, our
functional editor allows acausal (left-to-right and right-
to-left) execution semantics and the creation of feedback
loops anywhere in the functional model as shown in the
Third-level Functions in Figure 2. Moreover, we provide
additional elementary functions for “Control” (function
in black) and “Sense” (function in gray) to model cyber-
physical control systems. Note that the functional modeling
flows are represented by a directed arrow in Table 1. This is
simply the syntax of the Functional Basis [56] and during
debugging, the simulation semantics will affect the look
and feel of these flows and functions. In other words,
although the static functional model is constructed with
directed flows, the dynamic functional model implies and
reflects energy and material transfers in both directions and
this also affects the functions’ signatures.

3.2 Simulation Model Synthesis
The goal of the simulation model synthesis is to find
components that fulfill the functionalities in a functional
model. The synthesis can be performed manually by a sim-
ulation expert, or automatically by a synthesis tool. Auto-
matic synthesis of functional models to simulation models
is challenging because one function may be realized by
multiple and different components, and one component
may realize multiple functions. In other words, multiple
valid simulation models exist for a given functional model,
but only a few are useful for modeling the actual sys-
tem. In our previous work [11], we introduced a context-
sensitive synthesis algorithm that reliably generates high-
quality simulation models from functional models. The
synthesizer puts every function within a functional model
into a context provided by its input and output flows, and
using engineering rules4 it correctly maps functions to the

4 Engineering rules are analogous to machine description files in a
traditional compiler.

specified simulation components from reusable component
libraries. Engineering rules and simulation component li-
braries are the means for capturing engineering knowledge.
Due to the easy access to various simulation component
libraries [34, 26, 36], our synthesizer currently generates
Modelica code as an output. However, the synthesizer can
be easily modified to emit and reuse components from
other equation-based languages.

A simulation model consists of components with well
defined interfaces, and each component may contain equa-
tions, variables, and algorithms. In order to create a correct
mapping from functions to simulation components, the
functional debugger must associate functions and flows in
a functional model with components and variables in a
simulation model. In the case of automatic synthesis, the
output of an engineering rule is the mapping of functions
and flows to components and variables. On the other hand,
manual mapping requires the designer to make these rela-
tions by looking at both the functional and the simulation
models and deciding how the two models relate. Either
way, the functional debugger needs access to functional
models, simulation models, and the mapping model.

3.2.1 Mapping of Functional Models to Simulation
Models

It is possible to relate functional models (functions and
flows) to simulation models (components and variables)
because the concept of physical quantities exist in both
models. Functional models specify material, energy, and
signal flows and transformation functions operating on
these flows. Physical-based equation-based languages, on
the other hand, specify complementary physical domains
such as electricity, mechanics, software, etc., and the phys-
ical behavior of components operating and governed by
laws on these domains such as a resistor, gearbox, or
PID controller. An important observation is that a single
functional energy flow maps to a pair of conjugate variables
in the simulation model that are used to accomplish acausal
modeling5. These conjugate variables are known differ-
ently in different equation-based languages but have very
similar semantics. For example, Modelica uses potential-
flow [33] variables, Bond Graphs use effort-flow [12] vari-
ables, and Simscape uses across-through [28] variables.

Table 2 (adapted from [56]) shows the mapping be-
tween flow types (e.g. electrical, magnetic, etc.
in Column 2) in a functional model to conjugate vari-
ables (Column 3) in equation-based simulation languages.
The last two Columns shows some of the system-level
equation-based languages (e.g. Modelica) and domain-
specific equation-based languages (e.g. CAD/CAE) that
are typically used to simulate physical systems. This table
shows that functional models can be mapped to both
system-level languages and domain-specific languages and
therefore, functional debugging can be adapted to various
equation-based languages. Notice that a single equation-
based language is not sufficient to cover all the functional
flow types. Even though it is out of the scope of this
paper, we believe it is important to observe that functional
debugging can be also used to comprehend multi-tool
multi-language co-simulations of complex systems.

5 Acausal modeling describes the behavior of components in terms of
energy conservation laws [19].
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Figure 2. Functional model of an internal combustion engine car showing the functions associated with the main powertrain
subsystems (in parentheses). Syntactically and semantically, our functional modeling approach handles feedback loops.

Our functional debugger implementation uses a data
structure referred to as the Mapping Model (See Figure 1)
to read the mapping information of functions and flows
(Functional Model) to components and conjugate variables
(Simulation Model). Although it is common that map-
pings are from function(s)-to-component(s) and flow(s)-to-
variable(s), other combinations are also possible including
flow(s)-to-component(s) and component(s)-to-variable(s).
For example, a “pneumatic energy” flow in a func-
tional model may be mapped to a “pipe” component, or
to a “pressure” variable.

3.3 Simulation Runtime
A simulation runtime responsible for executing the sim-
ulation models, is the last component required for func-
tional debugging. Although a simulation model is heavily
transformed and optimized into a mathematical model for
integration with numerical methods, the variables remain
visible during simulation. Using the mapping model, the
functional debugger can query the variables’status and
values during simulation.

From the functional debugging perspective, there are
two important requirements for the simulation runtime.
First, in order to facilitate a natural human-computer inter-
action in the functional debugger, the simulation runtime
must allow the synchronization of the simulation time with
the real (human) time. Whenever the simulation time is
faster than the real time, the simulation runtime must delay
the execution of the simulation in order to synchronize the
two times. In case that the simulation time is slower than
the real time, the simulation runtime can adopt execution
strategies similar to the ones used in hardware-in-the-loop
simulations including fixed-step size solvers, loop tearing,
or iterative limits. The second requirement demands the
simulation runtime to be programmatically controlled by
the functional debugger in order to start, pause, stop, and
proceed to the next iteration step during the simulation.
Currently, our functional debugger uses Wolfram’s Sys-

temModeler [64] as the simulation runtime and the next
Section discusses the details of our implementation.

3.4 User Interaction, Visualization, and Simulation
Control

The functional debugger consists of three applications as
shown in Figure 3. The Functional Editor or Functional
Debugger GUI (left) handles the user interaction events
such as breakpoints and visualization requests on specific
functions and flows. This C# application extends the func-
tionality of Visio through the Visio Object Model [32]
and allows the functional debugging specific commands
and visualization such as stop, pause, restart, and perform
the next iteration step; load functional, simulation, and
mapping models; detect user events to debug specific
functions and flows and to zoom in/out in the functional
model hierarchy; manipulate the look & feel of Visio
shapes representing the functional model to convey points
of interest during the simulation. These points of interest
can be pre-programmed by the user to monitor a range
of operation of a subsystem, or built-in into our imple-
mentation (e.g. indicate when the energy flow changes
direction). In our implementation, the simulation runtime
(right) [64] uses an application-specific TCP protocol that
allows a client application to control the simulation and
set/receive simulation data. After the simulation runtime
server has been initialized for control commands and data
flow, this application streams data over TCP to the client
after every integration time step. Through an initialization
file, this application can be configured to maintain the
simulation time and the real-time synchronized. The func-
tional debugger application (middle) is the intermediary
between the GUI and the simulation runtime. Its main
responsibility is to retrieve data from the simulation and
map it to the functional model in the GUI, and also to
control the simulation according to the user commands.

Although we have developed an in-house implemen-
tation, each component of our functional debugger has
an analogous technology that could be used to provide
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Table 2. Relationship between functional models and equation-based languages based on flow types.
Functional Modeling Equation-based Languages

Flow Class Flow Type Conjugate Vars. (Effort/Flow) System-Level Lang. Domain Specific Lang.

Energy

Electrical Electromotive Force / Current [34], [28] [45], [13]
Mechanical (Rotational) Torque / Angular Velocity [34], [28] [52], [57], [5]
Mechanical (Translational) Force / Linear Velocity [34], [28] [52], [57], [5]
Mechanical (Vibrational) Amplitude / Frequency [52], [57], [5]
Hydraulic Pressure / Volumetric Flow [35], [28] [53]
Pneumatic Pressure / Mass Flow [34] [53]
Thermal Temperature / Heat Flow [34], [28] [52], [57]
Electromagnetic Intensity / Velocity [4]
Magnetic Mag. Force / Mag. Flux Rate [34]
Chemical Affinity / Reaction Rate [38]
Biological Pressure / Volumetric Flow [38]
Human Force / Motion
Acoustic Pressure / Particle Velocity [24] [55]
Radioactive Intensity / Decay Rate

Signal Status [41], [29] [37], [30], [16]
Control [41], [29] [37], [30], [16]

Material

Human [54], [20] [18]
Gas [52], [57], [5]
Liquid [52], [57], [5]
Solid [54], [20], [18]

Figure 3. Control and data flow interactions between
the functional editor, the functional debugger, and the
simulation runtime.

the same functionality. For example, the functional editor
could be implemented in SysML [39]. Several published
investigations [66, 3] have shown how to create functional
models in SysML. Similarly, the simulation model synthe-
sizer could be realized by SysML4Modelica [43] or Mod-
elicaML [50]. Open source Modelica runtimes [40, 22]
could be used as the simulation runtime. And FMI [6] could
be used as the communication and data transfer mechanism
between the functional editor and the simulation runtime.

3.5 Industry Perspective
Concept design, despite being a critical design phase that
determines 70-80% of the cost of a product [15], lacks the
tool and methodology support that is available for detail
design phases [49]. We strongly believe that the develop-
ment of tools for conceptual design is mandatory to handle
the complexity of large-scale cyber-physical systems [63,
47, 27, 58] where system-level optimization plays a critical
role. Our functional debugger is a concept design tool that
allows product designers to functionally understand the
complex underlying cyber-physical processes of a system.
Additionally, we see functional debugging as a comple-
mentary and orthogonal approach to existing debugging
techniques that are employed during detail design. We
also believe that functional debugging can be used as
a tool to consolidate 3D CAD/kinematics with system-
level simulation models. This would allow system design-
ers to have an integrated and dynamic function-behavior-
structure [60] view of the system with the capacity for
testing and simulating design alternatives while reusing
existing components.

4. Case Study: eCar Development
We evaluate our functional debugger with a common sce-
nario in automotive development. In order to reduce risk
and cost, automotive companies invest in the development
of architectures that can be reused to produce different
models of cars within and across brands [14, 7]. There-
fore, it is natural that even radical new designs, such as
an eCar, attempt to reuse an existing architecture and a
set of compatible cyber-physical components. Functional
models are used in this type of scenarios to understand
the impact of major architectural changes6 in the overall
design. In summary, our objective is to demonstrate how
the functional debugger supports a realistic conceptual

6 An architecture is, after all, the allocation of functions (or functionality)
to specific cyber-physical (logical) components (e.g. a gearbox, a wheel,
an ECU).
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design scenario where an eCar is developed while reusing,
as much as possible, components of an existing architec-
ture. Additionally, we show how our functional debugging
approach is compatible and orthogonal to the existing
debugging techniques for equation-based languages.

4.1 Baseline Architecture
We first created a baseline functional model of an in-
ternal combustion engine car shown in Figure 2. This
baseline functional model describes the functionality of
the automotive driveline industrial example in Modelica
language published in [65]. The mapping of functions-to-
components is indicated by the parentheses in Figure 2 and
this represents the baseline architecture for our scenario.
Using the baseline models as the starting point, the next
step is to conceptually design an eCar with the help of
functional debugging.

4.2 Concept Design Space Exploration
Conceptually, the simplest way to create an eCar from a
conventional car is by replacing its internal combustion
engine with an electric motor. In terms of function-
ality, the function “convert chemical energy
to rotational mechanical energy” must be
replaced with “convert electrical energy to
rotational mechanical energy” as shown in
Figure 4. This change also implies new functionality where
the “electrical energy” flow is “stored” (e.g. in
a battery).

Figure 4. Changes to the functional model in Figure 2
to convey the new design intentions of an e-Car. Fuel
containing chemical energy is replaced with electrical
energy. This implies the use of a Battery and an Electric
DC Motor instead of a Gas Tank and a Combustion Engine.

To mimic the reusability aspect in the current system
engineering practice, we created new engineering rules
to convert the newly introduced eCar functionality into
existing simulation models of a DC motor and a bat-
tery developed in-house [62]. As a result, the synthesizer
creates an aggregated simulation model that replaces the
internal combustion engine component from the baseline
simulation model with the battery and DC motor, but reuses
the rest of the simulation components in the baseline. The
coupling between the DC motor and the baseline drivetrain
is possible because the two have a compatible interface and
this allows the aggregated simulation model to be correctly
generated and compiled using SystemModeler.

This workflow shows that a simple change in the func-
tional model can be used to generate new simulation
models that allow the designer to understand and quantify
how a change in functionality of an existing architecture
has an impact in the overall system-level design. The
relation of functions to components, or mapping model,

was created by the engineering rules and the analogy
between functions and system-level equation-based lan-
guages discussed in Table 2. Therefore, at this point in
time, the three input models to the functional debugger are
available: an eCar functional model (Visio), a simulation
model (Modelica), and the mapping model (data structure
described in Section 3.2.1). The next step is to run the
eCar simulation model under the functional debugger to
identify any possible system-level problems created by the
architectural change.

4.3 Functional Debugging
We use the New European Driving Cycle to test the eCar
simulation model in the functional debugger. Figure 5
shows the functional debugger under four modes of op-
eration: (a) Acceleration, (b) Cruise, (c) Deceleration, and
(d) Idle. During acceleration in Figure 5(a), the functional
debugger shows that the main energy transfer in the power
train, indicated by the direction of the flows, is from
left-to-right starting from the “convert electrical
energy to rotational mechanical energy”.
While the Modelica simulation explains the physical
behaviors, the functional debugger helps a non-expert to
understand that rotational mechanical energy (RME) is
functionally correct. During cruise in Figure 5(b), the
functional debugger shows that there is an equilibrium of
energy transfer in the powertrain and this is indicated by the
bi-directional flows. During deceleration in Figure 5(c), the
functional debugger shows that RME flow is from right-
to-left. In addition, this functional debugging snapshot
shows that the function being performed by the “Electric
Motor” component changed to “Convert RME to electrical
energy”. This insight is very important for the systems
engineer because it shows that the newly introduced
electric motor is performing two functions and this can
be used to validate the requirements. It is also important
to note that this additional functionality can be used to
recharge the battery while the eCar decelerates. During the
idle mode in Figure 5(d), the functional debugger shows
the case when the clutch is disengaged and the electric
motor and the transmission are physically decoupled, and
the functional debugger eliminates the flow connecting
these two components. This causes the functionality of
the electric motor to change to “convert electrical
energy to thermal energy”.

The snapshots in Figure 5 illustrate how the functional
debugger can help the concept level designer to create
a mental high-level picture of the system and conceptu-
ally understand how a functional and architectural change
affects the rest of the system. It also allows them to
visualize potential new innovations such as regenerative
breaking, and visualize the energy, material, and signal
flows through the system. Functional debugging can be eas-
ily integrated to the current systems engineering processes
and reuse the existing and legacy simulation, functional,
and architectural models. Another important feature is
that functional debugging allows any non-technical person
to easily understand the cyber-physical process at the
functional or conceptual level.

Iterative design is a very important aspect of the sys-
tems engineering process. Although the results shown in
Figure 5 are functionally correct as the system does what
it is supposed to, the systems engineer must verify that
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Figure 5. Visualization of an eCar simulation through the functional debugger on different modes: (a) acceleration, (b)
cruise, (c) deceleration, (d) idle. Notice the energy flows across the functional model on the different modes, and the mapping
of multiple functions to a single component (e.g. Electric Motor).

the eCar is reaching its performance targets by enabling
the display of numerical values of the conjugate variables
of the simulation in the functional model. Enabling the
numerical values in the functional debugger reveals that
although the system is functionally correct, the eCar never
accelerates to even 5% of the desired speed. Since the
eCar concept includes a newly introduced component, the
electric motor, the first guess would probably be that the
test needs a stronger motor. However, after simulating the
eCar with a stronger electric motor, the results are still
unfavorable. These quick iterations that use the functional
debugger as a visualizer for the underlying simulation
provide valuable information to the systems engineer about
the system-level integration problems on the new concept
at a level of abstraction where they can reason about the
possible problem, but without being concerned about the
details of the cyber-physical implementation.

Typically, this situation would lead the systems engi-
neer to report and discuss the problem with the multi-
disciplinary teams in charge of the transmission, the soft-

ware, and the electro-mobility. Using the common lan-
guage of functionality, engineers can communicate at a
high-level of abstraction and then translate these insights
to their domain of expertise. At this point in time, the
domain experts would perform detail design iterations on
their subsystems and this is where existing debugging
techniques for equation-based languages are very useful
for identifying the root cause of the problem. In this ex-
ample, the problem is in the control gains in the controller
software at the transmission control unit, and it required
an expert to use the existing debugging techniques to
find the solution. Because functional debugging is used
early in the concept design phase, and its purpose is to
communicate potential problems to the systems engineer
using a high-level of abstraction (functionality) rather than
a low-level of abstraction (behavior), we argue that it
enhances the systems engineering and it is complementary
and orthogonal to the existing debugging techniques for
equation-based languages.
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5. Summary
With the objective of supporting the early concept de-
sign phases with computer-based tools, we introduced a
new methodology referred to as functional debugging that
builds a functional view of an underlying cyber-physical
process described in equation-based languages. Our imple-
mentation couples functions and flows in functional models
with conjugate variables in simulation models, and this
mapping enables a high-level view of what the system
does. In a systems engineering context, our functional
debugger can be used as a rapid prototyping tool for
new concepts to identify system-level integration prob-
lems. Through an industrial use-case, we have shown that
functional debugging can be a valuable tool for an iterative
design process that involves the coordination of multiple
disciplines. Additionally, we have shown that functional
debugging is compatible with existing low-level debugging
techniques for equation-based languages. Our future work
will include the implementation of functional debugging
for domain-specific equation-based languages.
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