Static Validation of Modelica Models for Language Compliance
and Structural Integrity

Roland Samlaus

Mareike Strach

Turbine Simulation, Software Development and Aerodynamics
Fraunhofer Institute for Wind Energy and Energy System Technology, Germany
{roland.samlaus,mareike.strach}@iwes.fraunhofer.de

Abstract

The increasing importance of the simulation of physical
systems models demands enhanced support for developers.
Models do not only increase in terms of quantity, but also
complexity. Hence, libraries need to be created containing
valid models for re-use. It is crucial for library develop-
ers to get immediate feedback about errors regarding the
language specification. Moreover, users of libraries need to
know immediately if existing components are misused.

When using Modelica as the modeling language the
models are validated at compilation time by recent develop-
ment environments. This decreases the development speed
as developers recognize errors in their models late and
therefore need to recapitalize the design decisions made in
order to maintain the intent of the code during error fixing.

In this paper we present two implementations, i.e. Ob-
ject Constraint Language (OCL) and Java, for Modelica
code validation that can be triggered during model edit-
ing. Both variants are compared to each other regarding
readability of constraints as well as execution performance.
Therefore, rules are extracted from the Modelica language
specification asserting that the models are correct. Further-
more, custom rules are defined restricting library models
such that they can only be used in the intended way.

Keywords Modelica model validation, static source code
analysis, constraint languages

1. Introduction

In the past years the open modeling language Modelica has
become widely used by engineers for physical model devel-
opment. The benefit of an open language approach is that
the user is not dependent on a single tool vendor and can
influence the further development of the language standard.
The development of the language was accompanied by tool
vendors, providing environments accelerating the develop-

5th International Workshop on Equation-Based Object-Oriented Modeling
Languages and Tools. 19 April, 2013, University of Nottingham, UK.
Copyright is held by the author/owner(s). The proceedings are published by
Linkoping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=084
EOOLT 2013 website:

http://www.eoolt.org/2013/

ment process compared to plain text editors. Furthermore,
libraries are being developed, open source as well as pro-
prietary, enabling re-use of components for further model
design.

At the Fraunhofer Institute for Wind Energy and Energy
Systems Technology (IWES), a development environment
is being developed, aimed at extensive support for physical
model developers. The application of modern model driven
technologies allows one to quickly create an Integrated De-
velopment Environment (IDE) with advanced tools support
for Modelica users. Utilizing the popular Eclipse Model-
ing Framework (EMF) [1] is advantageous since additional
tools built for the Framework can directly be used. As an
example, implementations of Object Constraint Language
(OCL) interpreters are available, supporting the interpreta-
tion of OCL constraints on any language whose meta model
is based on EMF.

The development environment is used by engineers at
Fraunhofer IWES to create a Modelica library for wind
turbines [11]. The demand for immediate validation! arose
due to the extent of the library. Changes in a model can
affect others, but since full validation is only done during
simulation, errors are often detected late and therefore the
reason may not be obvious any more. Subsequent fixes can
contain further semantic errors leading to more design iter-
ations. The errors discussed here are caused by violation of
rules defined by the Modelica language specification. Since
models are usually composed of various components and
the extension of components is allowed and desired, vali-
dation of models is often expensive. Models concerning a
wide range of extended models need to be flattened in or-
der to be validated. Hence, validation of models needs to be
performed sufficiently well. Additionally, fast constraints
need to be distinguished from slow constraints in order to
be checked by separate triggers - expensive constraints may
only be checked when the user saves the edited document
or even may need to be triggered by hand, while fast con-
straints can be checked during editing. For the checks ex-
isting compilers could be employed, but since we aim at
being independent from any third party tool, this solution

! All validations and constraints described in this paper target the correct-
ness regarding the Modelica language specification or Modelica frame-
work design. It is not intended to validate or to constraint physical models.

is not applicable. Additionally, the Modelica code needs to
be parsed and the models linked by any tool used, which
would lead to performance loss and increased consumption
of resources and may cause delayed error feedback during
editing.

Another aspect of model validation appeared at Fraun-
hofer IWES, especially for engineers unfamiliar with Mod-
elica. Many errors are made by combining predefined com-
ponents, e.g. from a library, that physically do not fit to-
gether. This is because Modelica is a language for math-
ematical modeling and thus does not restrict the use for
domain specific design aspects. There is no support yet for
the definition of semantic rules regarding the combination
of components, which is of special interest for frameworks.
At the moment, two arbitrary Modelica components can be
connected to each other, no matter if they fit, as long as the
connector types match. This can either lead to a model that
cannot be simulated — e.g. because it is structurally singu-
lar — or to a phyiscally incorrect model. In this case, the
error messages do not provide sufficient help for the user
as the source of errors are on a physical level that cannot
be captured by library unspecific error messages.

This paper describes an approach for static model val-
idation, enforcing the rules defined by the Modelica lan-
guage specification. Previous work forming the basis for
the validation is shown and important parts of the Mod-
elica meta model definition needed to understand the dis-
cussed constraints are described. The rules of the Mod-
elica language specification relate to the meta model of
Modelica and thus need to be explicitly defined. Addition-
ally, methods are described that were added to the meta
model classes in order to simplify the access to model data,
which is mainly used when flattening models. The con-
straint definition language OCL is introduced and a selec-
tion of constraints checking the conformance of models
to the Modelica language specification is explained. Fur-
thermore, the implementation of the constraints in Java is
explained and compared to OCL regarding readability, re-
usability and performance. Further rules regarding estab-
lishing structural constraints are discussed and the imple-
mentation of a prototype with Java for wind turbine models
is presented. Finally, conclusions are drawn and an outlook
to future work is given.

2. Related Work

The Object Management Group (OMG) specifies meta
modeling by the Meta Object Facility (MOF) [8] that is
implemented as the EMF for Eclipse. MOF defines four
layers (see Figure 1) of modeling where layer O represents
the objects of the real world, e.g. physical systems like a
wind turbine. Layer 1 (model) contains the models of real
world objects, e.g. instances of Modelica classes represent-
ing the behavior of wind turbines. In Layer 2 (meta model),
the structural properties of instances are described (i.e. con-
cepts like Modelica classes, extend clauses or equations are
described). Layer 3 (meta meta model) provides concepts
for the definition of layer 2 elements.

When using EMF these concepts can be classes, refer-
ences or attributes that are used to describe the structure
of a Domain-Specific Language (DSL). Constraints are de-
fined based on layer 2 and establish semantic rules, e.g.
rules defined by the Modelica language specification. Ad-
ditionally, rules can be user defined, e.g. to establish code
styles or to prevent the combination of incompatible com-
ponents.

M3
model of M2 objects /
(Meta-model of EMF)

M2

model of M1 objects T: \ +P o+ /\

(Meta-model defined with EMF)
M1
model of real world objects
(EMF model instances)

MO

objects of real world

Figure 1. Layers of the Meta Object Facility

OneModelica [9] is a Modelica IDE that is implemented
using Model Driven Software Development (MDSD). The
validation aims at enriching the IDE and therefore builds on
the technologies being provided by the IDE. Since Model-
ica documents are parsed and represented in a EMF based
tree, the constraints can be checked directly on the tree.
Thereby, it is possible to either interpret constraints de-
fined in special constraint languages like OCL or to vali-
date instances in the tree directly by general purpose lan-
guages like Java. Besides its use as an editor and a valida-
tion interface, the IDE provides views to the Modelica de-
veloper, helping to understand complex models by viewing
information regarding certain aspects in a simplified way.
This includes an outline view, displaying the structural con-
tent of a document, a documentation view, a hint display
for the developer on how to use predefined models, and
others. Furthermore, linking is implemented by connect-
ing related documents to each other, e.g. by linking types
of components to their respective class declarations. Link-
ing is essential for the validation of Modelica models since
many constraints define restrictions on the basis of inher-
ited classes.

RestrictED [10] provides constraint checking with OCL
for arbitrary DSLs defined with EMFText. Constraints are
defined as queries, collecting all objects violating the con-
straint in the parsed tree of the document. The constraints
can be defined by the user during runtime. However, defin-
ing queries instead of invariants can be misleading. More-
over, it is harder to define them such that all erroneous ob-
jects are collected. This limits the complexity of usable lan-
guages and only a few constraints were defined for the ex-
ample languages.

ModIM [4] — a front-end tool for processing Model-
ica models — allows to statically analyze models based

on a syntax tree representation. For the analysis the visitor
pattern [3] is applied and custom analysers can be imple-
mented that visit the nodes of the syntax tree. A sample
implementation is presented that performs a type check.
However, the performance of the tool is not addressed, it
is only stated that redeclarations perform badly with the
current implementation.

In [6] an aspect based validation framework is presented
that allows to define elements of the Modelica language
that are involved in the validation (join points). The ele-
ments can be queried by an aspect language (point cut ex-
pressions) and an action language can be used to define
what shall be done with the elements of the models (ad-
vice). The languages are defined by re-using paradigms of
logic programming and can be transformed into a format
that can be evaluated by Prolog. The provided examples
show how custom rules like naming conventions and the
number of classes defined inside a package can be checked.

For the validation of equation-based components fo-
cusing on numerical inconsistencies [2] proposes a graph-
based methodology that provides users with information
about under- and overconstraint equation systems. How-
ever, the general validity regarding the Modelica language
specification is not aimed at.

3. Modelica Meta Model

The Modelica meta model that is the basis for the constraint
definitions is described in this section. However, Xtext [5],
which is used as the framework for the meta model defini-
tion, will not be explained for the sake of brevity. A short
introduction describing the Modelica IDE [9] can be found
in related work and on the project’s web site>. The Mod-
elica meta model structure will not be explained in detail,
since it is quite complex. However, a simplified representa-
tion is displayed in Figure 2, giving an overview of the most
important elements needed for the constraint definitions in
Section 4.

The root element (AstModelicaSourceFile) of
the language definition represents a stored Modelica pro-
gram that can contain arbitrary class declarations and a
statement (within) declaring in which package these
class declarations are contained. Classes can again contain
class declarations and other elements like components,
extends clausesand algorithm sections.

Classes extending other classes inherit the declared
components and the behavior defined by equations and
algorithms. This makes the validation of objects harder
since the inherited attributes need to be taken into account.
Collecting all attributes and behavioral elements and merg-
ing them into one class representation is called flattening.

Components have a type defined by referencing a
class declaration. Again, no restrictions are made by the
syntax definition of the language. But this needs to be re-
stricted since type compatibility must be enforced, espe-
cially when using equations. Here it is important to check
whether the types fit in order to be able to do calculations.
Furthermore, connect statements connect components

2 http://www.onewind.de/OneModelica.html

-

AbstractMoClass |<] :

AbstractContent

EnumeratianContentl |CommonContent| | i nnhnr! ! i nnl‘ﬁnl‘!

[component] [qtionsection| [Hgorthmsscion] [vis

Figure 2. Simplified Modelica meta model

to each other that must be of type connector [7].
Components and subclasses are stored in a class body
that is only present in classes where the content type is
CommonContent or ExtensionContent. Classes
with an EnumerationContent contain only enumer-
ations while an AssignmentContent assigns a present
class declaration to a new declaration. This is commonly
used when new types are defined in order to make the code
easier to understand (the Modelica.SIunits package
defines new types like Length extending Real and set-
ting the quantity to Length and the unit to meter).

The class concept in the grammar is not restrictive.
Hence, every class type (class, package, function, record,
block, ...) can contain other classes, algorithms and so
on. The restrictions are defined in the Modelica language
specification in textual form. Hence, constraints needed to
be extracted and must be checked on instances of the meta
model. By parsing a Modelica document and representing
it as an Abstract Syntax Tree (AST), it is possible to check
the semantic constraints on that representation.

Since the parsed tree can be large, querying is a bottle
neck and makes the definition of constraints complex and
error-prone. When using an interpreter like OCL, query-
ing will significantly slow down the validation process.
Since OCL performs badly when processing large tree-
based data structures, methods for easier access to the ele-
ments of the AST were implemented with Java. Xtext pro-
vides the possibility of adding methods to elements of the
meta model with the language Xtend. The methods that
were added mainly implement flattening of classes, i.e. col-
lecting all components defined in a class including its ex-
tended classes. With the help of the additional methods, the
size of the constraints is significantly reduced and the read-
ability enhanced. Details about the validation of Modelica
models are discussed in Section 4.

4. Validating Modelica Language
Specification Compliance

This section describes the static Modelica model valida-
tion regarding correctness as defined by the Modelica lan-

guage specification. Two methods of constraint definitions
are compared and implemented with both OCL and Java.
The two approaches are compared to each other in order
to check whether dedicated languages for constraint def-
inition, like OCL, are better suited regarding readability
and re-usability then general purpose languages like Java.
Finally, the performance loss caused by interpretation of
OCL constraints on models compared to Java is analyzed.
The constraints that are validated are arbitrarily chosen to
reflect a wide range of constraint types of the specification.
Type checking is not performed at the moment since the
specification is not clear in any points and the effort for
the implementation is high as first attempts showed. Nev-
ertheless, type checking should be possible and will be ad-
dressed in future work.

4.1 OCL Constraints

OCL was initially designed by the OMG to constrain Uni-
fied Modeling Language (UML) diagrams. The standard
was later extended and can now be used with various meta
modeled languages. Invariants can be specified, checking
if a condition is met by a context object (the object
being validated). Furthermore, queries can be defined for
collecting and analyzing structured data. OCL is also used
in transformation languages for the definition of transfor-
mation rules between two meta models. In this work, con-
straints are defined by invariants that sometimes make use
of queries in order to collect elements of the Modelica
AST. Three OCL constraints are explained, enforcing cor-
rectness of Modelica models for the following rules defined
by the language specification [7] (numbers in parentheses
denote the page of the definitions):

e Operators may only be placed in an operator record or
in a package inside an operator record (42)

¢ A function can have at most one algorithm section (135)

e A stream connector must have exactly one scalar vari-
able with the flow prefix (175)

The three constraints are used because they present dif-
ferent kinds of constraints that a) check in which program
part the context object can be used, b) analyze what lan-
guage elements the context object is allowed to define in-
side its content and c¢) check whether conditions are met
that need to be fulfilled when a conditional aspect is met.

context MoOperator
inv operator_only_in_record_or_package:
let cls: AbstractMoClass = getAbstractMoClass (
in
not cls.oclIsUndefined() and
(cls.oclIsKindOf (MoRecord) and
cls.oclAsType (MoRecord) .operator)
or
(cls.oclIsKindOf (MoPackage) and
cls.parentIsOperatorRecord())

Listing 1. OCL constraint restricting the use of operators

The first constraint (Listing 1) analyzes whether an op-
erator is located in a permitted enclosing class. The lan-
guage specification defines that an operator can only
be declared inside an operator record or inside a

package that itself is defined in an operator record.
Therefore, declaring an operator elsewhere (e.g. inside a
function) is not allowed. The context object of this con-
straint is defined by the keyword context and is only
applied to objects of the stated type. An invariant is defined
by the keyword inv and assigns a unique name to the in-
variant that is later also used as an identifier to retrieve a
comprehensive error message in case of a violation. A local
variable is defined by the keyword let and, in this con-
straint, represents an object of type AbstractMoClass.
context AbstractMoClass
def: parentIsOperatorRecord(): Boolean =
not getAbstractMoClass () .oclIsUndefined ()
and getAbstractMoClass () .oclIsKindOf (MoRecord)

and getAbstractMoClass ()
.0clAsType (MoRecord) .operator

Listing 2. OCL helper method for checking whether a
class is a operator record

The method getAbstractMoclass () is imple-
mented with Java, as described in Section 3, and returns
the enclosing class of an AST element. In the case that the
operator is defined in the top level of a document the object
may be null. Hence, a check by the built-in OCL function
oclIsUndefined() needs to be performed resulting
in an error displayed indicating that the restriction is not
met. The next part of the OCL constraint validates whether
the enclosing class is of type MoRecord and whether the
operator keyword is used for that instance. Another al-
lowed use of the operator is when the enclosing type is
a MoPackage and the package’s parent is defined inside
an operator function. This is implemented by a separate
function defined using OCL (Listing 2).

The second constraint, as shown in Listing 3, analyses
whether a declaration of a MoFunct ion contains at most
one AlgorithmSection. The syntax definition in the
Modelica language specification makes no distinction be-
tween the different class concepts. Hence, the definition
of several algorithm sections inside a function syntacti-
cally conforms to the Modelica specification and thus is
not marked as an error by the parser. However, this is se-
mantically incorrect and must be prevented.
context MoFunction

inv function_no_multiple_algorithms:
let b: Body =

if content.oclIsKindOf (CommonContent) then
content.oclAsType (CommonContent)

.getContentsBody ()
elise
content.oclAsType (ExtensionContent)
.getContentsBody ()
endif

in

b.oclIsUndefined () or
b.bodyelements—->select

(oclIsKindOf (AlgorithmSection))->size () <2

Listing 3. OCL constraint restricting functions to have at
most one algorithm section

For validation, the body of the context object is selected.
Bodies are only available in type CommonContent and
ExtensionContent (see Section 3). If no body is avail-

able (checked by b.oclIsUndefined()), the con-
straint can not be violated. If a body is available, all el-
ements of type AlgorithmSection are selected from
the list of elements defined inside the body. This is done
by the built-in OCL operation select. It can be applied
to collections and selects all elements satisfying a user de-
fined boolean expression. Here, every object of the list is
analyzed to be of kind AlgorithmSection. In case
the resulting collection contains more then one object, the
constraint is violated.

context MoConnector

inv stream_connector_exactly_one_flow:
let components: Collection (Component)

= getAllComponents ()
in
components—>exists (cIsStream()) implies
(components—>forAll (cIsFlow() implies
componentnames->size () = 1)
and
components—>select (cIsFlow())—->size() = 1)

Listing 4. OCL constraint checking whether a stream con-
nector has exactly one scalar variable with the flow prefix

The third OCL constraint (Listing 4) checks whether a
stream connector has exactly one scalar variable with flow
prefix. A stream connector is a class of type connector
defining a component (of type Real or an extension of
type Real) that is prefixed with the keyword stream. In
this case exactly one component with the keyword f1low
must be present inside the class declaration. The constraint
first collects all components of the connector object inside
the variable components. For convenience, this method
(getAllComponents ()) again is implemented in Java,
since it is used frequently and thus an inefficient implemen-
tation may lead to slow processing of the constraints.

After retrieving all components it is checked whether
any of the components is a st ream variable. In this case,
all components that are flow variables (cIsFlow ()) are
analyzed if they define exactly one variable name. The
count of variable names needs to be taken into account
since multiple components can be defined by a list ex-
pression in Modelica. Additionally, all components that are
flow variables are selected in order to assure that the size
of the resulting collection is exactly 1. The OCL helper
functions cIsStream () and cIsFlow () are defined in
Listing 5.
context Component
def: cIsFlow(): Boolean =

(not connectorprefix.oclIsUndefined())

and connectorprefix.isFlow ()

def: cIsStream() :Boolean =
(not connectorprefix.oclIsUndefined())

and connectorprefix.isStream()
context ConnectorPrefix
def: isFlow(): Boolean =

(not value.oclIsUndefined()) and

value = 'flow’

def: isStream(): Boolean =

(not value.oclIsUndefined()) and
value = ’stream’

4.2 Java Constraints

To compare the performance of the interpreted language
OCL to a general purpose language, the constraints are also
defined with Java. The structure of the constraints is some-
how comparable. However, it is possible to optimize the
performance, since the use of local variables and condi-
tional return statements can be used. A Java constraint that
has a similar structure as the corresponding OCL definition
is displayed in Listing 6.

public boolean isValid(EObject eObject) {
MoOperator operator = (MoOperator) eObject;
AbstractMoClass enclosingClass = operator.
getAbstractMoClass () ;
if (enclosingClass != null) {
if (enclosingClass instanceof MoRecord
&& ((MoRecord) enclosingClass) .
isOperator()) {
return true;
}

if (enclosingClass instanceof MoPackage) {

enclosingClass = enclosingClass.
getAbstractMoClass () ;
if (enclosingClass == null) {

return false;
}
if (enclosingClass instanceof MoRecord
&& ((MoRecord) enclosingClass) .
isOperator()) {
return true;

}
return false;

}

return false;

}

Listing 6. Java constraint checking whether a stream con-
nector has exactly one scalar variable with the flow prefix

In contrast, Listing 7 displays a constraint that benefits
from the additional language constructs of Java.

public boolean isValid(EObject eObject) {
MoConnector conn = (MoConnector) eObject;
boolean isStream false;
int numberScalar 0;
for (Component component
conn.getAllComponents ()) {
if (isStream && numberScalar > 1) {
// break if too many scalar variables
// are defined
return false;

}
if (cIsStream(component)) {
isStream = true;
} else {
if (cIsFlow(component)) {
numberScalar += component.
getComponentnames () .size () ;

}

if (isStream && numberScalar != 1) {
return false;

}

return true;

}

Listing 5. OCL helper methods checking whether a com-
ponent is a flow or stream variable

Listing 7. Optimized Java constraint checking the stream
connector restriction

The iteration over components of a class can be inter-
rupted when a violation is detected since the number of
scalar components can be checked every iteration. The col-
lection of components needs to be iterated only once since
both conditions can be checked inside the loop. Hence, they
are checked to see whether a component is st ream and as
soon as more than one scalar variable is found, a violation
of the constraint is indicated. The methods cIsStream()
and cIsFlow () are implemented with Java checking for
the connection type of the component similar to the OCL
functions previously defined.

4.3 Language Concept Comparison

When the constraints are compared, it is obvious that the
readability of OCL constraints is very good for rules that
can be defined in a short form. The stated context makes
it obvious which object type is being constrained. Local
variables can be defined and used for the validation of the
context object. Functions allow the definition of re-usable
common functionality. Multiple constraints can be defined
in the same file allowing the accumulation of constraints
targeting the same context object in one document.

On the other hand, Java as the constraint language can
be understood by more software developers. Furthermore,
object oriented development is more common to developers
than the functional programming representation of OCL.
It is possible to define local variables inside the constraint
definition causing validation to be quicker, since checks can
be done inside loops to return a validation result early.

The most obvious benefit of Java as a constraint lan-
guage compared to OCL is the tool support. Although OCL
editors exist, they mostly lack support for automatic refac-
toring and robust referencing or only support syntax high-
lighting. But these features become vital when the meta
model of a language that is being constrained is altered.

Hence, it may be beneficial to use OCL constraints for
the restriction of languages, where the grammar definition
is finally set. On the other hand, constraints defined with
Java may be a better solution when the grammar is still
under development or high performance is required when
validating models.

4.4 Performance

When validation takes place while a user develops a model,
high performance is vital. In this section, all constraints
defined using OCL are compared to their equivalent con-
straints defined with Java. The performance time is com-
pared by validating the Modelica standard library?, which
contains models for various fields of physical modeling.
The library contains all sorts of language constructs defined
by the language specification and hence provides good
feedback regarding the performance of the constraints.
The included models are complex and frequently extend
classes, causing more effort in resolving references and
elements that need to be considered during the validation.
The Modelica standard library used for the performance
measurement is version 3.2 beta 5. It consists of:

3 https://modelica.org/libraries/Modelica

10

¢ 1432 Functions
e 1282 Models

® 694 Types

e 651 Packages

¢ 302 Blocks

¢ 289 Classes

e 278 Records

e 108 Connectors
¢ 3 Operators

This includes the definitions of base types like Real,
Integer or Complex that are actually not included in
the library but are added for convenience in our IDE. Pars-
ing all 220 files takes approximately 6200 ms. Linking (re-
solving references, e.g. references between used compo-
nents and their declaration) is done in about 14000 ms. This
may be enhanced in the future since the linking mechanism
is not optimal regarding performance at the moment. Ta-
ble 1 contains the measured performance results of 10 of
37 available constraints in both OCL and Java. The number
of calls and the execution time for the invoked constraints
are stated. The bottom line displays the number of calls and
the overall performance for all 37 constraints. The valida-
tion was performed on a computer with an Intel Core 17
870 CPU (4 cores, max 2.93 GHz) with 8 GB of RAM.

As we can see from the results, there is a tremendous
performance difference between both kinds of constraints.
This would be even worse if the flattening of classes was
performed by OCL instead of using the helper methods
implemented in Java as mentioned in Section 3.

The differences in performance originates in the higher
efficiency of Java when handling collections. This is partic-
ularly clear when investigating the performance of the con-
straint unique_element_names_comp since the im-
plementations have to iterate over lists of components and
compare the names in order to check whether a name has
been used multiple times. This validation is performed for
each of the 5039 types of classes. Since the check needs to
be done for flattened classes to check if an extended class
already defines a component with the same name, the num-
ber of components can be very high.

For less extensive constraints in which few context ob-
jects were called, OCL performs sufficiently. The con-
straint function_no_multiple_algorithms that
validates the 1432 functions of the Modelica standard li-
brary (defined in Section 4) takes only 77 ms. But even
for this simple task, Java performs almost 4 times faster.
The performance comparison shows the drawback of an
interpreted language compared to a native one. Overhead
caused by the interpretation and, in the case of OCL, the
lack of efficient collection handling and early returns on
violation of invariants reduces the performance.

With the fact that about 200 restrictions were found in
the Modelica language specification, it is obvious that the
performance will not be sufficient for automatic validation
during editing with the recent interpreter implementation
for OCL included in the Eclipse MDT project. Even for

OCL JAVA

Constraint Calls Time (ms) | Calls Time (ms)
unique_element_names_comp 5039 9896 5039 140
protected_variables_dot_reference 225240 3842 | 225240 731
prefixes_structured_component_flow 22186 97 22186 3
function_no_multiple_algorithms 1432 77 1432 15
flow_subtype_of_real 22186 76 22186 47
stream_only_in_connector 22186 28 22186 15
stream_connector_exactly_one_flow 108 2 108 0
function_no_equations 1446 1 1446 0
nested_when_equations 35 0 35 0
operator_only_in_record_or_package 3 0 3 0

94677 20063 | 946774 3330

Table 1. OCL and Java validation performance of selected constraints

Java, if the user does not want to be disturbed by long last-
ing validations taking place while editing Modelica mod-
els, focus on high performance is needed during further
implementations of the missing constraints.

5. Validation of Structural Constraints

As mentioned before, the validation of constraints that orig-
inate from the physical properties of the model is very ben-
eficial for the user. In the following section, existing com-
ponents of the OneWind Modelica library according to [11]
are used to introduce these kind of constraints. If library
developers would provide domain-specific constraints for
their models, the intended use of the models could be en-
forced. By standardising the constraint definition, e.g. by
providing OCLconstraints inside annotations, all Modelica
tools could benefit from the added semantics. However, for
the proposed solution the tools must be able to process the
same meta model of Modelica, since the constraints are de-
fined based on the AST representation of Modelica models.

5.1 Possible Model Structures for a Horizontal-Axis
Wind Turbine

Using the OneWind Modelica libary, a conventional three-
bladed, horizontal axis wind turbine can be modeled through
parametrizing and connecting components that have a spe-
cific physical meaning. The structure of such a model is
displayed in Figure 3.

OperatingControl

Wind Rotor Nacelle

Tower

Figure 3. Model structure of a horizontal axis wind turbine
using OneWindModelica library components

As can be seen in Figure 3, the Rotor object is con-
nected to the Nacelle object, which is then connected

11

to the Tower object. However, a user of the library could
connect the Rot or object to the Tower object directly. In
both objects connector instances are used which makes
this connection correct according to the Modelica language
specification. From an engineering perspective, however,
this is not reasonable. Furthermore, the components of the
OneWind Modelica libary are not set up to cover this case,
although there is always the possibility to modify the li-
brary components correspondingly.

If the user made this direct connection of Rotor and
Tower object with the existing library components, the
simulation of the model would result in an error due to
a division by zero in the tower shadow calculation. How-
ever, this error only shows up when the model is already
compiled. This takes valuable time from the model devel-
opment. Depending on how experienced the user is in the
field of wind energy, the given error message does not even
give a direct hint on the true source of the error.

5.2 Introduction of Structural Constraints

To support the library user during the model development,
a constraint that gives a warning can be defined to avoid
the direct connection of Rotor and Tower object. This
is realized utilizing Java. For the sake of brevity, only the
constraint of the Tower object needing to be connected
to the Nacelle object is covered. The library developer
can define this constraint himself using simple annotations
directly in the Modelica code during the development of
library components.

The definition as well as the appearance of the constraint
in the GUI of OneModelica is shown in Figure 4. The li-
brary developer defines the t opFrame of type Frame_b
in the PartialTower model as a restricted element
through the annotation shown in the upper right side of
Figure 4. If the user tries to connect the Tower object to
a Rotor object as it is shown in the upper left side of
Figure 4, an error message will appear (cf. bottom part
of Figure 4). The connection of the Tower object to the
Nacelle object does not result in this error.

| OnshoreWindTurbine.mo 23

replaceable OnWind.Components.Rotor.Rotor rotor; - N

BodyCylinderWithwWindConnector towerElement[12]
annotation (constraint="connect tower_to_nacelle_valid");

equation
(X] connect(tower. topFrame,. retor.frame.al;
connect (tower.topFrame, nacelle.frame_a);
connect (towerElement[12].frame_b, tower.topFrame};

Fl (111 2

f.. Problems &%
1 error, 0 warnings, 0 others
Description

@ Errors (1 item)
@ The tower top frame can enly be connected to a frame of a nacelle.

Resource

OnshoreWindTurbine.mo

PartialTower.mo &2

within OnWind.Components.Tower;

partial model PartialTower “"partial base class for tower model™
import Modelica.Mechanics.MultiBody.Interfaces.Frame_a;
import Modelica.Mechanics.MultiBody.Interfaces.Frame_b;
public
Frame_b topFrame
annotation (constraint="connect tower_to_nacelle");
Frame_a bottomFrame;
end PartialTower; -

Path Location Type

fonewind.windturb... line: 89 fone.. Xtext Check (... -

Figure 4. Structural constraint for connection of Tower and Nacelle object

However, if the user decides that he would like to con-
nect an object to the Tower object that is not of type
Nacelle, he can avoid the error message by defining an-
other annotation. This is shown also in the upper left part
of Figure 4. In this way, the user is not prohibited from
using the library components to his wishes. But the con-
straint helps especially unexperienced users to avoid mis-
takes which is of high importance.

For this kind of constraints following steps needed to be
performed. For the context type ConnectClause aJava
validator has been registered. The validator then checks
whether one of the connected elements defines a constraints
inside its annotation (constraints=“constraintname”). If
this is true, the annotation of the other connected element
is queried and it is checked whether it defines a valid con-
straint accordingly (constraints= “constraintname_valid”).
If the constraint does not exist, an error marker is created.

6. Conclusion and Future Work

This work shows that the validation of Modelica models is
possible by the definition of constraints that check models
on the basis of their tree based representation (AST). The
constraint language OCL and Java are utilized for the val-
idation. It becomes clear that many constraints can also be
checked in an efficient way. By implementing the flattening
of classes with Java, the extension of the constraint defini-
tion is reduced and the validation process accelerated. The
integration of the validation is possible and can enhance the
development of Modelica models heavily, since errors can
be immediately displayed to the user.

However, we are able to point out that the interpretation
of OCL constraints is time consuming, although the AST
access has been enhanced. Therefore OCL should only be
used for fast constraints. Since Java is up to 6 times faster
when validating all currently available constraints, it is ad-
vantageous to implement the remaining constraints using
Java in order to keep the performance fast. Another way
to gain performance could be achieved by transforming the
OCL constraints to Java code [12]. This would however
outweigh the benefit of the interpreted language that con-
straints can be defined and checked during runtime.

Beyond validation against the Modelica language spec-
ification, structural constraints can be checked. This allows

12

developers to define restrictions preventing errors that are
obvious to library designers but that may lead to problems
when done by library users. The approach may also allow
the developer to restrict the usage of components that are
known not to be compatible but can not be restricted by the
modeling language itself.

In future work, more constraints will be implemented
for the validation against the Modelica language specifica-
tion. If all 200 constraints found so far can be implemented
in an efficient way, validations can be recognized immedi-
ately by the developer. Furthermore, compatibility for var-
ious simulators can be established more easily since vio-
lations of the language specification that are accepted by
some simulators can be identified easily.

The access to the AST maybe further enhanced by
adding additional methods. Furthermore the introduction
of caching, e.g. by remembering all base types of a class,
which is necessary for fast type checking, would acceler-
ate the validation with a reasonably cost of memory. This
however would further reduce the complexity of constraint
definition and may enable the use of OCL which seems
to be more promising if e.g. library providers shall define
constraints on how their models can be used.

The idea of further structural restrictions is promising
and can enhance the definition of Modelica libraries. Be-
sides the correct use of components, constraints may also
be used to identify possible combinations of components,
since the selection of usable items is reduced. This may
help the user to find suitable solutions more efficiently by
selecting components that are suggested by the IDE. Con-
straints may be defined for specific design aspects. Addi-
tionally, rules for connections may need to be expressed,
e.g. regarding the cardinality of connections. An imple-
mentation based on role models is currently developed and
will simplify the definition of structural constraints in the
future.

References
[1] Frank Budinsky, Stephen A. Brodsky, and Ed Merks.
Eclipse Modeling Framework. Pearson Education, 2003.

[2] Peter Bunus and Peter Fritzson. Automated static analysis
of equation-based components. Simulation, 80(7-8):321—
345, 2004.

[3] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns — Elements of Reusable Object-
Oriented Software. Addison-Wesley Longman, Amsterdam,
1 edition, 1995. 37. Reprint (2009).

[4] Christoph Hoger. Modim - a modelica frontend with static
analysis. In MATHMOD 2012 - 7th Vienna International
Conference on Mathematical Modelling, 2012.

[5] Jan Kohnlein and Sven Efftinge. Xtext 2.1 documentation,
October 31, 2011.

[6] Malte Lochau and Henning Giinther. A static aspect lan-
guage for modelica models. In Peter Fritzson, FranA§ois E.
Cellier, and David Broman, editors, FEOOLT, volume 29
of Linkoping Electronic Conference Proceedings, pages
47-57. Linkoping University Electronic Press, 2008.

[7] Modelica Association. Modelica: A unified object-
oriented language for physical systems modeling, language
specification version 3.3, 2012.

[8]1 OMG. Meta Object Facility (MOF) Core Specification
Version 2.0, 2006.

[9] Roland Samlaus, Claudio Hillmann, Birgit Demuth, and
Martin Krebs. Towards a model driven modelica IDE. In
8th International Modelica Conference, 2011.

[10] Mirko Seifert and Roland Samlaus. Static Source Code
Analysis using OCL. In Jordi Cabot and Pieter Van Gorp,
editors, OCL’08, 2008.

[11] M. Strobel, R. Vorpahl, C. Hillmann, X. Gu, A. Zuga,
and U. Wihlfahrt. The OnWind modelica library for
offshore wind turbines — implementation and first results.
In Proceedings of the Modelica Conference, 2011.

[12] Claas Wilke. Java code generation for dresden ocl2 for
eclipse. GroBer beleg (minor thesis), Technische Universitit
Dresden, Dresden, Germany, February 2009.

13

