
Waste not, want not:
Towards a system architecture for ICALL

based on NLP component re-use

Elena Volodina, Lars Borin Hrafn Loftsson
Språkbanken (Swedish Language Bank) School of Computer Science

University of Gothenburg, Sweden Reykjavík University, Iceland
first.last@svenska.gu.se hrafn@ru.is

Birna Arnbjörnsdóttir Guðmundur Örn Leifsson
School of Humanities School of Engineering and Natural Sciences

University of Iceland, Iceland University of Iceland, Iceland
birnaarn@hi.is gol1@hi.is

Abstract

It is a surprising fact that, despite the
existence of various mature Natural Language
Processing (NLP) tools and resources that can
potentially benefit language learning, very
few projects are devoted to development of
Intelligent Computer-Assisted Language
Learning (ICALL) applications. This paper
presents an on-going collaborative project
whose overall aim is to develop an open-
source system architecture for supporting
ICALL systems that will facilitate re-use of
existing NLP tools and resources on a plug-
and-play basis. The two language teams –
Icelandic and Swedish – have tested the
architecture design by implementing two
ICALL applications which convincingly show
how principles defined by Service-Oriented
Architecture (SOA), with web services as
implementation technology, can benefit re-use
of existing NLP components in ICALL
applications. This paper introduces the
project, provides the theoretical and practical
background, describes the different paths
adopted within the two language teams, and
presents the first results.

1 Introduction

The project described in this paper was prompted
by the surprising fact that existing NLP tools and
resources do not tend to find their way into the
language learning classroom, despite their obvious
potential uses in language learning. The reasons
may be twofold. On the one hand, there is a lack of
interested sponsors. On the other hand, there is a
general lack of interest in the NLP community in

CALL applications. Borin (2002), for example
observed that “[...] while certainly not part of the
core of NLP, CALL seems not to have a place
even in its periphery”, and “[...] most NLP work
on Nordic languages has nothing to do with
CALL”. While this might have changed for
English, and a small number of other languages in
the past ten years,1 it still holds true for the Nordic
languages.

We are aware of only three ICALL2 systems
that are an integral part of a real-life foreign
language program in universities today:
TAGARELA for Portuguese (Amaral and
Meurers, 2011; Amaral et al., 2011), E-tutor for
German (Heift, 2003), and Robo-Sensei for
Japanese (Nagata, 2009). It seems that the few
systems that have been developed are either
copyrighted and restricted by high licensing fees –
and hence too expensive for universities and
schools – or fall short of the required quality in
linguistic or pedagogical functionality.

This situation calls for a change. Since ICALL
is a truly interdisciplinary field, it is important that
researchers from several areas, like linguistics,
pedagogy, NLP, and human-computer interaction
(HCI) cooperate for the purpose of making ICALL
projects successful. In view of that, we have joined

1Major NLP conferences tend to organize workshops on the
use of NLP technologies in language learning, e.g. NAACL
and COLING. The same holds true for the main conferences
within computer-assisted language learning where AI and
NLP approaches are studied within the area of pedagogy, e.g.
CALICO and ICCE.
2Intelligence in CALL systems can be understood differently
by different researchers. In this paper, we define ICALL as
NLP-based CALL, i.e. intelligence in CALL is ensured
through the use of NLP tools and resources like parsers,
taggers, corpora, lexicons, etc.

47

Elena Volodina, Lars Borin, Hrafn Loftsson, Birna Arn-
björnsdóttir and Guðmundur Örn Leifsson 2012. Waste
not, want not: Towards a system architecture for ICALL
based on NLP component re-use. Proceedings of the
SLTC 2012 workshop on NLP for CALL. Linköping
Electronic Conference Proceedings 80: 47–58.

forces in order to design and develop open-source
system architecture for supporting ICALL
systems. The architecture is open-source in order
to encourage participation from other researchers
and developers, and to facilitate re-usability of
existing NLP tools and resources in the area of
CALL. This is an ongoing collaboration, and some
preliminary results and earlier versions of the
implementations described below have been
presented (in much less detail and without
evaluation) in other contexts (Volodina and Borin,
2012; Volodina et al., 2012).

Our main argument is that the use of NLP tools
and annotated resources can ensure linguistic
analysis of input data, thus adding generative
power. This is accomplished by applying the same
analysis model to different (authentic) language
samples, e.g. for generating exercises or detecting
errors in learner text production. This, in our view,
will not only relieve teachers of monotonous tasks
that can be performed by computers, but can also
support autonomous learning by students. And
last, but not least, we hope it will increase the
applications of NLP tools among CALL end-users.

For this purpose, we need access to existing
NLP tools (e.g. sentence segmenters, tokenisers,
part-of-speech [PoS] taggers, lemmatisers,
syntactic parsers, error parsers, spell-checkers,
etc.), as well as to existing (available and reliable)
annotated resources (e.g. corpora, lexicons,
learner-oriented word lists, etc.). We intend to re-
use existing NLP tools and resources as much as
possible (as opposed to developing new ones).

However, one problem is that most available
resources and tools are difficult to deploy in CALL
applications since (1) they are monolithic and
inflexible and need to be individually adapted to
each new application; (2) they are not readily
available as the rights to their use are held by
individuals or institutions all over the world and
they are physically located in different places; and
(3) they are not interoperable via standardised
interfaces.

In order to achieve more flexibility, we need to
cooperate with the owners of tools and resources.
We need a standardisation effort within the ICALL
community. One of the goals of this project is to
design an architecture for deploying NLP tools and
resources that will have well-defined principles
and requirements, as well as provide easy-to-
follow guidelines. We hope it will generate an
interest in ICALL standardisation, and at best, if
we are fortunate – encourage owners to provide a
wrapper layer to their tools and resources making
them re-usable in ICALL (and other) applications

via web services. One overarching goal of our
project is to test web services as a possible
approach to making tools and resources available
for re-use.

To avoid being too abstract, we are also
implementing two end-user applications that will
help us (1) test and refine the architecture; (2)
produce guidelines for making a service wrapper
layer to the tools and resources; (3) define relevant
input/output formats and documentation standards;
as well as (4) demonstrate the architecture design
in practice for potential end-users and web service
providers.

The rest of this paper is structured as follows. In
section 2, we present the technical framework
which we have adopted for the development of our
architecture. Sections 3 and 4 are descriptions of
the two examples where web services are used in
development of ICALL applications, one for
Icelandic (section 3) and one for Swedish (section
4). Section 5 concludes the paper with some
general considerations about the effectiveness of
the adopted approach and its future.

2 Technical framework

2.1 Background

The idea of re-usability as a paradigm for software
development is not original. It is well-known that
programmers often make chunks of their code
available to each other in order to save time on
implementation of something similar. With the
appearance of the Free Software Foundation3 in
1984, developers could have access to each other’s
code, copy it, modify and built upon it, which
speeded up development times and reduced costs.
Initiatives like that are very popular, but they have
some limitations: first, the code comes in various
different programming languages and it is not
certain that it will be available in the language you
need; second, they often lack documentation with
explanation of their design or how the program
works; and third, they are often centered around
one problem specific for the current project, which
is most probably not the one that is relevant for
your needs (Wood, 2008).

Standardisation is a key notion in such
initiatives. In addition to work carried out on
standardisation of e-learning (IMS Global
Learning Consortium,4 ADL,5 etc.) and of text

3http://www.fsf.org/
4http://www.imsglobal.org/
5http://www.adlnet.gov

48

corpus and lexicon resource formats (TEI,6

EAGLES,7 etc.), some successful standardisation
efforts have been initiated for NLP components as
well, e.g. GATE,8 NLTK,9 UIMA,10 which are
frameworks for integrating NLP tools and
resources. However, the NLP components are still
bound to particular programming languages: Java
(GATE and UIMA) and Python (NLTK).

2.2 NLP component re-use through web
services

The original initiative of re-using different existing
programming functionalities in applications
without re-writing the code is known as Service-
Oriented Architecture (SOA).11 SOA is an
architectural style based on a set of global
principles and requirements defined first by Erl
(2005) and later by the SOA Manifesto Working
Group.12 SOA emphasises implementation of
components as modular services that can be re-
used by other clients. The main idea is that, despite
different programming languages or platforms, the
existing functions have a common communication
layer consisting of a well-defined interface, where
the user can formulate a request and get a response
which can be re-used in other applications. The
data is passed in standardised formats between the
service and a client or between several services
through coordinated calls. The key requirements
are interoperability, re-use, standards-compliance,
and well-documented metadata. Services can be
made accessible to a closed group, e.g. within a
company’s intranet, or be open to anybody
concerned via internet, for a fee or for free.
Services are loosely coupled, and can be combined
and re-combined for different purposes in
production of other applications.

If SOA is an architectural style, then web
services13 are an implementation technology (one
of many) for SOA. Web services make programs

6http://www.tei-c.org
7http://www.ilc.cnr.it/EAGLES96/home.html
8http://gate.ac.uk
9http://nltk.org/
10http://uima.apache.org/
11Architecture is a description of a system, defining its
purpose, functions, externally visible properties and
interfaces; including the description of its internal components
and interoperability along with the principles governing its
design, operation and evolution. It is thus a design of a
system, not its implementation (Srinivasan and Treadwell,
2005).
12www.soa-manifesto.org, 2009
13A web service is an implemented software component that
can be accessed via a network to provide functionality to a
service requester/client (Srinivasan and Treadwell, 2005).

accessible through Internet protocols independent
of platforms or programming languages. They can
represent new applications or wrap around existing
tools, becoming a port of access to them. Each
service in the SOA architecture has, in turn, its
own architecture. It includes all the resources used
by a service, e.g. databases, software components,
other services, and the physical design of their
communication.

The basic principles and ideas behind SOA,
particularly with web service technology as its
implementation form, seem to be the answer to the
question of accessibility of existing NLP tools and
resources over the internet, and not only for
ICALL applications. The software can still be
residing on the original server and in the original
programming language. It is the wrapper layer
(web service) that makes it available to the users
world-wide.

2.3 A platform for supporting ICALL

From an end-user perspective, Learning Platforms
(LP), virtual learning environments (VLE) and
learning/content management systems
(LMS/CMS) serve different pedagogical purposes.
They are different types of online services
facilitating communication between teachers and
students, e.g. for delivery of course-related
information, resources and tools; as well as for
synchronous (e.g. web chats, video conferences)
and asynchronous (e.g. forums) meetings between
students and teachers where course-related
questions can be discussed. Such systems model a
real-life communication between all involved
parties, and may be used either in e-learning/
distance learning, i.e. without any class meetings,
or as enhancement of face-to-face courses.
Examples of such platforms are Moodle (Martín-
Blas & Serrano-Fernández, 2009) and Fronter.14

Viewed from a developer's perspective, LPs can
be compared to operating systems since they share
some common characteristics, e.g. they are
composed of a number of web-based applications
that can be run within some environment.

ICALL is a specific area of learning, and thus a
platform aimed at language learning requires a
more specific design. Further, a platform offering
intelligent analysis of language input needs to be
designed for re-use of the components that can
perform such analysis.

We therefore define an ICALL platform in
technical terms as a structured backend, i.e. a
“machinery” for deploying different NLP tools

14http://com.fronter.info/product/

49

and lexical resources for supporting language
learning activities, as well as specifically tailored
algorithms for various language learning tasks
(e.g. exercise generators). We neglect most of the
administrative and content management functions
that pedagogical platforms described above
usually imply.

In particular, we build two ICALL platforms on
SOA principles where the collection of web-
services are the basis of the platforms.15 The user
interface,16 on the other hand, is a top layer that is
used for delivering the results of existing web
services and should not necessarily be viewed as
an integral part of the platform. It is rather an
environment for presenting the output of web
services and may be developed by different users
according to their tastes and needs.

The advantage of separating ICALL modules
into a frontend (user interface) and a backend (web
services) parts is that the algorithms for required
language learning task can be made language
independent, i.e. they will rely only on the
availability of corresponding NLP tools and lexical
resources for other languages with the same type
of annotation.

Another advantage is that in case we optimise or
change the backend algorithm, the user interface
remains unaffected; it is just a container for
collecting user input and for showing the results of
the web service.

One more advantage is that the web services are
made re-usable for any other applications/user
interfaces.

That is our starting point, and we are currently
testing this approach by building two ICALL
applications based on NLP components accessed
through web services. The two ICALL
applications are aimed at different language
learning tasks: error analysis and feedback on L217

learner written input for the Icelandic partner; and
corpus-based exercise generation for the Swedish
partner, as described in the sections that follow.

3 ICALL through web services –
an Icelandic example

3.1 NLP and ICALL for Icelandic

A decade ago, Icelandic could have been
categorised as a less-resourced language, i.e. a

15The terms platform and backend are used interchangeably in
the text.
16The terms GUI, user interface, and frontend are used
interchangeably in this text.
17L2 covers both foreign and second language learning.

language for which only a few, if any, NLP
resources exist. Ten years later, the situation has
changed dramatically (Rögnvaldsson, 2008). A
number of BLARK18 (Krauwer, 2003) components
have now been developed, e.g. the open-source
IceNLP toolkit,19 a collection of tools for
processing and analysing the Icelandic language
(Loftsson and Rögnvaldsson, 2007b).

Among other tools, IceNLP contains a
tokeniser, the PoS tagger IceTagger (Loftsson,
2008), and the shallow parser IceParser (Loftsson
and Rögnvaldsson, 2007a). IceTagger, which
performs morphosyntactic disambiguation, is the
current state-of-the-art tagger for Icelandic
(Loftsson et al., 2009). IceParser, which receives
disambiguated input from a PoS tagger and whose
task is to label constituents and syntactic
functions, is the only publicly available parser for
the language.

Two lexical resources are important parts of the
Icelandic BLARK. First, the Icelandic Frequency
Dictionary (Pind et al., 1991), a PoS-tagged
corpus, and, secondly, the morphological database
BÍN20 (Bjarnadóttir, 2005). Both resources are
available for research purposes, while the data of
the latter can be used for developing language
technology applications.

Currently, no ICALL application exists for the
Icelandic language. On the other hand, the
development of the web course (CALL
application) Icelandic Online (IOL)21 began in
2000. The sequential course is pedagogically
driven in that instructional goals were served by
the available pre-web 2.0 technology (the opposite
was true for most CALL courses at the time). The
technology used by IOL was only limited by the
Digital Divide. This meant that, at the time,
students in countries other than the most
technologically advanced did not have the
bandwidth to download websites heavily based on
videos and interactive learning objects with many
images.

IOL I and II were launched in 2004 and 2005.
The goal of those courses is to introduce the
structure and lexicon of Icelandic in a meaningful
context using 40 pre-programmed learning objects,
the contents of which can be altered and geared to
the particular pedagogical goals of the lesson. The
first courses were also heavily dependent on

18BLARK – Basic LAnguage Resource Kit, a joint initiative
for European countries which has been extended to many
other than European languages, see http://www.blark.org/.
19 http://icenlp.sourceforge.net
20 http://bin.arnastofnun.is
21http://icelandiconline.is

50

individually programmed interactive Flash lessons
that introduced new vocabulary and grammar. The
limitations of the courses were that they taught
perceptive language with limited activities for
students to practice productive skills other than
form focused discrete vocabulary and grammar
exercises (Arnbjörnsdóttir, 2004).

In 2010, Icelandic Online 3 and 4 and IOL for
Immigrants were launched. These courses use the
40 learning objects but also introduce lesson
content through authentic videos, texts and
interactive websites, chosen and sequenced to
advance the lesson goals. This was post web 2.0
which made available different social networks
and functionalities that allow learners to interact
with each other and practice their target language
and negotiate meaning in social situations. This
has been made full use of in Icelandic Online 3
and 4 (Arnbjörnsdóttir, 2008).

Currently, Icelandic Online has almost 90,000
registered users and has received universally
positive feedback. IOL has revolutionised
accessibility to Icelandic language and culture for
teachers and students at the University of Iceland
and worldwide. IOL is free and open to all.

To date, technology has not been able to provide
CALL projects, like IOL, with meaningful
intelligent feedback on second language writing.
Despite the availability of spelling and grammar
checkers in some languages, these tend to correct,
rather than instruct, which is not always optimal
for language learning.

3.2 The Icelandic platform

In the Icelandic part of the project, the platform
connects various pre-existing NLP tools.
Internally, the platform uses a particular XML
format, the Text Corpus Format (TCF), proposed
in the WebLicht SOA project (Hinrichs, 2010), for
communication of information between the
various components. Each annotation (e.g., at the
level of tokens, PoS tags, or constituents) is stored
in a separate layer, but all annotations for a
particular text is stored in a single XML file. In
addition to using the layers proposed in the
WebLicht project, we have added our own layer
for information about grammatical errors.

Using a web service, a user asks the platform to
carry out a given task. Thus, the platform does not
need to be set up on the user’s machine. Moreover,
the server running the web service and the
platform do not have to be located on the same
machine.

3.3 Writing support for second-language
learners

In IOL, second-language learners of Icelandic can
receive feedback from a teacher on short written
texts. Currently, teachers use special codes for
hand-marking specific types of errors, i.e. spelling
errors, feature agreement errors, case errors in
objects of verbs, etc.

In order to automate part of the hand-marking,
and to test our platform, we are currently in the
process of developing a web service which allows
students of IOL to send texts to the service for the
purpose of detecting particular types of
grammatical errors. This will allow the students to
correct potential errors and re-submit the texts for
error detection again, and so forth, before finally
submitting the text to the teacher. The web service
merely identifies error candidates, but does not
attempt to correct errors. At this stage, the goal is
to help students correct second language grammar
issues, and free instructors to focus on content.

The web service uses the platform, which, in
turn, uses tools from the IceNLP toolkit, to detect
the following types of grammatical errors, chosen
for this first version: (1) feature agreement errors
in noun phrases, i.e. errors in gender, number and
case; (2) feature agreement errors between subjects
and verb complements; (3) feature agreement
errors between subject and verbs, i.e. errors in
person and number; and (4) incorrect case
selection of verb objects.

In using the feedback feature, the student inputs
Icelandic text through a web application. The
application submits the text to a web service,
requesting it to analyse the text and carry out error
detection. In turn, the platform calls components
from IceNLP for carrying out the given tasks.
IceNLP outputs XML in TCF, which the platform
forwards to the web service, which in turn sends it
back to the client application. The TCF contains
all information from the analysis, i.e. information
about the individual tokens, their PoS tags,
individual constituents and error candidates. The
client application converts the TCF to HTML and
displays the resulting page to the student, where
the original text submitted is shown with error
candidates highlighted. In addition, by clicking on
a word in a given sentence, the student can see
morphological information for each word of the
sentence.

Figure 1 shows the feedback given to a student
for the sentence Hann er góð kennari ‘He is (a)
good teacher’, in which the adjective góð ‘good
(feminine)’ does not agree in gender with the

51

following noun kennari ‘teacher (masculine)’ in
the noun phrase góð kennari. The phrase
containing the disagreement is displayed, as well
as morphological information for each word.

Figure 1. Feedback given to a student for a sentence
containing a disagreement in a noun phrase.

Preliminary tests of the application have been
carried out with two groups of students – a group
of 11 advanced and 12 intermediate students in a
summer course in Icelandic as a foreign language.
The purpose of the test was twofold: First to elicit
feedback from students about their experiences
using the application and, second, to test the
functionality of the application itself – the
accuracy of the error detection.

In general students found the system helpful for
error detection and that it aided them in their
writing. Most found the directions for use clear.
Two respondents wanted clearer suggestions for
corrections or even declension tables to be
attached to the system. The latter could be
accomplished using the morphological database
BÍN (see above).

The accuracy of the error detection was
evaluated using the first texts submitted by the
second group (12 intermediate students). The
results are shown in table 1. In total, the system
pointed to 25 grammatical errors, out of which 19
were true positives. This is equivalent to 76%
accuracy, which is too low for practical use. Note,
however, that the third error type, feature
agreement errors between subject and verbs, is
mainly to blame. Out of seven error candidates
signalled by the system for this error type, only
three were true positives. All the four false
positives are due to the same error made by the
error detector when analysing a sentence like:
Konan og drengurinn voru að þvo … ‘The woman
and the boy were washing … ’. For this sentence,
the error detector signals a disagreement in
number between the singular noun phrases ‘the
boy’ and the verb form ‘were’, not taking into

account that the two singular noun phrases ‘The
woman’ and ‘the boy’ indeed constitute a plural
subject! When we account for this, both the
precision and the recall will presumably increase.

Error type Precision Recall
agreement errors in
noun phrases

80% 100%

agreement errors
between subjects and
verb complements

100% 87.5%

agreement errors
between subjects and
verbs

42.9% 42.9%

incorrect case selection
of verb objects.

100% 50%

All error types 76% 76%

Table 1. Accuracy of the error detection.

Overall, we feel that the system has shown its
value as a first step in the development of a semi-
automatic writing feedback feature for Icelandic as
a second language.

4 ICALL through web services –
a Swedish example

4.1 NLP and ICALL for Swedish

Language technology research has a long history
in Sweden, going back to the 1960s, and is
conducted in a number of groups at the main
Swedish universities and in some groups in
industry. Consequently, most of the basic BLARK
components exist for Swedish in quite stable and
mature forms. For example, there are several PoS
taggers and parsers, annotated reference corpora,
and large lexical databases with morphological
analysers available for Swedish, many (but not all)
under open-source licenses.

Swedish ICALL has a shorter history. In recent
years, there have been four main, partly
overlapping, strands of research (ignoring speech-
based ICALL, which is also being pursued at the
Royal Institute of Technology in Stockholm, but
which is out of scope for this paper) (see also
Borin, 2006):

(1) Supporting reading of authentic texts by
automatic selection of texts containing vocabulary
and linguistic constructions at a suitable level for a
particular language learner proficiency level
(Nilsson and Borin, 2002).

52

(2) Automatic generation of focus-on-form
exercises from annotated corpora, for PoS and
syntactic functions such as subject and object (the
ITG project;22 Saxena and Borin, 2002; Borin and
Saxena, 2004), and for vocabulary (Volodina,
2010).

(3) Writing support for second-language
learners using online (bilingual and monolingual)
lexicon access, and spelling and grammar checkers
(the Grim project; Knutsson, 2005).

(4) Research on the characteristics of learner
language and text complexity with an explicit aim
of informing the research described under the
previous three points (Magnusson and Johansson
Kokkinakis, 2008; Johansson Kokkinakis, 2009).

Both the ITG project (2) and the Grim project
(3) have resulted in concrete ICALL applications.
The ITG application is open-source and is
maintained by University of Gothenburg. It has
been used extensively in university-level
linguistics courses at the universities in Uppsala
and Stockholm, and also in a high school in
Uppsala. Its point of departure is what Second
Language Acquisition (SLA) researchers have
dubbed “focus-on-form” (FoF; contrasted to more
traditional form-based drills, referred to as “focus-
on-formS” in the SLA literature):

Whereas learners are able to acquire linguistic
forms without any instructional intervention, they
typically do not achieve very high levels of
linguistic competence from entirely meaning-
centered instruction. For example, students in
immersion programs in Canada fail to acquire
such features as verb tense markings even after
many years of study. This had led second
language acquisition researchers [...] to propose
that learners need to do more than simply engage
in communicative language use; they also need to
attend to form. (Ellis et al., 2002: 401)

In the ITG application, annotated Swedish text
corpora are the basis for guided form exercises as
well as curiosity-driven corpus exploration of
particular linguistic features (the application
includes a general corpus search interface), in both
cases using authentic language material directly
from the corpora, rather than made-up exercises
and examples.

The Grim writing support application is not
open-source (although the language tools used in it

22ITG stands for IT-based collaborative learning in grammar;
see http://spraakbanken.gu.se/swe/itg

are) and it can be accessed only via a web page.
Both ITG and Grim use a technology for the user
interaction with the tool Java Web Start which was
state of the art at the time, but which practical
experience shows is not the optimal solution today,
when web technology has developed to a point
where pure web solutions will provide equivalent
or better functionality in a much more transparent
way to the user. Important for our purpose is that
the language tools used in both these applications
are to a large degree open-source and independent
of the technology for realising the user interaction
part.

4.2 Lärka and its architecture

In designing the new architecture for the Swedish
application, we first ported the existing Swedish
FoF exercises developed for the ITG application
and started adding the Swedish vocabulary
exercises developed by Volodina (2010). Having
the existing ITG exercises allows us to quickly
assess the viability of the architecture for this kind
of application. Together with the new modules to
be developed in this project, they make up a broad
and varied spectrum of ICALL applications which
will allow us to test the flexibility of the
architecture. The ITG exercises use manually
annotated corpora and although the text material is
authentic, it is also now slightly dated and
becoming more so all the time. One goal of this
project is thus to adapt the language tools at our
disposal with the aim of achieving the same kind
of functionality using arbitrary text, e.g. from the
internet. Another goal is to extend the range of
FoF exercises offered and to explore how these
exercises should be connected to other language
learning activity types.

The application developed as a part of this
project is web-based and has been given the name
Lärka23 (LÄR språket via KorpusAnalys ‘learn
language by corpus analysis’), with the English
equivalent Lark (Language Acquisition Re-using
Korp). The two main guiding principles for the
implementation of Lärka have been modularity
and re-use. The main components of Lärka are, as
shown in figure 2):

• frontend – the graphical user interface that
handles user interaction, sends requests to the
backend, prettifies its output and assigns behaviour
to the buttons and fields;

• backend – a number of web services for
creating language training exercises, selecting
23The Swedish word lärka means ‘lark’ (the bird), hence the
logo; see http://spraakbanken.gu.se/larka/

53

distractors, generating syntactic trees and rating
corpus hits according to their appropriateness for
particular exercise types;

• Korp24 is Språkbanken’s web-service based
infrastructure for maintaining and searching a
constantly growing corpus collection, at the
moment amounting to over one billion words of
Swedish text (Borin et al. 2012a). The corpora
available through Korp contain multiple
annotations, e.g. lemmatisation, compound
analysis, PoS tagging, and syntactic dependency
trees, which can form the basis for versatile
exercises;

• Karp25 is the corresponding web-service
based infrastructure for maintaining and retrieving
information from Språkbanken’s collection of
computational lexical resources (Borin et al.
2012b);

These four components together constitute
Lärka’s architecture. Below, we describe the
backend and the frontend, discuss the functionality
that Lärka can provide at the moment, and outline
future work.

Lärka’s frontend (figure 2, top) is the graphical
user interface that collects user input and sends
requests to the backend. The design has been

24http://spraakbanken.gu.se/korp/ (korp means ‘raven’).
25http://spraakbanken.gu.se/karp/ (karp means ‘carp’ [the
fish]).

inherited from the two other applications
mentioned above – Korp and Karp. Similarly to
these, Lärka will have the functionality to encode
the exercise type in a URL (defining the exercise
type, training mode, corpus, learner level, etc), so
that exercise configurations can be referenced
directly as URLs – i.e., bookmarked and passed
around – saving users the extra effort of always
going through the menus on the main webpage.

Each exercise (or any other future learner
activity) is added as a separate module with
minimal additions to the user interface code and as
a web service. Exercises and other learning objects
can thus be developed separately and get
integrated with minimal efforts.

At the moment of writing, Lärka offers three
exercise types: (1) training PoS; (2) training
syntactic relations; and (3) multiple-choice
vocabulary exercise items for language learners
(re-implemented from Volodina 2010). The first
two types are intended for linguistics students and
ported from ITG. Each of the exercise types can be
run in test mode or in self-study mode, see figure
3. As soon as one item is answered, the next one is
generated. The result tracker shows the learner
progress.

Lärka’s backend is the heart of the architecture;
see figure 2. Lärka depends heavily on the corpora
and their annotation, and therefore uses Korp’s
web service for sentence selection. The rich

Figure 2: Lärka’s frontend (GUI)

Figure 2. The architecture of Lärka

54

annotations available in Korp facilitate generation
of exercise types other than the ones that have
already been implemented; these are planned for
future implementation.

Figure 4. Example output (in JSON26 format) from
Lärka's backend.

The output from Lärka’s backend (i.e. web

26JSON is an acronym for JavaScript Object Notation.

services) can be used by any program, e.g. in
mobile apps. An example of the output from the
web service is shown in figure 4. Here you can see
all the necessary information for the syntactic
training exercise (in JSON, which currently is the
common data communication format used by all
Språkbanken’s web services):

• sentence_left, target and sentence_right
make up a complete sentence;

• the target is the part of the sentence that
needs to be matched with a syntactic relation;

• the target’s syntactic relation (correct
answer) is provided as a tag in target_deprel;

• the list of distractors is provided together
with the Swedish and English terms for each tag;

• the extra information, like corpus,
sent_index (sentence index), target_index
(position of the target item in the sentence), etc.
are provided in case the user would want to
replicate exactly the same item once again through
a call to the backend.

In the user interface a JSON link is provided for
every single exercise item for those who want to
see the web service output.

The web service algorithms for exercise

Figure 3. Lärka's frontend (GUI)

55

generation are language independent since they
rely on the annotation only. The exercise
generation can therefore be made language
independent provided there are resources (corpora
and underlying word lists) for other languages
using the same annotation.

At the moment, the web service output is
provided in one format only – JSON. Eventually,
other formats will be added, e.g. QTI (Question
and Test Interoperability; IMS 2006) and TCF
(Hinrichs 2010).

Next on our to-do list is to add syntactic tree
visualisations, show relevant encyclopedia entries
as an accompanying feature for exercises, design
morphological and semantic exercise items based
on Karp’s web-services (Borin et al. 2012b), add
gap cloze and wordbank items as well as
diagnostic tests for vocabulary knowledge training.
In the more distant future we are planning to:

• add an option of editing existing exercises
by providing word lists, texts or selecting other
distractors;

• extend the Lärka with Hit-ex – a web
service and frontend for showing results from an
algorithm for rating corpus searches according to
different combinations of linguistic parameters.
Tests with Hit-ex are ongoing;

• add the possibility to measure text
readability using several readability indices;

• and of course add more exercise types, for
grammar, word-building, etc.

5 Concluding remarks

The main idea of our project is to stimulate the re-
use of existing accurate NLP tools and resources in
language learning by designing and implementing
a system architecture for ICALL, at the moment
on a more abstract level – where our two
subprojects share the general philosophy of
making NLP components available via web
services – and in the next phase of the project on
the concrete level of having a common data
exchange format (e.g. TCF). ICALL researchers
and developers clearly stand to benefit from our
project. In addition, language learners will also be
affected because the system architecture and the
two test applications will benefit language learners
in the form of a more versatile and open-ended
CALL experience, thanks to the NLP components.

Our experiences so far indicate that web
services are a promising approach to re-use of
existing NLP components: they are easy to

develop and they preserve their independent stable
form despite the changes introduced to the user
interface. However, web service providers –
including ourselves – should keep in mind, that (1)
the services need to be stable and predictable over
time, i.e. not undergo sudden changes in their
output formats or any other unwelcome changes
that can influence the performance of the
application(s) based on them; (2) they should
deliver as much information as possible to allow
the end-user some variation in using their output,
e.g. in the case of Lärka’s syntactic exercises, the
output from the web service could contain not only
strings of left and right contexts, but also all
associated annotation information for each token
coming from the corpus web service.

Practical experience also shows that the web
services as far as possible should be split into one
separate component that reads information in the
request and makes calls to separate request-
specific components. In other words, the service-
based architecture should be consistently applied
all through the application. In the long run, this
makes maintenance of the components easier.

It is at the moment undecided which formats we
will adopt as standards in the final versions of our
web-services. The two formats – TCF and JSON –
adopted at the moment by the two language teams
work well for us at this testing stage. We should,
however, consider the end user interests; for
example there is one format we know is used for
exercises – QTI (see above) – that we consider
important for inclusion as an output format for the
exercise generator; there might be other relevant
formats that need to be considered.

However, we believe that once our web-service
based philosophy is adopted by other owners of
NLP components, the two applications described
in this paper may become a potential portal for
delivering results gained by researchers in CALL,
NLP and HCI to the general user and therefore
fulfil a very important aim: to make NLP and
ICALL research results available outside academia
in the form of hands-on applications, thus making
technology benefit language learning.

Acknowledgments

The work in this paper has been partially funded
with support from NordPlus Sprog, grant LA-
2011_1a-25339. The Swedish group has also been
partially funded by the University of Gothenburg
through its support of the Centre for Language
Technology and of Språkbanken.

56

References

Luiz A. Amaral and Detmar Meurers. 2011. On using
intelligent computer-assisted language learning in
real-life foreign language teaching and learning.
ReCALL 23(1): 4–24.

Luiz A. Amaral, Detmar Meurers, and Ramon Ziai.
2011. Analyzing learner language: towards a flexible
natural language processing architecture for
intelligent language tutors. Computer Assisted
Language Learning 24(1): 1–16.

Birna Arnbjörnsdóttir. 2008. Kennsla tungumála á
netinu: Hugmyndafræði og þróun Icelandic Online
[The teaching of languages through the Net: The
ideology and development of Icelandic Online].
Hrafnaþing 5: 7–31.

Birna Arnbjörnsdóttir. 2004. Teaching morphologically
complex languages online: Theoretical questions and
practical answers. CALL for the Nordic languages,
ed. by Peter Juel Henrichsen. (Copenhagen Studies
in Language 30.) Copenhagen: Samfundslitteratur.

Kristín Bjarnadóttir. 2005. Modern Icelandic
inflections. In H. Holmboe, editor, Nordisk
Sprogteknologi 2005, 49–50. Museum Tusculanums
Forlag, Copenhagen.

Lars Borin. 2002. What have you done for me lately?
The fickle alignment of NLP and CALL. In
Proceedings of the EUROCALL 2002 pre-
conference workshop “NLP in CALL”. Jyväskylä,
Finland.

Lars Borin. 2006. Sparv i tranedansen eller fisken i
vattnet? Språkteknologi och språklärande. Från
vision till praktik: Språkutbildning och
informationsteknik, ed. by Patrik Svensson. Rapport
1:2006, Nätuniversitetet. 25-49.

Lars Borin and Anju Saxena, A. 2004. Grammar,
incorporated. CALL for the Nordic languages, ed. by
Peter Juel Henrichsen. (Copenhagen Studies in
Language 30.) Copenhagen: Samfundslitteratur.
125–145.

Lars Borin, Markus Forsberg, and Johan Roxendal.
2012a. Korp – the corpus infrastructure of
Språkbanken. Proceedings of LREC 2012. Istanbul:
ELRA. 474–478.

Lars Borin, Markus Forsberg, Leif-Jöran Olsson, and
Jonatan Uppström. 2012b. The open lexical
infrastructure of Språkbanken Proceedings of LREC
2012. Istanbul: ELRA. 3598–3602.

Rod Ellis, Helen Basturkmen, and Shawn Loewen.
2002. Doing focus-on-form. System 30: 419–432.

Thomas Erl. (2005) Service-Oriented Architecture:
Concepts, Technology, and Design, Prentice-Hall,
USA

Trude Heift. 2003. Multiple learner errors and
meaningful feedback: A challenge for ICALL
systems. CALICO Journal, 20(3), 533–548.

Marie Hinrichs, Thomas Zastrow, and Erhard Hinrichs.
2010. WebLicht: Web-based LRT services in a
distributed eScience infrastructure. Proceedings of
LREC 2010. Valletta, Malta: ELRA.

IMS (2006). IMS Question and Test Interoperability
overview. Version 2.1 Public Draft (revision 2)
Specification. IMS Global Learning Consortium.
http://www.imsglobal.org/question/qtiv2p1pd2/
imsqti_oviewv2p1pd2.html (Retrieved on 29th Juny,
2012).

Sofie Johansson Kokkinakis,. 2009, Readability and
multilingualism. Multilingualism, Proceedings of the
23rd Scandinavian Conference of Linguistics,.
Studia Linguistica Upsaliensia 8 (Acta Universitatis
Upsaliensis). 323–324

Ola Knutsson. 2005. Developing and evaluating
language tools for writers and learners of Swedish.
Doctoral thesis in human-computer interaction.
KTH, Stockholm.

Steven Krauwer. 2003. The Basic Language Resource
Kit (BLARK) as the first milestone for the language
resources roadmap. Proceedings of SPECOM 2003.
Moscow.

Hrafn Loftsson. 2008. Tagging Icelandic text: A
linguistic rule-based approach. Nordic Journal of
Linguistics, 31(1), 47–72.

Hrafn Loftsson and Eiríkur Rögnvaldsson. 2007a.
IceParser: An incremental finite-state parser for
Icelandic. In J. Nivre, H-J. Kaalep, K. Muischnek
and M. Koit (eds.), Proceedings of the 16th Nordic
Conference of Computational Linguistics
(NODALIDA-2007). Tartu, Estonia.

Hrafn Loftsson and Eiríkur Rögnvaldsson. 2007b.
IceNLP: A natural language processing toolkit for
Icelandic. In Proceedings of InterSpeech 2007,
Special session: "Speech and language technology
for less-resourced languages". Antwerp, Belgium.

Ulrika Magnusson and Sofie Johansson Kokkinakis.
2008. Quantitative measures on student texts. Papers
from the ASLA Symposium in Stockholm, 7-8
November, 2008, Association suédoise de
linguistique appliquée (ASLA), Language and
Learning (ASLA:s skriftserie nr 22). 43–56.

Teresa Martín-Blas and Ana Serrano-Fernández. 2009.
The role of new technologies in the learning process:
Moodle as a teaching tool in Physics. Computers &
Education 52 (2009), p.35–44

Noriko Nagata. 2009. Robo-Sensei‘s NLP-based error
detection and feed-back generation. CALICO
Journal, 26(3), 562–579.

57

Kristina Nilsson and Lars Borin. 2002. Living off the
land: The Web as a source of practice texts for
learners of less prevalent languages. Proceedings of
LREC 2002. Las Palmas: ELRA. 2002. 411–418.

Jörgen Pind, Friðrik Magnússon, and Stefán Briem.
1991. Íslensk orðtíðnibók [The Icelandic Frequency
Dictionary]. The Institute of Lexicography,
University of Iceland, Reykjavik.

Eiríkur Rögnvaldsson. 2008. Icelandic language
technology ten years later. In Proceedings of
“Collaboration: Interoperability between People in
the Creation of Language Resources for Less-
resourced Languages”, SALTMIL workshop, LREC
2008. Marrakech: ELRA.

Anju Saxena and Lars Borin. 2002. Locating and
reusing sundry NLP flotsam in an e-learning
application. LREC 2002. Workshop Proceedings.
Customizing knowledge in NLP applications:
strategies, issues, and evaluation. Las Palmas:
ELRA. 45-51.

Latha Srinivasan and Jem Treadwell. 2005. An
overview of service-oriented architecture, web
services and grid computing. Hewlett-Packard
Development Company, V02, 11/2005.

Elena Volodina. 2010. Corpora in Language
Classroom: Reusing Stockholm Umeå Corpus in a
vocabulary exercise generator. Saarbrücken:
Lambert Academic Publishing.

Elena Volodina and Lars Borin. 2012. Developing a
freely available web-based exercise generator for
Swedish. EuroCALL 2012 Proceedings, Gothenburg.

Elena Volodina, Hrafn Loftsson, Birna Arnbjörnsdóttir,
Lars Borin, and Guðmundur Örn Leifsson. 2012.
Towards a system architecture for ICALL. In G.
Biswas et al. (eds), Proceedings of the 20th
International Conference on Computers in
Education. Singapore: Asia-Pacific Society for
Computers in Education.

Peter Wood. 2008. Developing ICALL tools using
GATE. Computer-Assisted Language Learning,
21:4, 383-392.

58

