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Preface

Developing ontologies is not an easy task and, as the ontologies grow in size,
they are likely to show a number of defects. Such ontologies, although often
useful, also lead to problems when used in semantically-enabled applications.
Wrong conclusions may be derived or valid conclusions may be missed. Defects
in ontologies can take different forms. Syntactic defects are usually easy to find
and to resolve. Defects regarding style include such things as unintended re-
dundancy. More interesting and severe defects are the modeling defects which
require domain knowledge to detect and resolve such as defects in the structure,
and semantic defects such as unsatisfiable concepts and inconsistent ontologies.
Further, during the recent years more and more mappings between ontologies
with overlapping information have been generated, e.g. using ontology alignment
systems, thereby connecting the ontologies in ontology networks. This has led
to a new opportunity to deal with defects as the mappings and other ontologies
in the network may be used in the debugging of a particular ontology in the
network. It also has introduced a new difficulty as the mappings may not always
be correct and need to be debugged themselves.

To deal with these issues a new workshop was created. This volume contains
the proceedings of its first edition: WoDOOM12 - 1st International Workshop
on Debugging Ontologies and Ontology Mappings held on October 8, 2012 in
Galway, Ireland.

In his excellent invited talk, Bijan Parsia gave a classification of different de-
fects in ontologies and discussed how easy or difficult it is to detect these defects.
Further, there were presentations of two research papers and one experience pa-
per, as well as a demonstration.

The editors would like to thank the Program Committee for their work in en-
abling the timely selection of papers for inclusion in the proceedings. We also ap-
preciate our cooperation with EasyChair as well as our publisher Linköping Uni-
versity Electronic Press. WoDOOM12 was an EKAW 2012 (18th International
Conference on Knowledge Engineering and Knowledge Management) workshop.

October 2012 Patrick Lambrix
Guilin Qi

Matthew Horridge
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Measuring the Understandability of Deduction
Rules for OWL

Tu Anh T. Nguyen, Richard Power, Paul Piwek, Sandra Williams

Department of Computing, The Open University, UK
{t.nguyen,r.power,p.piwek,s.h.williams}@open.ac.uk

Abstract. Debugging OWL ontologies can be aided with automated
reasoners that generate entailments, including undesirable ones. This
information is, however, only useful if developers understand why the
entailments hold. To support domain experts (with limited knowledge
of OWL), we are developing a system that explains, in English, why an
entailment follows from an ontology. In planning such explanations, our
system starts from a justification of the entailment and constructs a proof
tree including intermediate statements that link the justification to the
entailment. Proof trees are constructed from a set of intuitively plausible
deduction rules. We here report on a study in which we collected em-
pirical frequency data on the understandability of the deduction rules,
resulting in a facility index for each rule. This measure forms the basis for
making a principled choice among alternative explanations, and identi-
fying steps in the explanation that are likely to require extra elucidation.

Keywords: Explanations, Entailments, Justifications, Understandabil-
ity, Difficulty, Deduction Rules, Inference Rules

1 Introduction

An important tool in debugging ontologies is to inspect the entailments gener-
ated by automated reasoners such as FaCT++ [12] and Pellet [11]. An obviously
incorrect entailed statement such as SubClassOf(Person,Movie) (Every person is a
movie) signals that something has gone wrong, but many developers, especially
those with limited knowledge of OWL, will need more information in order to
make the necessary corrections: they need to understand why this undesirable
entailment follows from the ontology, before they can start to repair it. A jus-
tification of an entailment—defined as any minimal subset of the ontology from
which the entailment can be drawn [7]—provides a set of premises from which
the entailment follows; however, user studies have shown that in many cases
even OWL experts are unable to work out how the conclusion follows from the
premises without further explanations [6]. Moreover, the opacity of standard
OWL formalisms, which are designed for efficient processing by computer pro-
grams and not for fast comprehension by people, can be another obstacle for
domain experts. As a possible solution to this problem, we are developing a
system that explains, in English, why an entailment follows from an ontology.
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To generate such explanations, our system starts from a justification of the
entailment, which can be computed using the method described by Kalyanpur
et al. [8], and constructs proof trees in which the root node is the entailment,
the terminal nodes are the axioms in the justification, and other nodes are in-
termediate statements (i.e., lemmas). Proof trees are constructed from a set of
intuitively plausible deduction rules which account for a large collection of de-
duction patterns, with each lemma introduced by a rule (as described in detail
in [10]). For a given justification, the deduction rules might allow several proof
trees, in which case we need a criterion for choosing the best.1 From the selected
proof tree, the system generates an English explanation. Such an explanation
should be easier to understand than one based on the justification alone, as it
replaces a single complex inference step with a number of simpler steps.

As an example, Table 1 shows an explanation generated by our prototype
for the (obviously absurd) entailment “Every person is a movie”, and based on
the proof tree shown in Figure 1. The key to understanding this proof lies in the
step from axiom 1 to statement (c), which is an example of an inference in need
of “further elucidation”—a feature not yet implemented in our prototype.2

Table 1. An example explanation generated by our prototype

In
p
u
t

Entailment: SubClassOf(Person,Movie)
Justification:
1. EquivalentClasses(GoodMovie,ObjectAllValuesFrom(hasRating,FourStars))
2. ObjectPropertyDomain(hasRating,Movie)
3. SubClassOf(GoodMovie,StarRatedMovie)
4. SubClassOf(StarRatedMovie,Movie)

O
u
t
p
u
t

Every person is a movie because the ontology implies that everything is a movie.
Everything is a movie because (a) everything that has a rating is a movie, and (b) everything
that has no rating at all is a movie.
Statement (a) is from axiom 2 in the justification. Statement (b) is implied because (c) every-
-thing that has no rating at all is a good movie, and (d) every good movie is a movie.
Statement (c) is implied because axiom 1 in the justification states that “a good movie is any-
-thing that has as rating only four stars”.
Statement (d) is implied because (e) every good movie is a star rated movie, and (f) every star
rated movie is a movie. Statements (e) and (f) are from axioms 3 and 4 in the justification.

It is important to note that there may be multiple justifications for a given
entailment in an ontology, and also multiple proof trees for a given justification.
For either or both of these reasons, there may be multiple potential explanations
for a given entailment, some of which may be easier to follow than others. There-
fore, being able to identify the most understandable proof among alternatives
would be of great help in planning an effective explanation.

1 Alternatively the deduction rules might not yield any proof trees, in which case the
system has to fall back on simply verbalising the justification. Obviously such cases
will become rarer as we expand the set of rules.

2 Axiom 1 asserts an equivalence between two classes: good movies, and things that
only have ratings of four stars. The precise condition for an individual to belong
to the second class is that all of its ratings should be four star, and this condition
would be trivially satisfied if the individual had no ratings at all.
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Fig. 1. The proof tree of the explanation in Table 1. The labels r17 etc. refer to rules
listed in Table 3. FI values represent how easy it is to understand the rules—their
Facility Indexes—with values ranging from 0.0 (hardest) to 1.0 (easiest).

This paper focusses on the deduction rules and their understandability. We
describe how our current set of deduction rules was collected through analysis of
a large corpus of approximately 500 OWL ontologies, and report on an empir-
ical study that allows us to assign easiness levels to the deduction rules.3 This
facility index provides a basis for measuring the understandability of an entire
explanation and for making a principled choice among alternative explanations.
It also indicates which steps in an explanation are likely to be difficult and in
need of extra elucidation—for example, the inference from axiom 1 to statement
(c) in the explanation in Table 1. We envisage that the method described here
can be used by others to empirically test different sets of deduction rules.

2 Deduction Rules

Intuitively, a deduction rule is an inferential step from premises to a conclusion,
which cannot be effectively simplified by introducing substeps (and hence, inter-
mediate conclusions). In practice this means that deduction rules have relatively
few premises, and in fact we limit this number to four. Formally speaking, both
the conclusion and the premises are OWL axioms, but they are generalised by
using variables that abstract over class and property names. An example of our
deduction rules is SubClassOf(X,Y) ∧ SubClassOf(Y,Z) → SubClassOf(X,Z) (rule
12), which corresponds to the well-know syllogism that from “Every X is a Y”
and “Every Y is a Z” we may infer “Every X is a Z”.

Our deduction rules were derived empirically through a corpus study of
around 500 OWL ontologies. These were collected from a variety of sources,
including the TONES repository [2], the Swoogle search engine [3] and the
Ontology Design Patterns corpus [1]; they thus cover a wide range of topics
and authoring styles. To collect deduction rules, we first computed entailment-
justification pairs using the method described by Nguyen et al. [9], then collated
them to obtain a list of deduction patterns ranked by frequency. From this list,

3 In a deduction rule, the premises can be viewed as a justification of the entailment.
Horridge et al. proposed a model for measuring the difficulty of a justification [4], but
this model was based on the complexity of its logical structure of the justification
rather than its difficulty for people.
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we selected deduction patterns that were simple (in a sense that will be explained
shortly) and frequent, such as rule r12 mentioned above. Subsequently we added
some further rules that occurred often as parts of more complex deduction pat-
terns, but were not computed as separate patterns because of certain limitations
of the reasoning algorithms.4 An example of such rules is ObjPropDom(r0,X) ∧
SubClassOf(ObjectAllValuesFrom(r0,⊥),X) → SubClassOf(>,X) (rule 17), which is
from “Everything that r0 something is an X” and “Everything that r0 nothing
at all is an X” we infer “Everything is an X”.

As a criterion of simplicity we considered the number of premises (we stipu-
lated not more than four) and also what is called the laconic property [5]—that
an axiom should not contain information that is not required for the entailment
to hold. We have assumed that deduction rules that are simple in this sense are
more likely to be more understandable by most people. So far, 57 deduction rules
have been obtained in this way. These rules are sufficient to generate appropriate
lemmas for 48% of the justifications of subsumption entailments in the corpus
(i.e., over 30,000 justifications).

3 Measuring Understandability

3.1 Materials

To measure the understandability of a rule, we devised a deduction problem
in which premises of the rule were given in English, replacing class or property
variables by fictional nouns and verbs so that the reader would not be biassed by
domain knowledge, and the subjects were asked whether the entailment of the
rule followed from the premises. The correct answer was always “Follows”, so to
control for positive response bias (i.e., favouring a positive answer to any ques-
tion) we included questions for non-entailments and trivial entailments, which
we will call control questions as opposed to test questions.

Our control questions were designed to be obvious to subjects who did the
test seriously (rather than responding casually without reading the problem
properly). Specifically, they either repeated one of the premises (in which case,
trivially, the correct answer was “Follows”), or made statements about objects
not mentioned in the premises (in which case, also trivially, the correct answer
was “Does not Follow”). Problems consisted of premises followed by two ques-
tions, one a test question and one a control; for half the problems the correct
answers were “Follows” and “Follows”, for the other half “Follows” and “Does
not Follow”, with question order varied so that the test question sometimes
preceded the control, and sometimes followed it.

3.2 Method

The study was conducted on CrowdFlower, a crowdsourcing service that allows
customers to upload tasks to be passed to labour channel partners such as Ama-

4 Reasoning services for OWL typically compute only some kinds of entailment, such
as subclass and class membership statements, and ignore others.
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zon Mechanical Turk.5 We set up the operation so that tasks were channelled
only to Amazon’s Mechanical Turk, and were restricted to subjects from Aus-
tralia, the United Kingdom and the United States since we were aiming to recruit
as many (self-reported) native speakers of English as possible.

To eliminate responses from ‘scammers’ (people who respond casually with-
out considering the problem seriously), we used CrowdFlower’s quality control
service which is based on gold-standard data: customers provide problems called
gold units for which the correct answer is specified, allowing CrowdFlower to
filter automatically any subjects whose performance on gold units falls below a
threshold (75%). Our gold units resembled our test units, each having premises
followed by two questions, but both questions were control units with answers
that should have been obvious to any serious subject. The management of gold
units is internal to CrowdFlower, so these data are not included in our analysis.

Of the 57 deduction rules we collected, 51 rules were measured in this way.
For example, rule r17 (from Figure 1) was measured based on data gathered from
the problem in Figure 2, with the rule’s entailment as the second question. It is
important to note that in CrowdFlower subjects are not required to complete
all problems. They can give up whenever they want, and their responses will
be accepted so long as they perform well on gold units. CrowdFlower randomly
assigns non-gold problems to subjects until it collects up to a specified number
of valid responses for each problem; in our study we specified 50, but since some
subjects gave up part-way through, the number of subjects was over 100.

Fig. 2. The testing problem for rule r17—ObjPropDom(r0,X) ∧
SubClassOf(ObjectAllValuesFrom(r0,⊥),X) → SubClassOf(>,X)

4 Results

The main aim of the study was to collect frequency data on whether people
recognise that the conclusion of a (verbalised) deduction rule follows from the

5 See http://crowdflower.com/ and http://www.mturk.com/ for details.
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premises. However, these data provide a valid index of understandability only
if we can control for positive response bias: in the extreme case, a subject that
always gives the positive answer (“Follows” rather than “Does not follow”) will
get all the test questions right, regardless of their difficulty. We used control
questions to address this issue—additional to the CrowdFlower gold-unit filter-
ing. The use of control questions in each problem also provided an opportunity
for confirming that in general subjects were taking the survey seriously.

4.1 Control Questions

Figure 3 shows that for the 108 subjects that participated in the study, all
answered around 75% or more of the control questions correctly, suggesting that
they were performing the task seriously.

Fig. 3. The subjects’ performance on the control questions

4.2 Response Bias

Table 2 shows the absolute frequencies of the responses “Follows” (+F) and
“Does not follow” (−F) for all non-gold questions in the study—control as well
as test. It also subdivides these frequencies according to whether the answer was
correct (+C) or incorrect (−C). Thus for example the cell +F+C counts cases
in which subjects answered “Follows” when this was the correct answer, while
+F−C counts cases in which they answered “Follows” when this was incorrect.

Recalling that for half the problems the correct answers were +F+F, while
for half they were +F−F, the percentage of +F answers for a subject that always
answered correctly would be 75%. If subjects had a positive response bias we
would expect an overall rate higher than this, but in fact we obtain 3617/4930
or 73.4%, suggesting little or no bias in either direction.

Looking at the distribution of incorrect answers, we can also ask whether
subjects erred through being too ready to accept invalid conclusions (−F−C),
or too unwilling to accept conclusions that were in reality valid (+F−C). The
table shows a clear tendency towards the latter, with only 118 responses in
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−F−C compared with an expected value of 274 (1030*1313/4930) calculated
from the overall frequencies. In other words, subjects were more likely to err by
rejecting a valid conclusion than by accepting an invalid one, a finding confirmed
statistically by the highly significant association between response (±F) and
correctness (±C) on a 2×2 chi-squared test (χ2 = 153.5, df = 1, p < 0.0001).

Table 2. The distribution of the subjects’ performance

+F -F TOTAL
+C 2705 1195 3900
-C 912 118 1030

TOTAL 3617 1313 4930

4.3 Facility Indexes

We use the proportion of correct answers for each test question as an index of
understandability of the associated deduction rule, which we will call its facility
index. This index provides our best estimate of the probability that a person
will understand the relevant inference step—i.e., that they will recognise that
the conclusion follows from the premise—and accordingly ranges from 0.0 to 1.0.
Values of the facility index for the rules tested in the study are shown in Table 3,
ordered from high values to low. In this table, the rules r12 and r17 used in the
explanation in Table 1 are relatively easy, with facility indexes of 0.80 and 0.78.
By contrast rule r51, which infers statement (c) from axiom 1 in the example,
is the hardest, with a facility index of only 0.04, and hence evidently a step in
need of further elucidation—for instance as follows:

Statement (c) is inferred from axiom 1, which asserts an equivalence between
two classes: ‘good movie’ and ‘anything that has as rating only four stars’.
Since the second class trivially accepts anything that has no rating at all, we
conclude that anything that has no rating at all is a good movie.

It can be seen in the table that for closely related rules, such as r11, r12 and r14,
the facility indexes are quite close to each other (see also r17 and r19), a result
that confirms the reliability of the values.

5 Conclusion

The main aim of this paper is to report empirical results on the difficulty of
some inference steps that often occur in proofs, in particular for entailments
computed from ontologies. These results allow us to estimate the understand-
ability of proofs that can serve as the basis for verbal explanations of entailments,
so making it clear to an ontology developer why an undesired statement was in-
ferred, and which axiom(s) in the ontology should be removed or revised.
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In our explanation planner, the facility indexes for the deduction rules are
used in two ways. First, by combining the values for all the rules in a given proof
tree, we can estimate the difficulty of the whole tree, and thus make a principled
choice among alternative trees. If we think of facility indexes as measuring the
probability that a reader will understand a given step in the explanation, a
natural method of combining indexes would be to multiply them, so computing
the joint probability of all steps being followed; the higher this value, obviously,
the better. Second, once a proof tree has been chosen as more understandable
than the alternatives (if any), we can apply the indexes again by looking for steps
that are relatively hard, and considering whether to add extra elucidation at that
point. We plan to do this by investigating a range of explanation strategies for
each difficult rule, and determining empirically which is most effective.

Leaving aside the way facility indexes are used in our work, we believe both
the indexes and our method for obtaining them are worth for reporting as a
resource for other researchers, who might find them useful in alternative models
or contexts.
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Abstract. Given the high expressivity of the Web Ontology Language
OWL 2, there is a potential for great diversity in the logical content of
OWL ontologies. The fact that many naturally occurring entailments of
such ontologies have multiple justifications indicates that ontologies often
overdetermine their consequences, suggesting a diversity in supporting
reasons. On closer inspection, however, we often find that justifications –
even for multiple entailments – appear to be structurally similar, suggest-
ing that their multiplicity might be due to diverse material, not formal
grounds for an entailment.

In this paper, we introduce and explore several equivalence relations
over justifications for entailments of OWL ontologies which partition a
set of justifications into structurally similar subsets. These equivalence
relations range from strict isomorphism to looser notions of similarity,
covering justifications which contain different class expressions, or even
different numbers of axioms. We present the results of a survey of 83
ontologies from the bio-medical domain, showing that OWL ontologies
used in practice often contain large numbers of structurally similar jus-
tifications.

1 Introduction

Justifications, minimal entailing subsets of an OWL1 ontology, provide helpful
and easy-to-understand explanation support when repairing unwanted entail-
ments in the ontology debugging process. They are currently the prevalent form
of explanation in OWL ontology editors such as Protégé 4. While we have some
knowledge of how individual justifications can be made easier to understand for
human users, e.g. [8,11], we have yet to gain more insights into user interaction
with multiple justifications. An entailment of an OWL ontology can have a large
number of justifications (potentially exponential in the number of axioms in the
ontology [3]), with up to several hundreds found in large real-life ontologies [4].
In order to achieve a minimal repair, i.e. a modification of the ontology which
removes unwanted entailments without losing relevant information, it is often
beneficial to consider not only a single, but multiple entailments simultaneously.

1 We will use the term OWL to refer to both OWL and OWL 2 ontologies.
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When encountering justifications for a finite set of entailments of an ontology
(e.g. unwanted atomic subsumptions, or unsatisfiable classes), we are often faced
with a seemingly large and diverse body of reasons why the entailments hold.
Root and derived justifications [13,14] address this issue by pointing out those
justifications which are subsets of others; fixing such a subset (root) justifications
first will also repair those justifications which are derived from it. While proven
to be helpful, root and derived justifications are restricted to a very specific kind
of relation between justifications. Due to a lack of other suitable interaction
strategies, large numbers of multiple justifications may still present themselves
to a user as an unordered and often unmanageable list of axiom sets.

On closer inspection, however, we frequently find that sets of justifications
are very similar, and often even contain structurally identical axioms, with only
class, property, and individual names diverging. Pointing out these similarities
and grouping justifications based on their shared structures might greatly assist
a user in coping with multiple justifications: Rather than trying to understand
each individual material justification, the user can focus on understanding the
formal template of a particular subset of justifications. Potentially, a user might
have to deal with far fewer justifications, thus having a significantly reduced
effort when repairing an ontology. This raises two questions: First, how do we
determine whether two justifications are structurally similar, and second, how
prevalent are such similarities in ontologies used in practice?

A well-known syntactical equivalence relation in OWL is structural equiv-
alence. The OWL Structural Specification2 states the condition for two OWL
objects (named classes, properties, or individuals, complex expressions, or OWL
axioms) to be structurally equivalent. In short, it defines the objects to be equiv-
alent if they contain the same complex expressions, using identical entity names
and constructors, regardless of ordering and repetition (in an unordered associa-
tion). The OWL API,3 a Java API which is used to manipulate OWL ontologies,
implements this notion of structural equivalence by default.

A looser notion of structural similarity, justification isomorphism [6], was
first introduced in a study of the cognitive complexity of justifications: Two jus-
tifications are isomorphic if there exists a mapping between class, property and
individual names of the justifications which makes them structurally equivalent.
This equivalence relation covers justifications which contain the same number of
axioms, constructors, as well as class, property, and individual names. Justifica-
tion isomorphism has previously been shown to significantly reduce a corpus of
justifications from 64,800 to merely 11,600 justification templates [6].

While justification isomorphism helps to eliminate the effects of diverging
entity names, we can also identify types of justifications which may be considered
to be very similar despite their use of different constructors:

2 http://www.w3.org/TR/owl2-syntax
3 http://owlapi.sourceforge.net
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Example 1

J1 = {A v B u C,B u C v D} |= A v D
J2 = {A v ∃r.C, ∃r.C v D} |= A v D

In this example, the semantics of the complex expressions B uC in J1 and ∃r.C
in J2 are not relevant for the respective entailment; their occurrences in the
justifications and their entailments could be replaced by freshly generated atomic
concept names without affecting the entailment relation. Such a substitution in
turn would make the two justifications isomorphic.

Likewise, justifications of different lengths may be considered similar if their
general structure of reasoning is identical:

Example 2

J1 = {A v B,B v C} |= A v C
J2 = {A v B,B v C,C v D} |= A v D

These two justifications clearly require the same form of reasoning from a
user, namely the understanding of simple atomic subsumption. Strict isomor-
phism only applies to justifications which contain the same number of axioms; it
does not cover situations like the above. However, for the purpose of structuring
sets of justifications and analysing the logical diversity of a corpus of justifi-
cations, capturing those kinds of similarities illustrated in the above examples
would be highly desirable.

The idea of finding similarities between concepts in Description Logics has
been widely explored in the work on unification and matching, e.g. [1,2], for
the purpose of detecting redundant concept descriptions in knowledge bases.
The aim of unification is to find a suitable substitution σ which maps atomic
concepts in a concept term C to (possibly non-atomic) concepts in a concept
term D such that the two terms are made equivalent.

While unification and matching are very close to our requirements for captur-
ing similarities between justifications, the concepts are not directly applicable.
In our case, the inputs are of different shape from the matching problem: The
goal is to unify two sets of axioms and the corresponding entailments, rather
than matching a given concept pattern containing variables with a concept de-
scription.

The above examples motivate a looser notion of justification isomorphism,
which allows us to identify justifications as equivalent if they require the same
reasoning mechanisms, regardless of size, signature, and logical constructors
used. In the present paper, we introduce two new types of equivalence rela-
tions based on matching subexpressions and lemmas, and analyse the effect
these extended relations have when applied to a corpus of justifications from
the bio-medical domain.
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2 Preliminaries

2.1 Justifications in OWL

We assume the reader to be familiar with OWL and the underlying Description
Logic SROIQ [9]. In what follows, A,B, . . . denote class names in an ontology
O, r, s role names, and α denotes an OWL axiom.

The concept of pinpointing minimal entailing subsets of an ontology is the
dominant form of explanation for entailments of OWL ontologies [15,13,3]. A
justification (also denoted as MinA, or MUPS when referring to unsatisfiable
classes) is defined as a minimal subset of an ontology O that causes an entailment
η to hold:

Definition 1 (Justification) J is a justification for O |= η if J ⊆ O,J |= η
and, for all J ′ ⊂ J , it holds that J ′ 2 η.

For every axiom which is asserted in the ontology, the axiom itself naturally is
a justification. We call such a justification a self-justification, and an entailment
which has only a self-justification and no other justification in O a self-supporting
entailment.

It is important to note that a justification is always defined with respect
to an entailment η. In the remainder of this paper we will therefore use the
term justification to describe a justification-entailment pair (J , η) where J is a
minimal entailing axiom set for η.

2.2 Justification Isomorphism

Isomorphism between justifications was first introduced as a method to reduce
the number of similar justifications when sampling from a large corpus to justi-
fications [6].

Definition 2 (Justification Isomorphism) Two justifications (J1, η1), (J2, η2)
are isomorphic ((J1, η1) ≈i (J2, η2)) if there exists an injective renaming φ
which maps class, role, and individual names in J1 and η1 to class, role, and in-
dividual names in J2 and η2, respectively, such that φ(J1) = J2 and φ(η1) = η2.

Example 3 (Isomorphic Justifications)

J1 = {A v B u ∃r.C,B u ∃r.C v D} |= A v D
J2 = {E v B u ∃s.F,B u ∃s.F v D} |= E v D
φ = {A 7→ E,C 7→ F, r 7→ s}

The relation ≈i is symmetric, reflexive and transitive, from which it follows
that ≈i is an equivalence relation and thus partitions a set of justifications.

In the remainder of this paper, we may refer to the isomorphism defined
above as strict isomorphism in order to distinguish it from the other equivalence
relations.

16



3 Subexpression-Isomorphism

From the above definition of isomorphism it follows that only justifications which
have the same number and types of axioms and subexpressions can be isomor-
phic. It is easy to see, however, that justifications can have a similar structure
despite their use of different concept expressions, as demonstrated in Example
1. This motivates a notion of isomorphism which allows not only the mapping
of concept names, but also that of complex subexpressions.

We introduce a justification template Θ, which functions as the unifying
justification for the isomorphic justifications:

Definition 3 (Subexpression-Isomorphism) Two justifications (J1, η1),
(J2, η2) are s-isomorphic ((J1, η1) ≈s (J2, η2)) if there exists a justification
(Θ, η), called a template, and two injective substitutions φ1, φ2, such that
1. Θ |= η
2. φ1(Θ) = J1 and φ2(Θ) = J2
3. φ1(η) = η1 and φ2(η) = η2.

The mappings φ1 and φ2 map class, role, and individual names in the template
(Θ, η) to subexpressions of (J1, η1) and (J2, η2), respectively.

Lemma 1 1. The relation ≈s is reflexive, transitive and symmetric; it is there-
fore an equivalence relation and thus partitions a set of justifications.

2. S-isomorphism is a more general case of strict isomorphism: J1 ≈i J2 im-
plies J1 ≈s J2.

For a complete proof of Lemma 1 we refer the reader to the supporting
materials page4 for this paper.

4 Lemma-Isomorphism

While s-isomorphism covers a number of justifications that can be regarded
as equivalent due to them requiring the same type of reasoning to reach the
entailment, it only applies to justifications which have the same number of ax-
ioms. This does not take into account cases where the justifications differ only
marginally in some subset, but where the general reasoning may be regarded as
similar nonetheless. We therefore introduce the notion of lemma-isomorphism,
which extends subexpression-isomorphism with the substitution of subsets of
justifications through intermediate entailments, so-called lemmas [7]. The gen-
eral motivation behind lemma-isomorphism is demonstrated by the following
example:

Example 4

J1 = {A v ∃r.B,B v C,∃r.C v D} |= A v D
J2 = {A v ∃r.B,B v C,C v D,D v E,∃r.E v F} |= A v F

4 http://owl.cs.manchester.ac.uk/research/publications/supporting-material/
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It is straightforward to see that both J1 and J2 require the same type of
reasoning from a human user. As the justifications only differ in the length of
the atomic subsumption chains they contain, we can certainly consider them to
be similar with respect to some similarity measure. However, the two justifi-
cations are not considered isomorphic with respect to the definitions for strict
isomorphism or subexpression-isomorphism. We therefore introduce a new type
of isomorphism which takes into account the fact that subsets of justifications
can be replaced with intermediate entailments which follow from them.

4.1 Lemmas in OWL

Lemmas of OWL justifications have previously found use in the extension of jus-
tifications to justification-oriented proofs [7]. The following definitions introduce
simplified variants of the definitions [7] of justification lemmas and lemmati-
sations. Please note that for the purpose of illustrating the effect of lemma-
isomorphism, we will simplify the lemmatisations to a more specific type of
lemmas in the next section.

Definition 4 (Lemma) Let J be a justification for an entailment η. A lemma
of (J , η) is an axiom λ for which there exists a subset S ⊆ J such that S |= λ.
A summarising lemma of (J , η) is a lemma λ for which there exists an S ⊆ J
such that J \ S ∪ {λ} |= η for S |= λ.

Definition 5 (Lemmatisation) Let (J , η) be a justification, let S1 . . . Sk be
subsets of J , and let λ1 . . . λk be axioms satisfying Si |= λi for i ∈ {1, . . . , k}.
Then the set J Λ := (J \

⋃
Si)∪

⋃
{λi} for i ∈ {1, . . . , k} is called a lemmatisation

of J if J Λ |= η. A summarising lemmatisation comprises only summarising
lemmas.

4.2 Lemma-Isomorphism

Given the definitions for lemmatisations, we can now define lemma-isomorphism
as an extension to subexpression-isomorphism:

Definition 6 (Lemma-isomorphism) Two justifications (J1, η1), (J2, η2) are
`-isomorphic ((J1, η1) ≈` (J2, η2)) if there exist lemmatisations J Λ1

1 ,J Λ2
2 which

are s-isomorphic: J Λ1
1 ≈s J Λ2

2 .

Lemma-isomorphism using arbitrary lemmas as defined above carries some
undesirable properties: First, unlike the previously defined relations, it describes
a relation which is not transitive. This isssue can be adressed by allowing only
summarising lemmatisations. Second, the lemmatisation might differ strongly
from the original justifications; in the most extreme case, the lemmatisation of
a justification can be the entailment itself. We therefore have to introduce some
constraints on the admissible lemmatisations in order to preserve the nature of
the original justifications. In order to restrict the lemmatisations to justifica-
tions which do not differ too much from the original justification, we focus on
substituting obvious steps with their lemmas.
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4.3 Lemmatisations and Obvious Steps

The notion of obvious proof steps [10,5] describes how proof steps which are in-
tuitively obvious can be replaced with their conclusion, thereby shortening the
proof without omitting important information. We loosely base the lemma re-
striction on this obviousness and choose one such example of an obvious and fre-
quently occurring constellation of axioms in OWL justifications, namely atomic
subsumption chains.

In atomic subsumption chains of the type A0 v A1, A1 v A2 . . . An−1 v An
only the relation between the subconcept A0 in the first axiom and the supercon-
cept An in the last axiom are relevant for understanding the subsumption chain;
i.e. the step from the subconcept to the final superconcept is obvious. We can
say that it is only important to understand that there is a connection between
the subconcept and the final superconcept, but we do not need to know what
this connection is. Therefore, it seems reasonable to substitute the chain with its
conclusion in the form of a single axiom A0 v An. Please note that it is possible
for such a substitution to generate a non-summarising lemma; therefore, we will
only allow summarising lemmatisations based on atomic subsumption chains.

Atomic subsumption chains represent only one of many examples of such
lemmatisations which preserve both transitivity and the original style of the jus-
tification. For the purpose of introducing lemma-isomorphism as an equivalence
relation in this paper, we focus on this particular type of lemmatisations, as it
captures a frequently occurring pattern in OWL justifications.

5 Diversity of Reason in the NCBO BioPortal Ontologies

5.1 Test Corpus

We performed a survey of equivalence relations in OWL- and OBO-ontologies
from the NCBO BioPortal.5 The purpose of this study was to determine the
prevalence of the different types of isomorphism across an independently moti-
vated (as opposed to hand selected) corpus of OWL ontologies used in practice.

At the time of downloading (January 2012), the BioPortal listed 278 OWL-
and OBO-ontologies, of which 241 could be downloaded, merged with their im-
ports, and serialised as OWL/XML. 15 of those ontologies could not be processed
in the given time frame of 30 minutes using the selected reasoner, and another 25
did not contain any relevant entailments (direct subsumptions between named
classes). For the remaining 201 ontologies, we computed justifications for all en-
tailments with a maximum of 500 justifications per entailment. Self-supporting
entailments and self-justifications were excluded from the survey, which led to
the discarding of further ontologies.

The final corpus of justifications consisted of 6,744 justifications from 83 on-
tologies, covering a very broad spectrum of sizes and complexity. Half of the
ontologies had less than 1000 named concepts and axioms, with the other half

5 http://bioportal.bioontology.org/
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reaching a maximum of 13,959 concepts and 70,015 axioms. Likewise, the expres-
sivity of the ontologies ranged from AL to several highly expressive samples in
SROIQ. A detailed listing of all surveyed ontologies alongside the study results
is available online.6

5.2 Isomorphism on the Entailment Level

We first analysed how the equivalence relations affected the set of justifications
for a single entailment. For this purpose we focused exclusively on those 39
ontologies in the corpus which produced entailments with multiple justifications.
5,647 justifications were computed for the 3,264 entailments of those ontologies
(including those entailments which had only 1 justification).

Strict Isomorphism On average, an entailment in the reduced corpus has 1.7
justifications, with a maximum of 122 justifications for an entailment from the
Orphanet Ontology of Rare Diseases. Strict isomorphism shows a significant re-
duction by 23.6% to an average of 1.3 templates per entailment. Overall, however,
only few ontologies are visibly affected by this reduction: In 11 ontologies, an
average of 3 justifications for an individual entailment is covered by a single
template, in 13 ontologies a template covers an average of 2 justifications, and
in the remaining 15 ontologies strict isomorphism does not affect the numbers
of justifications per entailment.

Of those 11 ontologies which do show some significant reduction, entailments
of the Orphanet and Cognitive Atlas ontology reveal the most striking regulari-
ties: The 122 justifications from the Orphanet ontology were covered by only 2
templates, with 61 justifications each:

Θ1 = {A v ∃r.B,Domain(r, C)} |= A v C
Θ2 = {A v ∃s.B, s v r,Domain(r, C)} |= A v C

This pattern is repeated by a large number of entailments across the Orphanet
ontology; as we will see in the next section, almost all entailments in this ontology
have justifications which are covered by these two templates.

S-Isomorphism Subexpression-isomorphism affects the justifications of only 12 of
the 3,264 entailments. Most of these stem from the Bleeding History Phenotype
ontology, where the template Θ1 also covers justifications of the type {A v
∃r.(BtD), Domain(r, C)}, i.e. they contain a disjunction instead of the atomic
class name B as the filler of the existential restriction.

L-Isomorphism Similarly, lemma-isomorphism only affects 39 entailments, with
the most notable effects in the Human Developmental Anatomy ontology, where
justifications comprising of atomic subsumption chains of lengths 2 and 3, re-
spectively, are covered by a single template.

6 See footnote 4.
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5.3 Isomorphism Across Multiple Entailments

Strict Isomorphism When applied to the justifications for all entailments of
the individual ontologies, strict isomorphism drastically reduces the number of
justifications from an average of 81.3 (σ = 185.5) justifications per ontology
to 10.5 (σ = 18.0) templates for equivalent justifications. The mean number of
justifications per template is 7.7 (σ = 41.7), which means that in each ontology
nearly 8 justifications have an identical structure. This effect is highly visible
in the Orphanet ontology, where the above template Θ1 covers 901 (of 1139)
justifications for distinct entailments.

S-Isomorphism The reduction from strict isomorphism to s-isomorphism is less
drastic than the difference between the main pool and the non-isomorphic pool.
The justifications of the 83 ontologies are reduced from an average of 81.3 jus-
tifications to 8.8 templates (σ = 13.1), which is a reduction by 1.7 templates
compared to strict isomorphism. An average of 9.2 justifications (σ = 46.6) in an
ontology share the same template. Surprisingly, the majority of ontologies (67)
does not show any difference between strict isomorphism and s-isomorphism.
Only 2 ontologies, the Lipid Ontology and Bleeding History Phenotype, are sig-
nificantly affected by s-isomorphism, with a reduction from 118 to 13 templates
(an 89% reduction from strict isomorphism) and 32 to 14 templates (46.2% re-
duction from strict isomorphism), respectively.

L-Isomorphism As with s-isomorphism, the effects of `-isomorphism are not as
significant as the first reduction through strict isomorphism. The justifications
are further reduced to an average of 7.4 templates per ontology (σ = 11.4), with
11 justifications per template (σ = 51.5). Still, 35 of the 83 ontologies show
at least a minor difference between s-isomorphism and `-isomorphism, which
indicates that they contain at least 1 atomic subsumption chain. L-isomorphism
reduces the 106 justifications generated for the Cereal Plant Gross Anatomy
ontology to only 14 templates, compared to 29 templates for s-isomorphism.

5.4 Similarities Across Multiple Ontologies

Strict Isomorphism When applied across all justifications from the corpus, strict
isomorphism reduces the corpus from 6,744 justifications to only 614 templates,
a reduction to only 9.1% of the original set of justifications. On average, 11 jus-
tifications share the same template, with the most frequent template occurring
1,603 times across 18 different ontologies (that is, in about a fifth of all ontolo-
gies); this template is of the same form as the Orphanet Ontology described
above.

S-Isomorphism Subexpression-isomorphism reduces the corpus from 6,744 to 456
templates (6.8% of the corpus), which is a further reduction by 25.7% compared
to the 614 templates for strict isomorphism. The most frequent templates in
terms of number of justifications and prevalence across all ontologies are the
same as for strict isomorphism, with numbers differing only slightly.
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L-Isomorphism Finally, lemma-isomorphism reduces the 6,744 justifications to
a mere 384 templates, which is an overall reduction of 94.3%, and a further re-
duction by 15.8% compared to subexpression-isomorphism. The effect of lemma-
isomorphism is visible when we look at the most prevalent justification, an atomic
subsumption chain of size 2, which occurs in 44 (compared to previously 37) on-
tologies. This chain represents all 701 atomic subsumption chains of differing
sizes that can be found in the corpus.

5.5 Summary

The results of our survey indicate that the effects of the three equivalence re-
lations vary strongly between the ontologies in the corpus. In contrast to strict
isomorphism, subexpression- and lemma-isomorphism have almost no effect on
the justifications for individual entailments. For multiple entailments, however,
some ontologies show a clear reaction to s- or `-isomorphism. Across the corpus,
the logical diversity could be shown to be significantly smaller than the number
of justifications would suggest, as lemma-isomorphism reduced the over 6000
justifications to only around 600 distinct templates.

6 An Application Scenario

The methods proposed in this paper were motivated by an example from the
well-known Pizza tutorial ontology.7 An example entailment for this ontology
is Fiorentina v InterestingPizza, which has over 200 justifications. An ontology
engineer wanting to understand why this entailment holds, for example because
it is considered incorrect, would have to go through a list of several hundred
justifications, inspecting each one and deciding which axiom to modify or remove
in order to ‘break’ the entailment.

Closer inspection, however, reveals significant similarities between the justi-
fications for this entailment: All justifications are of the form

{S1,S2, InterestingPizza ≡ Pizza u (> 3 hasTopping.>)}

where S1 is one of several axiom sets entailing that Fiorentina v Pizza, and S2
a set of axioms entailing that Fiorentina v > 3 hasTopping.>, which originates
from the fact that the Fiorentina pizza is defined to have six disjoint toppings.
While the large number of justifications may seem daunting at first, once the
structural similarities have been spotted, understanding the different reasons
why the entailment holds requires significantly less effort—both mentally, and
in terms of a ‘click-count’.

Integrating the proposed equivalence relations into a user interface could
support users in spotting these patterns. In the case of the Pizza ontology, we
can apply techniques that make use of both strict isomorphism and lemma-
isomorphism: Strict isomorphism may be used to group those justifications which

7 http://owl.cs.manchester.ac.uk/tutorials/protegeowltutorial/
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musculoskeletal_bleeding SubClassOf disease_o
musculoskeletal_bleeding SubClassOf disease_o
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aspirin SubClassOf disease_or_disorder
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musculoskeletal_bleeding SubClassOf disease_o
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Strict iso templates L-iso templatesS-iso templates Instantiations of selected templates

Fig. 1: Screenshot of a justification template exploration tool

have identical subexpressions modulo the names of the different toppings. L-
isomorphism (extended by additional types of ‘obvious’ proof steps) could fur-
ther group those axiom sets which lead to the same lemmas. A basic interaction
mechanism for navigation such lemmatisations has been suggested in the work
on justification-based proofs [7]. Going beyond the example of the Pizza ontology,
s-isomorphic justifications could easily be highlighted by covering up irrelevant
expressions similar to the strike-out techniques for superfluous expressions imple-
mented in the Swoop ontology editor [12]. This would prevent users from getting
distracted by complex expressions, thus allowing them to focus on understanding
the relevant axioms and expressions in a set of justifications.

The second task for which our notions of isomorphism may be useful is the
exploration and understanding of an ontology, without focusing on a specific
entailment. In this case, the user could be offered a browser-type interface as
the one shown in Figure 1 (displaying entailments from the Bleeding History
Phenotype ontology). The browser-style exploration tool consists of three top
panels, which show a list of entailments, a list of the formal templates which
cover the justifications for the selected entailment(s), and a list of material in-
stantiations of the selected template (identified by the entailment they stand
for). The bottom panel displays the selected instantiations or templates. A user
seeking to understand the structure of an ontology could gain a high-level view
of the ontology by selecting a set of entailments which then displays the set
of their justification templates and respective instantiations of those templates.
Entailments which share a template (or a number of templates) then highlight
regularities in the axiom structure of the ontology, as well as the prevalence of
such regularities.
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7 Conclusions

In this paper, we introduced new types of equivalence relations between OWL
justifications, subexpression-isomorpism and lemma-isomorphism. We demon-
strated how a seemingly diverse corpus of justifications from the NCBO Bio-
Portal could be reduced by over 90% to a much smaller set of non-isomorphic
justifications. We have found that, surprisingly, most justifications are in fact
strictly isomorphic, with only a few ontologies being affected by the other equiv-
alence relations.

Future work will involve exploring further notions of obvious proof steps in
order to extend lemma-isomorphism beyond atomic subsumption chains. We will
also consider the issue of overlapping chains, i.e. subsumption chains which lead
to non-summarising lemmas. Finally, we aim to fully implement the proposed
tool which orders and groups justifications based on their isomorphism relations,
and conduct user studies that investigate the usefulness of the tool for various
tasks in the ontology development process.
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Abstract. As part of an initiative to facilitate adequate identification and display
of substance-associated health effects a toxicological ontology - ToxOntology
- was created. Further, an alignent with MeSH was accomplished to obtain an
indirect index to the scientific literature.
To arrive at satisfactory results in the semantically-enabled applications, high-
quality ontologies and alignments are both necessary. A key step towards high
quality in this area is debugging the ontologies and their alignments. In this paper
we present an experience report on the debugging of ToxOntology and MeSH as
well as an alignment.

1 Introduction

Toxicology information, publicly available via Internet, has grown immensely over the
last decade and represents a major fundament to risk assessment in a range of regula-
tory applications, including that of food toxicology. This corpus is commonly referred
to as the Internet-based toxicology landscape [21, 10, 17]. The accordingly deposited
information is, however, heterogeneous i.e. appears in various forms and formats and
is distributed across a rich variety of databases. Several harmonization initiatives have,
however, been launched to help extracting such information from disparate sources,
typified by the construction of Internet portals (e.g. Toxnet and eChemPortal) and data
format standardization [20, 26]. Moreover, the demarcation between data holding clas-
sical toxicology actions of substances and that of their general biological activity has
become less sharp in recent years. Notably, the ToxCast and Tox21 initiatives have pro-
vided gargantuan amounts of data - freely available through the PubChem repository
- encompassing results from a wide range ofin vitro biological assay outputs on nox-
ious chemicals, and the Computational Toxicogenomics Database merges molecular
data on chemical health effects at various levels of resolution [18, 1, 22]. Actually, even
interaction-type data has recently witnessed exploitation in computational toxicology
[8, 2]. Moreover, the OpenTox project, funded by the 7th EU Framework Programme for
research, aims at facilitating informatics work in toxicology, through providing an inter-
operable and standardized framework to support predictive toxicology [4]. Nonetheless,
exhaustive toxicology data search and crosswise comparison can still be a cumbersome
undertaking.
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As part of a slightly broader initiative to facilitate the identificationof adequate
substance-associated health effects a toxicological ontology - ToxOntology - was cre-
ated within an informatics system development at the Swedish National Food Agency
(NFA). It is inspired by and incorporates several toxicology endpoints of the REACH
chemical legislature framework, on which a considerably larger endpoints ontology has
been built, as developed within the OpenTox community [16, 25]. While OpenTox vo-
cabularies are mainly designed for advancing predictive toxicology - especially QSAR
modeling - the purpose of ToxOntology, however, is to support the identification and
presentation of health effects associated with (chemical) substances, as appearing in
databases and the scientific literature. Terms and architecture of ToxOntology were cre-
ated manually by expert toxicologists using various relevant regulatory documents as
well as scientific papers in the field. ToxOntology is used in an in-house tagging ser-
vice to mark textual records where existing classification systems lack coverage, and
in an ontology-based text mining application. It is supported by a navigation tool for
accessing databases and literature.

Further, the scientific literature is a major source of toxicology information not yet
being curated and rendered available in databases. A key source of such documentation
is MEDLINE, using Medical Subject Headings (MeSH, [5]) as a classification system.
Although the previously mentioned tagging service could be used here for indexing ar-
ticles relating to a substance of interest, a more precise connection to an already curated
index was desired, implicating a need of an alignment [3] between ToxOntology and
MeSH.

To obtain high-quality results in semantically-enabled applications (such as the
ontology-based text mining and search applications), high-quality ontologies and align-
ments are both necessary. A key step towards higher quality is to debug the ontologies
and their alignments. In this paper we present an experience report on the debugging of
ToxOntology and MeSH as well as an alignment. In section 2 we briefly describe Tox-
Ontology and MeSH, as well as the ontology alignment and the ontology debugging
systems that were used. Section 3 describes the actual debugging experience, including
the creation of an initial alignment of ToxOntology and MeSH, the detection of possi-
ble defects using RepOSE [11], two independent repairing sessions - manual and using
RepOSE, as well as an experiment using a non-validated initial alignment. The paper
concludes in section 4.

2 Background

ToxOntology. ToxOntology is an OWL2 ontology, encompassing 263 concepts and
266 asserted is-a relations. The ontology has ten main axes (top concepts) including
Toxic effect, Route of exposure and Time of exposure. All concepts have human read-
able labels and synonyms attached. ToxOntology appeared after a merge of classifica-
tion systems covering concepts within toxicology used by ACToR [9] and an implemen-
tation of the OpenTox API [6]. The merge was further refined and expanded manually
by toxicology experts at the NFA, end-users of ToxOntology. The overall design princi-
ple can be summarized as follows: broad enough to cover almost any aspect of interest
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in the field and at the same time small enough to become an interactive tool in users’
daily search of toxicology information.

MeSH. MeSH is a thesaurus of the National Library of Medicine (NLM). It consists
of sets of terms naming descriptors in a 12-level hierarchical structure. The 2011 ver-
sion of MeSH contains 26,142 descriptors. MeSH is used by NLM largely for indexing
PubMed [19]. As MeSH contains many descriptors not related to the domain of tox-
icology, we used parts from the Diseases [C], Analytical, Diagnostic and Therapeutic
Techniques and Equipment [E] and Phenomena and Processes [G] branches of MeSH.
The resulting ontology contained 9,878 concepts and 15,786 asserted is-a relations.
A Java program was written to parse (using the SAX parser) the XML file, filter the
selected elements and create the OWL file (using Jena2.1). We note that the MeSH hi-
erarchy is not based on subsumption relations only, and thus interpreting all structural
relations as is-a relations, may lead to unintended results.

Ontology alignment system - SAMBO/KitAMO. Our ontology alignment system
SAMBO (e.g. [14, 24, 12]) is based on the framework defined in [12] and implements
different strategies for preprocessing, matching, combining and filtering. We briefly dis-
cuss the strategies that were used in this use case. We did not use preprocessing strate-
gies to reduce the search space. Matchers calculate similarity values between terms.
As matchers we usedTermBasic(linguistic approach),TermWN(approach using Word-
Net [27]),UMLSM(approach using domain knowledge - UMLS [23]), andNaiveBayes
(instance-based approach using scientific literature). The results of the matchers can be
combined in different ways. In this use case we used the maximum-based combination
strategy, which returns as final similarity value between terms, the maximum value of
the similarity values computed by the individual matchers. Further, we used the single
threshold filtering strategy, that retains pairs of terms with a similarity value equal to
or higher than a given threshold value as mappings suggestions. The mapping sugges-
tions should then be validated by a domain expert. KitAMO [15] is a tool for evaluating
and analyzing ontology alignment strategies and their combinations. The tool covers
the non-interactive part of the general framework for aligning ontologies. We have used
the KitAMO tool with the SAMBO strategies mentioned above, thereby allowing us to
store and analyze results from different runs of the algorithms.

Ontology debugging system - RepOSE.RepOSE (version as described in [11]) is a
logic-based tool for debugging is-a structure within and mappings between taxonomies.
It covers the detection and repairing of defects. It handles defects regarding missing as
well as wrong is-a structure, and defects regarding missing and wrong equivalence and
is-a mappings. It is based on the framework for debugging ontologies shown in Figure
1. The debugging workflow consists of 6 phases, where the first two phases are for
the detection and validation of possible defects, and the last four are for the repairing.
The input is a network of ontologies. The output is the set of repaired ontologies and
alignments.

In the current version of RepOSE, the detection of defects uses information inherent
in the network consisting of the taxonomies and the alignments. InPhase 1the system
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Fig. 1.Debugging workflow [11].

computesfor every taxonomy the is-a relations that can be derived from the network
but not from the taxonomy alone. These are calledcandidate missing is-a relations
(CMIs). Similarly, it computes for every pair of taxonomies and their alignment the
mappings that can be logically derived from the network but not from the taxonomies
and their alignment alone. These are calledcandidate missing mappings(CMMs). As
these CMIs and CMMs may be derived using erroneous information in the network, a
domain expert is needed to validate and classify them into missing is-a relation, wrong
is-a relation, missing mapping or wrong mapping (Phase 2). The CMIs and CMMs
are shown to the domain expert using arrows together with their justification1. Related
items are shown together. The user can validate by clicking the arrows and toggle the
label to ’W’ or ’M’ (e.g. Figure 2). There is also a recommendation algorithm that uses
external knowledge. We note that each of the validated CMIs and CMMs gives rise to
a debugging opportunity. Missing is-a relations and mappings should be repaired by
adding information to taxonomies or alignments. Wrong is-a relations and mappings
are repaired by removing information from taxonomies or alignments.

Ontologies and alignments are repaired one by one. For the selected taxonomy or
for the selected alignment and its pair of taxonomies, a user can choose to repair the
missing or the wrong is-a relations/mappings(Phase 3.1-3.4). Although the algorithms
for repairing are different for missing and wrong is-a relations/mappings, the repairing
goes through the phases of generation of repairing actions, the ranking of is-a rela-
tions/mappings, the recommendation of repairing actions and finally, the execution of
repairing actions. InPhase 3.1repairing actions are generated. For wrong is-a relations
and mappings, the repairing actions are is-a relations or mappings to remove. For each
wrong is-a relation and mapping the justifications in the network are computed. The
defect can be repaired by removing at least one is-a relation or mapping in each jus-

1 A justificationfor an is-a relation or mapping can be seen as an explanation for why this is-a
relation or mapping is derivable from the network. It is a minimal set of is-a relations and
mappings that allows for the derivation of the given is-a relation or mapping. For a formal
definition, see e.g. [11, 7].
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Fig. 2.Generating and validating CMIs.

tification. RepOSE shows for each wrong is-a relation or mapping the justifications as
directed graphs (Figure 3). The domain expert can repair by choosing edges in the graph
and commit to removing them. For each missing is-a relation or mapping, a Source set
and a Target set are computed.2 It is guaranteed that when an is-a relation/mapping is
added between any element in the Source set and any element in the Target set, the
defect is repaired. The algorithm also guarantees solutions adhering to a number of
heuristics [13]. The Source and Target sets are displayed in two panels to the domain
expert (together with the justification of the missing is-a relation or mapping) allowing
the user to conveniently repair defects by selecting elements in the panels (Figure 4).
In general, there will be many is-a relations/mappings needing repairment and some of
them may be easier to embark on such as those with few repairing actions. We therefore
rank them with respect to the number of possible repairing actions(Phase 3.2). After
this, the user can select an is-a relation/mapping to repair and choose among possible
repairing actions. To facilitate this process, we developed methods to guide the user
by means of advised repairing actions(Phase 3.3). Once the user decides on repairing
actions, the chosen repairing actions are then applied to the relevant taxonomies and
alignments and the consequences are computed(Phase 3.4). We also note that the user
can switch between different ontologies and phases at any time during the process.

3 Debugging ToxOntology, MeSH and their alignment

3.1 Aligning ToxOntology and MeSH

As an alignment of ToxOntology and MeSH was deemed necessary, and as RepOSE
uses an alignment in the detection phase of defects, the first step of our process was to
create an initial alignment between ToxOntology and MeSH. Moreover, due to a pref-
erence for an as complete as possible, high-quality alignment, preprocessing to reduce
the search space was excluded from the procedure; we used different types of match-
ers; and as combination strategy we used the maximum-based strategy. We generated
the similarity values for all pairs of terms. Further, we used single threshold filtering

2 Essentially, for missing is-a relation a→ b, Source(a,b) = super-concepts(a)\ super-
concepts(b) and Target(a,b) = sub-concepts(b)\ sub-concepts(a).
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Fig. 3.Repairing wrong is-a relations. Fig. 4.Repairing missing is-a relations.

similarity suggestionsequivalenceToxOntologyMeSH is-a relatedwrong
value is-a MeSH ToxOntology
≥ 0.8 41 29 2 2 1 7
≥ 0.5,< 0.8 419 9 18 31 42 319
≥ 0.4,< 0.5 906 2 21 14 83 786
≥ 0.35,< 0.4 146 1 2 2 117 24

Fig. 5.Validation of mapping suggestions - initial alignment.

with threshold 0.35 for the filtering strategy. These choices would lead to a high recall,
although there would be many mapping suggestions to validate.

During the validation phase the domain expert classified the mapping suggestions
into: equivalence mapping, is-a mapping (ToxOntology term is-a MeSH term and MeSH
term is-a ToxOntology term), related terms mapping and wrong mapping. The mapping
suggestions were shown to the domain expert in different steps based on the similarity
values. The results are summarized in Figure 5. The validated alignment consists of
41 equivalence mappings, 43 is-a mappings between a ToxOntology term and a MeSH
term, 49 is-a mappings between a MeSH term and a ToxOntology term and 243 related
terms mappings. Further, there is information about 1,136 wrong mappings.

3.2 Debugging using validated alignment

It was not considered feasible to identify defects manually. Therefore, we used the de-
tection mechanisms of RepOSE. RepOSE computed CMIs, which were then validated
by domain experts. As there initially were only 29 CMIs, we decided to repair the on-
tologies and their alignment independently in two ways. First, the CMIs and their jus-
tifications were given to the domain experts who manually repaired the ontologies and
their alignment. Second, the repairing mechanisms of RepOSE were used. A summary
of the changes in the alignment and in ToxOntology due to the debugging sessions are
summarized in Figure 6 columns ’original alignment’ and ’final alignment’3, and Fig-

3 Thefinal alignment contains changes from the two debugging sessions and is the one that is
now used.
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ToxOntology MeSH original final final final
alignmentalignmentalignmentalignment

manual RepOSE
metabolism metabolism ≡ → → removed←
photosensitisation photosensitivity disorders≡ R R removed←, →
phototoxicity dermatitis phototoxic ≡ R R removed←, →
inhalation administration inhalation≡ W W removed←, →
urticaria urticaria pigmentosa ← W W removed←
autoimmunity diabetes mellitus type 1 ← R R removed←
autoimmunity hepatitis autoimmune ← R R removed←
autoimmunity thyroiditis autoimmune ← R R removed←
gastrointestinal metabolismcarbohydrate metabolism← W W removed←
gastrointestinal metabolismlipid metabolism ← W W removed←
cirrhosis fibrosis ≡ R R removed←, →
cirrhosis liver cirrhosis ← ≡ ≡ -
metabolism biotransformation ← ≡ ≡ -
metabolism carbohydrate metabolism← W W -
metabolism lipid metabolism ← W W -
hepatic porphyria porphyrias ≡ → W removed←
hepatic porphyria drug induced liver injury→ R - removed→

Fig. 6. Changes in the alignment (equivalence mapping (≡), ToxOntology term is-a MeSH term
(→), MeSH term is-a ToxOntology term (←), related terms (R), wrong mapping (W)).

ure 7 column ’final’, respectively. There are also 5 missing is-a relations for MeSH. In
the remainder of this subsection we describe the detection and repairing in more details
and compare the manual repairing with the repairing using RepOSE.

Detection using RepOSE - first run. As input to RepOSE we used ToxOntology and
MeSH as discussed in section 2. Further, we used the validated part of the alignment
discussed in section 3.1, that contains the 41 equivalence mappings, the 43 is-a map-
pings between a ToxOntology term and a MeSH term and the 48 is-a mappings between
a MeSH term and a ToxOntology term.4

RepOSE generated 12 non-redundant CMIs for ToxOntology (34 in total) of which
9 were validated by the domain experts as missing and 3 as wrong. For MeSH, Re-
pOSE generated 17 non-redundant CMIs (among which 2 relations represented one
equivalence relation - 32 CMIs in total) of which 5 were validated as missing and the
rest as wrong.

Manual repair. The domain experts focused on repairment of ToxOntology and the
alignment. Regarding the 9 missing is-a relations in ToxOntology, these were all added
to the ontology. Further, another is-a relation,asthma→ respiratory toxicity, was added,

4 Therelated term mappings cannot be used in logical derivation related to the is-a structure of
the ontologies and are therefore not included in the alignment used in RepOSE.
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Added is-a relations final manualRepOSE
absorption→ physicochemical parameter Yes Yes Yes
hydrolysis→ metabolism Yes Yes Yes
toxic epidermal necrolysis→ hypersensitivity Yes Yes Yes
urticaria→ hypersensitivity Yes Yes Yes
asthma→ hypersensitivity Yes Yes Yes
asthma→ respiratory toxicity Yes Yes No
allergic contact dermatitis→ hypersensitivity Yes Yes Yes
subcutaneous absorption→ dermalabsorptionYes Yes Yes
oxidation→ metabolism Yes Yes Yes
oxidation→ physicochemical parameter Yes Yes Yes

Fig. 7.Changes in the structure of ToxOntology.

in addition toasthma→ hypersensitivity, based on an analogy of this case with the
already existingurticaria → dermal toxicityand addedurticaria → hypersensitivity.
This is summarized in Figure 7 column ’manual’. The domain experts also removed
two asserted is-a relations (asthma→ immunotoxicityand subcutaneous absorption
→ absorption) for reasons of redundancy. These is-a relations are valid and they are
derivable in ToxOntology.

The wrong is-a relations for MeSH and ToxOntology were all repaired by removing
mappings in the alignment (Figure 6 column ’final alignment manual’). In 5 cases a
mapping was changed from equivalence or is-a into related. In one of the cases (con-
cerningcirrhosis in ToxicOntology andfibrosisandliver cirrhosis in MeSH) a further
study also led to the change ofcirrhosis← liver cirrhosis into cirrhosis≡ liver cirrho-
sis.

The wrong is-a relations involvingmetabolismin ToxOntology, invoked a deeper
study of the use of this term in ToxOntology and in MeSH. The domain experts con-
cluded that the ToxOntology termmetabolismis equivalent to the MeSH termbiotrans-
formationand a subconcept of the MeSH termmetabolism. This observation led to a
repair of the mappings related tometabolism.

Further, some mappings were changed from an equivalence or is-a mapping to a
wrong mapping.5 In these cases (e.g. betweenurticaria in ToxOntology andurticaria
pigmentosain MeSH) the terms were syntactically similar and were initially validated
wrongly during the alignment phase.

Repairing using RepOSE. For the 3 wrong is-a relations for ToxOntology and the
12 wrong is-a relations for MeSH, the justifications were shown to the domain experts.
The justifications for a wrong is-a relation contained at least 2 mappings and 0 or 1 is-a
relations in the other ontology. In each of these cases the justification contained at least
one mapping that the domain expert validated to be wrong or related and the wrong
is-a relations were repaired by removing these mappings (see Figure 6 column ’final

5 So the domain experts changed their original validation based on the reasoning support pro-
vided by RepOSE.
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alignment RepOSE’, except last row). In some cases repairing onewrong is-a relation
also repaired others (e.g. removing mappinghepatic porphyria← porphyrias, repairs
two wrong is-a relations in MeSH:porphyrias→ porhyrias hepaticandporphyrias→
drug induced liver injury).

For the 9 missing is-a relations in ToxOntology and the 5 missing is-a relations in
MeSH, possible repairing actions (using Source and Target sets) were generated. For
most of these missing is-a relations the Source and Target sets were small, although for
some there were too many elements in the set to provide for good visualization. For all
these missing is-a relations the repairing constituted of adding the missing is-a relations
themselves (Figure 7 column ’RepOSE’). In all but three cases this is what RepOSE
recommended based on external knowledge from WordNet and UMLS. In 3 cases the
system recommended to add other is-a relations, that were not considered correct by
the domain experts (and thus wrong or based on a different view of the domain in the
external domain knowledge).

After this repairing, we detected one new CMI in MeSH. This was validated as a
wrong is-a relation and resulted in the removal of one more mapping (see Figure 6
column ’final alignment RepOSE’ last row).

Discussion. Generally, detecting defects in ontologies without the support of a dedi-
cated system is cumbersome and unreliable. In the case outlined in this paper RepOSE
clearly provided a necessary support. Further, visualization of the justifications of pos-
sible defects was very helpful to have at hand as well as a graphical display of the possi-
ble defects within their contexts in the ontologies addressed. Moreover, RepOSE stored
information about all changes made and their consequences as well as the remaining
defects needing amendment.

As the set of CMIs was relatively small, it was possible for domain experts to per-
form a manual repair. They could focus on the pieces of ToxOntology that were related
to the missing and wrong is-a relations. This allowed us to compare results of manual
repair with those of repairment using RepOSE.

Regarding the changes in the alignment, for 11 term pairs the mapping was removed
or changed in both approaches. For 2 term pairs the manual approach changed an is-a
relation into an equivalence and for 2 other term pairs an is-a relation was changed into
a wrong relation. These changes were not logically derivable and could not be found by
RepOSE. For 3 of these term pairs the change came after the domain experts realized
(using the justifications of the CMIs) thatmetabolismin MeSH has a different mean-
ing thanmetabolismin ToxOntology. For 1 term pair (one but last row in Figure 6) the
equivalence mapping was changed into wrong by the domain experts, while using Re-
pOSE it was changed into an is-a relation. In the final alignment the RepOSE result was
used. Further, through a second round of detection, using RepOSE an additional wrong
mapping was detected and repaired, which was not found in the manual approach.

Regarding the addition of is-a relations to ToxOntology, the domain experts added
one more is-a relation in the manual approach than in the approach using RepOSE. It
could not be logically derived thatasthma→ respiratory toxicitywas missing, but it
was added by the domain experts in analogy to the repairing of another missing is-a
relation.
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In some cases, when using RepOSE, the justification for a missingis-a relation was
removed after a wrong is-a relation was repaired by removing a mapping. For instance,
after removingmetabolism (ToxicOntology)← metabolism (MeSH), there was no more
justification for the missing is-a relationhydrolysis→ metabolism. However, an advan-
tage of RepOSE is that once a relation is validated as missing, RepOSE requires that it
will be repaired and thus, this knowledge will be added, even without a justification.

Another advantage of RepOSE is that, for repairing a wrong is-a relation, it allows
to remove multiple is-a relations and mappings in the justification, even though it may
be sufficient to remove one. This was used, for instance, in the repair of the wrong is-a
relationphototoxicity→ photosensitisationin ToxOntology wherephotosensitisation
≡ photosensitivity disordersandphototoxicity≡ dermatitis phototoxicwere removed.
Further, the repairing of one defect can lead to other defects being repaired. For in-
stance, the removal of these two mappings also repaired the wrong is-a relationphoto-
sensitivity disorders→ dermatitis phototoxicin MeSH. In general, RepOSE facilitates
the computation and understanding of the consequences of repairing actions.

Interestingly, in this use case only mappings were removed to repair wrong is-a re-
lations. This indicates that the ontology developers modeled the is-a structure decently.
This kind of repair is not, however, a consistent outcome. For instance, in the exper-
iment outlined in [11] involving debugging two ontologies and their alignment from
the Anatomy track in OAEI 2010 (Adult Mouse Anatomy Dictionary (AMA) and the
NCI Thesaurus anatomy (NCI-A), 14 is-a relations were removed from AMA and 11
from NCI-A, as well as 5 mappings. Further, in this use case all missing is-a relations
were repaired by adding the missing is-a relations themselves. In the experiment in [11]
in 27 cases in AMA and 11 cases in NCI-A a missing is-a relation was repaired us-
ing a more informative repairing action, thereby adding new knowledge that was not
derivable from the ontologies and their alignment.

An identified constraint of RepOSE pertains to the fact that adding and removing
is-a relations and mappings not appearing in the computations in RepOSE can be a
demanding undertaking. Currently, these changes need to be conducted in the ontology
files, but it would be useful to allow a user to do this via the system. For instance, it
would have been useful to addasthma→ respiratory toxicityvia RepOSE.

3.3 Debugging using non-validated alignment

In the previous subsection the validated alignment was used as input. As a domain
expert validated the mappings, they could be considered of high quality, although we
showed that defects in the mappings were detected. In this subsection we perform an
experiment with a non-validated alignment; we use the 41 mapping suggestions with
a similarity value higher than or equal to 0.8 and use them initially as equivalence
mappings.6

Using RepOSE (in 2 iterations) 16 non-redundant CMIs (27 in total), were com-
puted for ToxOntology of which 6 were also computed in the debugging session de-
scribed in 3.2. For MeSH 6 non-redundant CMIs (10 in total) were computed of which

6 Fromthe validation we know that these actually contain 29 equivalence mappings, 2 is-a map-
pings between a ToxOntology term and a MeSH term, 2 is-a mappings between a MeSH term
and a ToxOntology term, 1 related term mapping and 7 wrong mappings.
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2 were also computed earlier. As expected, the newly computed CMIswere all vali-
dated as wrong is-a relations and their computation was a result of wrong mappings.
During the repairing 5 of the 7 wrong mappings were removed, and 2 initial map-
pings were changed into is-a mappings. RepOSE can thus be helpful in the validation
of non-validated alignments - a domain expert will be able to detect and remove wrong
mappings that lead to the logical derivation of wrong is-a relations, but wrong mappings
that do not lead to logical derivation of wrong is-a relations, may not be found.

4 Conclusion

In this paper we presented an experience report on the debugging of ToxOntology,
MeSH and an alignment. We showed the usefulness of RepOSE in detecting and re-
pairing the structure of the ontologies and the alignment.

RepOSE is a logic-based debugging system7 and detects defects based on logically
derivable missing or wrong structure and mappings. In the future, we will investigate
the integration of other detection approaches into RepOSE. Also, we will facilitate the
adding and removing is-a relations and mappings that do not occur in the computation
of the system. Finally, we will investigate the integration of RepOSE with SAMBO.
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Abstract. Neither developing ontologies nor aligning ontologies are easy tasks,
and often the resulting ontologies and alignments are not consistent or complete.
Such ontologies and alignments, although often useful, also lead to problems
when used in semantically-enabled applications. In this paper we briefly intro-
duce a system that supports domain experts in detecting and repairing wrong and
missing is-a relations and mappings.

1 Introduction

Neither developing nor aligning ontologies are easy tasks, and often the resulting on-
tologies and alignments are not consistent or complete. Such ontologies and alignments,
although often useful, also lead to problems when used in semantically-enabled appli-
cations. Wrong conclusions may be derived or valid conclusions may be missed.

RepOSE (Repair ofOntologicalStructureEnvironment) tackles the problem of de-
bugging the is-a structure of a fundamental kind of ontologies, i.e., taxonomies, as well
as the debugging of the mappings between taxonomies.

In this demonstration paper we briefly introduce RepOSE1 (Section 2) and some
experiments and projects in which RepOSE was used (Section3). However, for the the-
oretical background, algorithms, more detailed descriptions and related work we refer
to [3]. For more detailed descriptions for the first and second cases in Section 3, we
refer to [3, 2]. In Section 4 we introduce the demonstration at the First International
Workshop on Debugging Ontologies and Ontology Mappings.

2 System

The input to RepOSE is an ontology network consisting of taxonomies and alignments
between the taxonomies. The debugging process consists of the phases of detecting and
validating possible defects, and repairing wrong and missing is-a relations and map-
pings. At any time during the process, the user can switch between different ontologies
and alignments, start earlier phases, or switch between the repairing of wrong and miss-
ing is-a relations and mappings. For each of the steps in the debugging process, RepOSE

1 The version of RepOSE described in this paper is an extension of earlier described versions.
Previous versions dealt only with missing and/or wrong is-a relations, but not with mappings.
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can recommend possible actions. The process ends when there are nomore defects or
defect suggestions to deal with.

In the current version of RepOSE we have focused on detecting defects using the
knowledge inherent in the network. RepOSE suggests defects in the form of candidate
missing is-a relations and mappings. Candidate missing is-a relations in an ontology
are is-a relations that can be derived from the network but not from the ontology alone.
Candidate missing mappings between two ontologies are mappings that can be derived
from the network but not from the ontologies and their alignment alone. These candidate
missing is-a relations and mappings are then validated by a domain expert and classified
as missing and wrong is-a relations and mappings (Figure 1).

For these defects RepOSE computes repairing actions, i.e., is-a relations or map-
pings to add to and remove from the ontologies and the alignments such that (i) the
missing is-a relations will be derivable from their host ontologies (ii) the missing map-
pings will be derivable from the host ontologies of the concepts in the mappings, and
their alignment, and (iii) the wrong is-a relations and mappings will not be derivable
from the ontology network. For wrong is-a relations and mappings RepOSE shows
their justification and the domain expert can select is-a relations and mappings to re-
move (Figure 2)2. For missing is-a relations, RepOSE shows two panels, where it is
guaranteed that when an is-a relation or mapping is added between an element in the
first panel and an element in the second panel, the missing is-a relation or mapping will
be repaired (Figure 3). Upon repairing, RepOSE computes all the consequences of the
repair.

Fig. 1. Generating and validating candidate missing is-a relations and mappings.

2 The screenshotsin the figures are for tabs related to is-a relations. Similar tabs exist related to
mappings.
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Fig. 2. Repairing wrong is-a relations.

Fig. 3. Repairing missing is-a relations.
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3 Uses of RepOSE

The currentversion of RepOSE has been used in a number of cases. The first case
is work that was performed for the Swedish National Food Agency. The input data
contained a large ontology, a small ontology and an alignment. The existing structure
was of good quality. Most defects related to missing is-a relations and wrong mappings.
The second case uses the ontologies and alignment of a track in the Ontology Alignment
Evaluation Initiative. The input data contained two larger ontologies and an alignment.
Defects in the structures of the ontologies and the alignment were repaired. In this case
using our approach also new knowledge was added to the network. For the third case
the input data contained five smaller ontologies and four alignments. In this case also
missing mappings could be found and new alignments were generated.

ToxOntology - MeSH. RepOSE has been used to debug ToxOntology and an align-
ment to MeSH [4]. ToxOntology is a toxicology ontology and was created within an
informatics system development at the Swedish National Food Agency as part of an
initiative to facilitate the identification of adequate substance-associated health effects.
ToxOntology is an OWL2 ontology, encompassing 263 concepts and 266 asserted is-a
relations. Further, an alignment with MeSH was desired to obtain an indirect index to
the scientific literature. MeSH is a thesaurus of the National Library of Medicine. As
MeSH contains many concepts not related to the domain of toxicology, a part of MeSH
was used. This part contained 9,878 concepts and 15,786 asserted is-a relations.

In the initial detection phase RepOSE generated 12 non-redundant candidate miss-
ing is-a relations for ToxOntology (34 in total) of which 9 were validated by the domain
experts as missing and 3 as wrong. For MeSH, RepOSE generated 17 non-redundant
candidate missing is-a relations (among which 2 relations represented one equivalence
relation - 32 candidate missing is-a relations in total) of which 5 were validated as miss-
ing and the rest as wrong. For the 3 wrong is-a relations for ToxOntology and the 12
wrong is-a relations for MeSH, the justifications contained at least one mapping that
the domain expert validated to be wrong or related and the wrong is-a relations were
repaired by removing these mappings. The 9 missing is-a relations in ToxOntology and
the 5 missing is-a relations in MeSH were repaired by adding the missing is-a relations
themselves. In all but three cases this was what RepOSE recommended based on ex-
ternal knowledge from WordNet and UMLS. After this repairing, one new candidate
missing is-a relation was detected in MeSH, which was validated as a wrong is-a rela-
tion and resulted in the removal of one more mapping.

OAEI 2010 Anatomy. RepOSE was also used during an experiment on a network
consisting of the two ontologies and the alignment from the Anatomy track in the On-
tology Alignment Evaluation Initiative (OAEI, [6]) 2010. The Adult Mouse Anatomy
Dictionary (AMA, [1]) contains 2744 concepts and 1807 asserted is-a relations, while
the NCI Thesaurus anatomy (NCI-A, [5]) contains 3304 concepts and 3761 asserted
is-a relations. The alignment contains 986 equivalence and 1 subsumption mapping be-
tween AMA and NCI-A. These ontologies as well as the alignment were developed by
domain experts. The experiment was performed by a domain expert.
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The system detected 200 candidate missing is-a relations in AMA ofwhich 123
were non-redundant. Of these non-redundant candidate missing is-a relations 102 were
validated to be missing is-a relations and 21 were validated to be wrong is-a relations.
For NCI-A 127 candidate missing is-a relations of which 80 were non-redundant, were
detected. Of these non-redundant candidate missing is-a relations 61 were validated to
be missing is-a relations and 19 were validated to be wrong is-a relations. To repair
these defects 85 is-a relations were added to AMA and 57 to NCI-A, 13 is-a relations
were removed from AMA and 12 from NCI-A, and 12 mappings were removed from
the alignment. In 22 cases in AMA and 8 cases in NCI-A a missing is-a relation was
repaired using a more informative repairing action (not derivable from the network),
thereby adding new knowledge to the network.

The recommendations seemed useful. Regarding candidate missing is-a relations,
81 and 27 recommendations that the relation should be validated as a missing is-a rela-
tion, were accepted for AMA, respectively NCI-A, while 8 and 2 were rejected. When
the system recommended that a candidate missing is-a relation should be validated as
a wrong is-a relation, the recommendation was accepted in 7 out of 20 cases for AMA
and 6 out of 8 cases for NCI-A. The recommendations regarding repairing missing is-
a relations were accepted in 69 out of 85 cases for AMA and 43 out of 57 cases for
NCI-A.

OAEI 2010 Bibliography. Another experiment is based on the bibliography case in
the OAEI 2010. This case consists of 5 smaller ontologies in the bibiography domain
(called 101, 301, 302, 303 and 304 in the OAEI set), with between 13 and 56 concepts
each. The ontologies are connected in a star shape. (Ontology 101 has 22, 23, 18 and
30 mappings to 301, 302, 303 and 304, respectively. There are no mappings among the
other pairs of ontologies.) Initially, RepOSE found 6 candidate missing is-a relations
in ontology 101, 5 in ontology 304 and 1 in each of the other ontologies. During the
repairing 2 additional candidate missing is-a relations were found for ontology 101, 1
for 302 and 3 for 304. Of all these 14 were validated as missing and 5 as wrong. Further,
for the pairs of ontologies for which no alignment existed, candidate missing mappings
were generated of which 187 were validated as missing and 15 as wrong. These de-
fects were repaired by adding 19 is-a relations in ontologies and 181 mappings, and
removing 7 is-a relations in ontologies and 10 mappings. The missing is-a relations and
mappings were in 18 cases repaired by more informative (with respect to the network)
repairing actions. We note that using RepOSE alignments were generated for each pair
of ontologies for which no alignment existed previously.

4 Demonstration

In the demonstration we guide the visitors through a debugging session using (parts of)
the ontologies from OAEI 2010 Anatomy, as well as a debugging session for OAEI 2010
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Bibliography. Further, we explain the algorithms for the detection andvalidation of
defects, as well as the generation, recommendation and execution of repairing actions.
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