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Abstract. Debugging OWL ontologies can be aided with automated
reasoners that generate entailments, including undesirable ones. This
information is, however, only useful if developers understand why the
entailments hold. To support domain experts (with limited knowledge
of OWL), we are developing a system that explains, in English, why an
entailment follows from an ontology. In planning such explanations, our
system starts from a justification of the entailment and constructs a proof
tree including intermediate statements that link the justification to the
entailment. Proof trees are constructed from a set of intuitively plausible
deduction rules. We here report on a study in which we collected em-
pirical frequency data on the understandability of the deduction rules,
resulting in a facility index for each rule. This measure forms the basis for
making a principled choice among alternative explanations, and identi-
fying steps in the explanation that are likely to require extra elucidation.
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1 Introduction

An important tool in debugging ontologies is to inspect the entailments gener-
ated by automated reasoners such as FaCT++ [12] and Pellet [11]. An obviously
incorrect entailed statement such as SubClassOf(Person,Movie) (Every person is a
movie) signals that something has gone wrong, but many developers, especially
those with limited knowledge of OWL, will need more information in order to
make the necessary corrections: they need to understand why this undesirable
entailment follows from the ontology, before they can start to repair it. A jus-
tification of an entailment—defined as any minimal subset of the ontology from
which the entailment can be drawn [7]—provides a set of premises from which
the entailment follows; however, user studies have shown that in many cases
even OWL experts are unable to work out how the conclusion follows from the
premises without further explanations [6]. Moreover, the opacity of standard
OWL formalisms, which are designed for efficient processing by computer pro-
grams and not for fast comprehension by people, can be another obstacle for
domain experts. As a possible solution to this problem, we are developing a
system that explains, in English, why an entailment follows from an ontology.
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To generate such explanations, our system starts from a justification of the
entailment, which can be computed using the method described by Kalyanpur
et al. [8], and constructs proof trees in which the root node is the entailment,
the terminal nodes are the axioms in the justification, and other nodes are in-
termediate statements (i.e., lemmas). Proof trees are constructed from a set of
intuitively plausible deduction rules which account for a large collection of de-
duction patterns, with each lemma introduced by a rule (as described in detail
in [10]). For a given justification, the deduction rules might allow several proof
trees, in which case we need a criterion for choosing the best.1 From the selected
proof tree, the system generates an English explanation. Such an explanation
should be easier to understand than one based on the justification alone, as it
replaces a single complex inference step with a number of simpler steps.

As an example, Table 1 shows an explanation generated by our prototype
for the (obviously absurd) entailment “Every person is a movie”, and based on
the proof tree shown in Figure 1. The key to understanding this proof lies in the
step from axiom 1 to statement (c), which is an example of an inference in need
of “further elucidation”—a feature not yet implemented in our prototype.2

Table 1. An example explanation generated by our prototype

In
p
u
t

Entailment: SubClassOf(Person,Movie)
Justification:
1. EquivalentClasses(GoodMovie,ObjectAllValuesFrom(hasRating,FourStars))
2. ObjectPropertyDomain(hasRating,Movie)
3. SubClassOf(GoodMovie,StarRatedMovie)
4. SubClassOf(StarRatedMovie,Movie)

O
u
t
p
u
t

Every person is a movie because the ontology implies that everything is a movie.
Everything is a movie because (a) everything that has a rating is a movie, and (b) everything
that has no rating at all is a movie.
Statement (a) is from axiom 2 in the justification. Statement (b) is implied because (c) every-
-thing that has no rating at all is a good movie, and (d) every good movie is a movie.
Statement (c) is implied because axiom 1 in the justification states that “a good movie is any-
-thing that has as rating only four stars”.
Statement (d) is implied because (e) every good movie is a star rated movie, and (f) every star
rated movie is a movie. Statements (e) and (f) are from axioms 3 and 4 in the justification.

It is important to note that there may be multiple justifications for a given
entailment in an ontology, and also multiple proof trees for a given justification.
For either or both of these reasons, there may be multiple potential explanations
for a given entailment, some of which may be easier to follow than others. There-
fore, being able to identify the most understandable proof among alternatives
would be of great help in planning an effective explanation.

1 Alternatively the deduction rules might not yield any proof trees, in which case the
system has to fall back on simply verbalising the justification. Obviously such cases
will become rarer as we expand the set of rules.

2 Axiom 1 asserts an equivalence between two classes: good movies, and things that
only have ratings of four stars. The precise condition for an individual to belong
to the second class is that all of its ratings should be four star, and this condition
would be trivially satisfied if the individual had no ratings at all.
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Fig. 1. The proof tree of the explanation in Table 1. The labels r17 etc. refer to rules
listed in Table 3. FI values represent how easy it is to understand the rules—their
Facility Indexes—with values ranging from 0.0 (hardest) to 1.0 (easiest).

This paper focusses on the deduction rules and their understandability. We
describe how our current set of deduction rules was collected through analysis of
a large corpus of approximately 500 OWL ontologies, and report on an empir-
ical study that allows us to assign easiness levels to the deduction rules.3 This
facility index provides a basis for measuring the understandability of an entire
explanation and for making a principled choice among alternative explanations.
It also indicates which steps in an explanation are likely to be difficult and in
need of extra elucidation—for example, the inference from axiom 1 to statement
(c) in the explanation in Table 1. We envisage that the method described here
can be used by others to empirically test different sets of deduction rules.

2 Deduction Rules

Intuitively, a deduction rule is an inferential step from premises to a conclusion,
which cannot be effectively simplified by introducing substeps (and hence, inter-
mediate conclusions). In practice this means that deduction rules have relatively
few premises, and in fact we limit this number to four. Formally speaking, both
the conclusion and the premises are OWL axioms, but they are generalised by
using variables that abstract over class and property names. An example of our
deduction rules is SubClassOf(X,Y) ∧ SubClassOf(Y,Z) → SubClassOf(X,Z) (rule
12), which corresponds to the well-know syllogism that from “Every X is a Y”
and “Every Y is a Z” we may infer “Every X is a Z”.

Our deduction rules were derived empirically through a corpus study of
around 500 OWL ontologies. These were collected from a variety of sources,
including the TONES repository [2], the Swoogle search engine [3] and the
Ontology Design Patterns corpus [1]; they thus cover a wide range of topics
and authoring styles. To collect deduction rules, we first computed entailment-
justification pairs using the method described by Nguyen et al. [9], then collated
them to obtain a list of deduction patterns ranked by frequency. From this list,

3 In a deduction rule, the premises can be viewed as a justification of the entailment.
Horridge et al. proposed a model for measuring the difficulty of a justification [4], but
this model was based on the complexity of its logical structure of the justification
rather than its difficulty for people.
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we selected deduction patterns that were simple (in a sense that will be explained
shortly) and frequent, such as rule r12 mentioned above. Subsequently we added
some further rules that occurred often as parts of more complex deduction pat-
terns, but were not computed as separate patterns because of certain limitations
of the reasoning algorithms.4 An example of such rules is ObjPropDom(r0,X) ∧
SubClassOf(ObjectAllValuesFrom(r0,⊥),X) → SubClassOf(>,X) (rule 17), which is
from “Everything that r0 something is an X” and “Everything that r0 nothing
at all is an X” we infer “Everything is an X”.

As a criterion of simplicity we considered the number of premises (we stipu-
lated not more than four) and also what is called the laconic property [5]—that
an axiom should not contain information that is not required for the entailment
to hold. We have assumed that deduction rules that are simple in this sense are
more likely to be more understandable by most people. So far, 57 deduction rules
have been obtained in this way. These rules are sufficient to generate appropriate
lemmas for 48% of the justifications of subsumption entailments in the corpus
(i.e., over 30,000 justifications).

3 Measuring Understandability

3.1 Materials

To measure the understandability of a rule, we devised a deduction problem
in which premises of the rule were given in English, replacing class or property
variables by fictional nouns and verbs so that the reader would not be biassed by
domain knowledge, and the subjects were asked whether the entailment of the
rule followed from the premises. The correct answer was always “Follows”, so to
control for positive response bias (i.e., favouring a positive answer to any ques-
tion) we included questions for non-entailments and trivial entailments, which
we will call control questions as opposed to test questions.

Our control questions were designed to be obvious to subjects who did the
test seriously (rather than responding casually without reading the problem
properly). Specifically, they either repeated one of the premises (in which case,
trivially, the correct answer was “Follows”), or made statements about objects
not mentioned in the premises (in which case, also trivially, the correct answer
was “Does not Follow”). Problems consisted of premises followed by two ques-
tions, one a test question and one a control; for half the problems the correct
answers were “Follows” and “Follows”, for the other half “Follows” and “Does
not Follow”, with question order varied so that the test question sometimes
preceded the control, and sometimes followed it.

3.2 Method

The study was conducted on CrowdFlower, a crowdsourcing service that allows
customers to upload tasks to be passed to labour channel partners such as Ama-

4 Reasoning services for OWL typically compute only some kinds of entailment, such
as subclass and class membership statements, and ignore others.
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zon Mechanical Turk.5 We set up the operation so that tasks were channelled
only to Amazon’s Mechanical Turk, and were restricted to subjects from Aus-
tralia, the United Kingdom and the United States since we were aiming to recruit
as many (self-reported) native speakers of English as possible.

To eliminate responses from ‘scammers’ (people who respond casually with-
out considering the problem seriously), we used CrowdFlower’s quality control
service which is based on gold-standard data: customers provide problems called
gold units for which the correct answer is specified, allowing CrowdFlower to
filter automatically any subjects whose performance on gold units falls below a
threshold (75%). Our gold units resembled our test units, each having premises
followed by two questions, but both questions were control units with answers
that should have been obvious to any serious subject. The management of gold
units is internal to CrowdFlower, so these data are not included in our analysis.

Of the 57 deduction rules we collected, 51 rules were measured in this way.
For example, rule r17 (from Figure 1) was measured based on data gathered from
the problem in Figure 2, with the rule’s entailment as the second question. It is
important to note that in CrowdFlower subjects are not required to complete
all problems. They can give up whenever they want, and their responses will
be accepted so long as they perform well on gold units. CrowdFlower randomly
assigns non-gold problems to subjects until it collects up to a specified number
of valid responses for each problem; in our study we specified 50, but since some
subjects gave up part-way through, the number of subjects was over 100.

Fig. 2. The testing problem for rule r17—ObjPropDom(r0,X) ∧
SubClassOf(ObjectAllValuesFrom(r0,⊥),X) → SubClassOf(>,X)

4 Results

The main aim of the study was to collect frequency data on whether people
recognise that the conclusion of a (verbalised) deduction rule follows from the

5 See http://crowdflower.com/ and http://www.mturk.com/ for details.
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premises. However, these data provide a valid index of understandability only
if we can control for positive response bias: in the extreme case, a subject that
always gives the positive answer (“Follows” rather than “Does not follow”) will
get all the test questions right, regardless of their difficulty. We used control
questions to address this issue—additional to the CrowdFlower gold-unit filter-
ing. The use of control questions in each problem also provided an opportunity
for confirming that in general subjects were taking the survey seriously.

4.1 Control Questions

Figure 3 shows that for the 108 subjects that participated in the study, all
answered around 75% or more of the control questions correctly, suggesting that
they were performing the task seriously.

Fig. 3. The subjects’ performance on the control questions

4.2 Response Bias

Table 2 shows the absolute frequencies of the responses “Follows” (+F) and
“Does not follow” (−F) for all non-gold questions in the study—control as well
as test. It also subdivides these frequencies according to whether the answer was
correct (+C) or incorrect (−C). Thus for example the cell +F+C counts cases
in which subjects answered “Follows” when this was the correct answer, while
+F−C counts cases in which they answered “Follows” when this was incorrect.

Recalling that for half the problems the correct answers were +F+F, while
for half they were +F−F, the percentage of +F answers for a subject that always
answered correctly would be 75%. If subjects had a positive response bias we
would expect an overall rate higher than this, but in fact we obtain 3617/4930
or 73.4%, suggesting little or no bias in either direction.

Looking at the distribution of incorrect answers, we can also ask whether
subjects erred through being too ready to accept invalid conclusions (−F−C),
or too unwilling to accept conclusions that were in reality valid (+F−C). The
table shows a clear tendency towards the latter, with only 118 responses in
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−F−C compared with an expected value of 274 (1030*1313/4930) calculated
from the overall frequencies. In other words, subjects were more likely to err by
rejecting a valid conclusion than by accepting an invalid one, a finding confirmed
statistically by the highly significant association between response (±F) and
correctness (±C) on a 2×2 chi-squared test (χ2 = 153.5, df = 1, p < 0.0001).

Table 2. The distribution of the subjects’ performance

+F -F TOTAL
+C 2705 1195 3900
-C 912 118 1030

TOTAL 3617 1313 4930

4.3 Facility Indexes

We use the proportion of correct answers for each test question as an index of
understandability of the associated deduction rule, which we will call its facility
index. This index provides our best estimate of the probability that a person
will understand the relevant inference step—i.e., that they will recognise that
the conclusion follows from the premise—and accordingly ranges from 0.0 to 1.0.
Values of the facility index for the rules tested in the study are shown in Table 3,
ordered from high values to low. In this table, the rules r12 and r17 used in the
explanation in Table 1 are relatively easy, with facility indexes of 0.80 and 0.78.
By contrast rule r51, which infers statement (c) from axiom 1 in the example,
is the hardest, with a facility index of only 0.04, and hence evidently a step in
need of further elucidation—for instance as follows:

Statement (c) is inferred from axiom 1, which asserts an equivalence between
two classes: ‘good movie’ and ‘anything that has as rating only four stars’.
Since the second class trivially accepts anything that has no rating at all, we
conclude that anything that has no rating at all is a good movie.

It can be seen in the table that for closely related rules, such as r11, r12 and r14,
the facility indexes are quite close to each other (see also r17 and r19), a result
that confirms the reliability of the values.

5 Conclusion

The main aim of this paper is to report empirical results on the difficulty of
some inference steps that often occur in proofs, in particular for entailments
computed from ontologies. These results allow us to estimate the understand-
ability of proofs that can serve as the basis for verbal explanations of entailments,
so making it clear to an ontology developer why an undesired statement was in-
ferred, and which axiom(s) in the ontology should be removed or revised.
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In our explanation planner, the facility indexes for the deduction rules are
used in two ways. First, by combining the values for all the rules in a given proof
tree, we can estimate the difficulty of the whole tree, and thus make a principled
choice among alternative trees. If we think of facility indexes as measuring the
probability that a reader will understand a given step in the explanation, a
natural method of combining indexes would be to multiply them, so computing
the joint probability of all steps being followed; the higher this value, obviously,
the better. Second, once a proof tree has been chosen as more understandable
than the alternatives (if any), we can apply the indexes again by looking for steps
that are relatively hard, and considering whether to add extra elucidation at that
point. We plan to do this by investigating a range of explanation strategies for
each difficult rule, and determining empirically which is most effective.

Leaving aside the way facility indexes are used in our work, we believe both
the indexes and our method for obtaining them are worth for reporting as a
resource for other researchers, who might find them useful in alternative models
or contexts.

References

1. Ontology Design Patterns. http://ontologydesignpatterns.org, Last Accessed:
30th August 2010

2. The TONES Ontology Repository. http://owl.cs.manchester.ac.uk/

repository/, Last Accessed: 30th August 2010
3. Ding, L., Finin, T., Joshi, A., Pan, R., Cost, R.S., Peng, Y., Reddivari, P., Doshi,

V., Sachs, J.: Swoogle: a search and metadata engine for the semantic web. In: ACM
International Conference on Information and Knowledge Management (CIKM
2004). pp. 652–659 (2004)

4. Horridge, M., Bail, S., Parsia, B., Sattler, U.: The Cognitive Complexity of OWL
Justifications. In: International Semantic Web Conference (ISWC 2011). pp. 241–
256 (2011)

5. Horridge, M., Parsia, B., Sattler, U.: Laconic and Precise Justifications in OWL.
In: International Semantic Web Conference (ISWC 2008). pp. 323–338 (2008)

6. Horridge, M., Parsia, B., Sattler, U.: Lemmas for Justifications in OWL. In: Inter-
national Workshop on Description Logics (DL 2009) (2009)

7. Kalyanpur, A.: Debugging and repair of OWL ontologies. Ph.D. thesis, The Uni-
versity of Maryland, US (2006)

8. Kalyanpur, A., Parsia, B., Horridge, M., Sirin, E.: Finding All Justifications of
OWL DL Entailments. In: International Semantic Web Conference (ISWC 2007)
(2007)

9. Nguyen, T.A.T., Piwek, P., Power, R., Williams, S.: Justification Patterns for OWL
DL Ontologies. Tech. Rep. TR2011/05, The Open University, UK (2010)

10. Nguyen, T.A.T., Power, R., Piwek, P., Williams, S.: Planning Accessible Expla-
nations for Entailments in OWL Ontologies. In: International Natural Language
Generation Conference (INLG 2012). pp. 110–114 (2012)

11. Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: A Practical
OWL-DL Reasoner. Journal of Web Semantics 5, 51–53 (2007)

12. Tsarkov, D., Horrocks, I.: FaCT++ Description Logic Reasoner: System Descrip-
tion. In: International Joint Conference on Automated Reasoning (IJCAR 2006).
pp. 292–297 (2006)

8



T
a
b
le

3
:

D
e
d
u
c
ti

o
n

ru
le

s
a
n
d

th
e
ir

fa
c
il
it

y
in

d
e
x
e
s

(F
I)

,
w

it
h

‘C
A

’
m

e
a
n
s

th
e

a
b
so

-
lu

te
n
u
m

b
e
r

o
f

c
o
rr

e
c
t

a
n
sw

e
rs

a
n
d

‘S
’

m
e
a
n
s

th
e

a
b
so

lu
te

n
u
m

b
e
r

o
f

su
b

je
c
ts

.
F
o
r

sh
o
rt

,
th

e
n
a
m

e
s

o
f

O
W

L
fu

n
c
to

rs
a
re

a
b
b
re

v
ia

te
d
.

ID
R

u
le

D
e
d
u
c
t
io

n
P

r
o
b
le

m
C

A
S

F
I

1
E

q
v
C

la
(X

,Y
.
.
.
)

A
h
ia

te
a

is
d
e
fi
n
e
d

a
s

a
m

il
v
o
rn

.
4
9

4
9

1
.0

0
→

S
u
b
C

la
O

f(
X

,Y
)

→
E

v
e
ry

h
ia

te
a

is
a

m
il
v
o
rn

.
2

S
u
b
C

la
O

f(
X

,O
b

jI
n
tO

f(
Y

,Z
.
.
.
))

E
v
e
ry

o
rm

y
rr

is
b

o
th

a
g
a
rg

o
y
le

a
n
d

a
h
a
rp

y
.

4
7

4
9

0
.9

6
→

S
u
b
C

la
O

f(
X

,Y
)

→
E

v
e
ry

o
rm

y
rr

is
a

g
a
rg

o
y
le

.
3

O
b

jP
ro

p
D

o
m

(r
0
,X

)
A

n
y
th

in
g

th
a
t

h
a
s

a
su

p
e
rn

a
tu

ra
l

a
b
il
it

y
is

a
b
u
le

tt
e
.

4
5

4
7

0
.9

6
∧

S
u
b
C

la
O

f(
X

,Y
)

E
v
e
ry

b
u
le

tt
e

is
a

m
a
n
ti

c
o
re

.
→

O
b

jP
ro

p
D

o
m

(r
0
,Y

)
→

A
n
y
th

in
g

th
a
t

h
a
s

a
su

p
e
rn

a
tu

ra
l

a
b
il
it

y
is

a
m

a
n
ti

c
o
re

.
4

S
u
b
C

la
O

f(
O

b
jU

n
iO

f(
Y

,Z
.
.
.
),

X
)

E
v
e
ry

th
in

g
th

a
t

is
a

v
o
lo

d
n
i

o
r

a
tr

e
a
n
t

is
a

m
a
ra

d
a
n
.

4
4

4
6

0
.9

6
→

S
u
b
C

la
O

f(
Y

,X
)

→
E

v
e
ry

v
o
lo

d
n
i

is
a

m
a
ra

d
a
n
.

5
S
u
b
C

la
O

f(
X

,Y
)

E
v
e
ry

b
u
ll
y
w

u
g

is
a

g
ri

p
p
li
.

4
5

4
8

0
.9

4
∧

S
u
b
C

la
O

f(
X

,Z
)

E
v
e
ry

b
u
ll
y
w

u
g

is
a

p
ri

sm
a
ti

c
.

→
S
u
b
C

la
O

f(
X

,D
u

Z
)

→
E

v
e
ry

b
u
ll
y
w

u
g

is
b

o
th

a
g
ri

p
p
li

a
n
d

a
p
ri

sm
a
ti

c
.

6
S
u
b
C

la
O

f(
>

,X
)

E
v
e
ry

th
in

g
is

a
k
e
lp

ie
.

4
3

4
6

0
.9

3
→

S
u
b
C

la
O

f(
Y

,X
)

→
E

v
e
ry

p
e
rs

o
n

is
a

k
e
lp

ie
.

7
S
u
b
C

la
O

f(
X

,O
b

jS
o
m

V
a
lF

(r
0
,>

))
E

v
e
ry

lo
c
a
th

a
h

e
a
ts

so
m

e
th

in
g
.

4
5

5
0

0
.9

0
∧

S
u
b
C

la
O

f(
X

,O
b

jA
ll
V

a
lF

(r
0
,Y

))
E

v
e
ry

lo
c
a
th

a
h

e
a
ts

o
n
ly

o
ro

g
s.

→
S
u
b
C

la
O

f(
X

,O
b

jS
o
m

V
a
lF

(r
0
,Y

))
→

E
v
e
ry

lo
c
a
th

a
h

e
a
ts

a
n

o
ro

g
.

8
O

b
jP

ro
p
R

n
g
(r

0
,Y

)
A

n
y
th

in
g

th
a
t

so
m

e
th

in
g

li
v
e
s

in
is

a
ta

rr
a
sq

u
e
.

4
4

4
9

0
.9

0
∧

S
u
b
C

la
O

f(
Y

,X
)

E
v
e
ry

ta
rr

a
sq

u
e

is
a

k
ra

k
e
n
.

→
O

b
jP

ro
p
R

n
g
(r

0
,X

)
→

A
n
y
th

in
g

th
a
t

so
m

e
th

in
g

li
v
e
s

in
is

a
k
ra

k
e
n
.

9
O

b
jP

ro
p
D

o
m

(r
0
,X

)
A

n
y
th

in
g

th
a
t

is
a

m
e
ss

e
n
g
e
r

o
f

so
m

e
th

in
g

is
a

la
n
d
w

y
rm

.
4
3

5
0

0
.8

6
∧

S
u
b
C

la
O

f(
Y

,O
b

jS
o
m

V
a
lF

(r
0
,Z

))
E

v
e
ry

sp
e
ll
g
a
u
n
t

is
a

m
e
ss

e
n
g
e
r

o
f

a
g
ra

v
o
rg

.
→

S
u
b
C

la
O

f(
Y

,X
)

→
E

v
e
ry

sp
e
ll
g
a
u
n
t

is
a

la
n
d
w

y
rm

.
1
0

E
q
v
C

la
(X

,O
b

jU
n
iO

f(
Y

,Z
.
.
.
))

E
v
e
ry

c
o
o
sh

e
e

is
a

p
e
ry

to
n

o
r

a
b
a
n
d
e
rl

o
g
;

e
v
e
ry

th
in

g
th

a
t

is
a

p
e
ry

to
n

o
r

a
4
1

5
0

0
.8

2
→

S
u
b
C

la
O

f(
Y

,X
)

b
a
n
d
e
rl

o
g

is
a

c
o
o
sh

e
e
.

→
E

v
e
ry

p
e
ry

to
n

is
a

c
o
o
sh

e
e
.

1
1

S
u
b
C

la
O

f(
X

,O
b

jS
o
m

V
a
lF

(r
0
,Y

))
E

v
e
ry

v
a
ra

g
li
v
e
s

o
n

a
se

a
p
la

n
e
.

4
0

4
9

0
.8

2
∧

S
u
b
C

la
O

f(
O

b
jM

in
C

a
rd

(1
,r

0
,Y

),
Z

))
E

v
e
ry

th
in

g
th

a
t

li
v
e
s

o
n

a
t

le
a
st

o
n
e

se
a
p
la

n
e

is
a
n

u
ro

p
h
io

n
.

→
S
u
b
C

la
O

f(
X

,Z
)

→
E

v
e
ry

v
a
ra

g
is

a
n

u
ro

p
h
io

n
.

1
2

S
u
b
C

la
O

f(
X

,Y
)

E
v
e
ry

si
v
a
k

is
a

d
ra

c
o
n
ia

n
.

3
7

4
6

0
.8

0
∧

S
u
b
C

la
O

f(
Y

,Z
)

E
v
e
ry

d
ra

c
o
n
ia

n
is

a
g
u
u
lv

o
rg

.
→

S
u
b
C

la
O

f(
X

,Z
)

→
E

v
e
ry

si
v
a
k

is
a

g
u
u
lv

o
rg

.
1
3

S
u
b
C

la
O

f(
X

,O
b

jC
o
m

p
O

f(
X

))
E

v
e
ry

z
e
z
ir

is
so

m
e
th

in
g

th
a
t

is
n
o
t

a
z
e
z
ir

.
4
0

5
0

0
.8

0
→

S
u
b
C

la
O

f(
X

,⊥
)

→
N

o
th

in
g

is
a

z
e
z
ir

.
1
4

S
u
b
O

b
jP

p
O

f(
r0

,r
1
)

T
h
e

p
ro

p
e
rt

y
”
is

a
k
o
b

o
ld

o
f”

is
a

su
b
-p

ro
p

e
rt

y
o
f

”
is

a
d
ro

w
o
f”

.
4
1

5
2

0
.7

9
∧

S
u
b
O

b
jP

p
O

f(
r1

,r
2
)

T
h
e

p
ro

p
e
rt

y
”
is

a
d
ro

w
o
f”

is
a

su
b
-p

ro
p

e
rt

y
o
f

”
is

a
ti

e
fl
in

g
o
f”

.
→

S
u
b
O

b
jP

p
O

f(
r0

,r
2
)

→
T

h
e

p
ro

p
e
rt

y
”
is

a
k
o
b

o
ld

o
f”

is
a

su
b
-p

ro
p

e
rt

y
o
f

”
is

a
ti

e
fl
in

g
o
f”

.
C
o
n
ti
n
u
ed

o
n

N
e
x
t
P
a
g
e
.
.
.

9



1
5

S
u
b
C

la
O

f(
X

,O
b

jS
o
m

V
a
lF

(r
0
,Y

))
E

v
e
ry

p
h
a
e
rl

in
is

fa
th

e
r

o
f

a
fi
rb

o
lg

.
3
7

4
7

0
.7

9
∧

S
u
b
C

la
O

f(
Y

,Z
)

E
v
e
ry

fi
rb

o
lg

is
a

g
n
o
ll
.

→
S
u
b
C

la
O

f(
X

,O
b

jS
o
m

V
a
lF

(r
0
,Z

))
→

E
v
e
ry

p
h
a
e
rl

in
is

fa
th

e
r

o
f

a
g
n
o
ll
.

1
6

E
q
v
C

la
(X

,O
b

jI
n
tO

f(
Y

,Z
.
.
.
))

A
c
y
c
lo

p
s

is
a
n
y
th

in
g

th
a
t

is
b

o
th

a
tr

o
o
fe

r
a
n
d

a
g
a
th

ra
.

3
7

4
7

0
.7

9
→

S
u
b
C

la
O

f(
X

,Y
)

→
E

v
e
ry

c
y
c
lo

p
s

is
a

tr
o
o
fe

r.
1
7

O
b

jP
ro

p
D

o
m

(r
0
,X

)
E

v
e
ry

th
in

g
th

a
t

h
a
s

a
w

o
rs

h
ip

le
a
d
e
r

is
a

fo
m

o
ri

a
n
.

3
9

5
0

0
.7

8
∧

S
u
b
C

la
O

f(
O

b
jA

ll
V

a
lF

(r
0
,⊥

),
X

)
E

v
e
ry

th
in

g
th

a
t

h
a
s

n
o

w
o
rs

h
ip

le
a
d
e
r

a
t

a
ll

is
a

fo
m

o
ri

a
n
.

→
S
u
b
C

la
O

f(
>

,X
)

→
E

v
e
ry

th
in

g
is

a
fo

m
o
ri

a
n
.

1
8

O
b

jP
ro

p
R

n
g
(r

0
,X

)
A

n
y
th

in
g

th
a
t

so
m

e
th

in
g

is
a
n

a
b
ri

a
n

o
f

is
a

g
ro

la
n
to

r.
3
6

4
7

0
.7

7
∧

S
y
m

O
b

jP
ro

p
(r

0
)

X
is

a
n

a
b
ri

a
n

o
f

Y
if

a
n
d

o
n
ly

if
Y

is
a
n

a
b
ri

a
n

o
f

X
.

→
O

b
jP

ro
p
D

o
m

(r
0
,X

)
→

A
n
y
th

in
g

th
a
t

is
a

si
b
li
n
g

o
f

so
m

e
th

in
g

is
a

g
ro

la
n
to

r.
1
9

S
u
b
C

la
O

f(
Y

,X
)

E
v
e
ry

o
b
li
v
io

n
m

o
ss

is
a

v
e
g
e
p
y
g
m

y
.

3
6

4
7

0
.7

7
∧

S
u
b
C

la
O

f(
O

b
jC

o
m

p
O

f(
Y

),
X

)
E

v
e
ry

th
in

g
th

a
t

is
n
o
t

a
n

o
b
li
v
io

n
m

o
ss

is
a

v
e
g
e
p
y
g
m

y
.

→
S
u
b
C

la
O

f(
>

,X
)

→
E

v
e
ry

th
in

g
is

a
v
e
g
e
p
y
g
m

y
.

2
0

O
b

jP
ro

p
D

o
m

(r
0
,⊥

)
T

h
e
re

d
o
e
s

n
o
t

e
x
is

t
a
n
y
th

in
g

th
a
t

is
a

g
ri

m
lo

ck
o
f

so
m

e
th

in
g
.

3
9

5
1

0
.7

6
→

S
u
b
C

la
O

f(
>

,O
b

jA
ll
V

a
lF

(r
0
,⊥

))
→

E
v
e
ry

th
in

g
is

n
o
t

a
g
ri

m
lo

ck
.

2
1

O
b

jP
ro

p
R

n
g
(r

0
,⊥

)
T

h
e
re

d
o
e
s

n
o
t

e
x
is

t
a
n
y
th

in
g

th
a
t

so
m

e
th

in
g

h
a
s

a
s

a
c
a
tt

e
r.

3
7

4
9

0
.7

6
→

S
u
b
C

la
O

f(
>

,O
b

jA
ll
V

a
lF

(r
0
,⊥

))
→

E
v
e
ry

th
in

g
h
a
s

n
o

c
a
tt

e
r

a
t

a
ll
.

2
2

D
is

C
la

(X
,Y

.
.
.
)

N
o

p
la

n
t

is
a
n

a
n
im

a
l.

3
5

4
6

0
.7

6
∧

S
u
b
C

la
O

f(
Z

,X
)

E
v
e
ry

k
a
la

m
a
n
th

is
is

a
p
la

n
t.

∧
S
u
b
C

la
O

f(
W

,Y
)

E
v
e
ry

te
n
d
ri

c
u
lo

s
is

a
n

a
n
im

a
l.

→
D

is
C

la
(Z

,W
)

→
N

o
k
a
la

m
a
n
th

is
is

a
te

n
d
ri

c
u
lo

s.
2
3

S
u
b
C

la
O

f(
X

,O
b

jS
o
m

V
a
lF

(r
0
,Y

))
E

v
e
ry

d
e
ro

is
a

te
n
d
ri

c
u
lo

s
o
f

a
h
a
rp

y
.

3
8

5
1

0
.7

5
∧

S
u
b
C

la
O

f(
Y

,O
b

jS
o
m

V
a
lF

(r
0
,Z

))
E

v
e
ry

h
a
rp

y
is

a
te

n
d
ri

c
u
lo

s
o
f

a
ta

sl
o
i.

∧
T

rn
O

b
jP

ro
p
(r

0
)

If
X

is
a

te
n
d
ri

c
u
lo

s
o
f

Y
a
n
d

Y
is

a
te

n
d
ri

c
u
lo

s
o
f

Z
th

e
n

→
S
u
b
C

la
O

f(
X

,O
b

jS
o
m

V
a
lF

(r
0
,Z

))
X

is
a

te
n
d
ri

c
u
lo

s
o
f

Z
.

→
E

v
e
ry

d
e
ro

is
a

te
n
d
ri

c
u
lo

s
o
f

a
ta

sl
o
i.

2
4

S
u
b
C

la
O

f(
X

,O
b

jU
n
iO

f(
Y

,Z
))

E
v
e
ry

m
o
n
g
re

lf
o
lk

is
a

n
il
b

o
g

o
r

a
n
o
rk

e
r.

3
5

4
8

0
.7

3
∧

S
u
b
C

la
O

f(
Y

,W
)

E
v
e
ry

n
il
b

o
g

is
a

sk
u
lk

.
∧

S
u
b
C

la
O

f(
Z

,W
)

E
v
e
ry

n
o
rk

e
r

is
a

sk
u
lk

.
→

S
u
b
C

la
O

f(
X

,W
)

→
E

v
e
ry

m
o
n
g
re

lf
o
lk

is
a

sk
u
lk

.
2
5

S
u
b
C

la
O

f(
O

b
jC

o
m

p
O

f(
X

),
Y

)
E

v
e
ry

th
in

g
th

a
t

is
n
o
t

a
sp

ri
g
g
a
n

is
a
n

o
ro

g
.

3
6

5
0

0
.7

2
→

S
u
b
C

la
O

f(
>

,C
t

Y
)

→
E

v
e
ry

th
in

g
is

a
sp

ri
g
g
a
n

o
r

a
n

o
ro

g
.

2
6

S
u
b
C

la
O

f(
X

,O
b

jU
n
iO

f(
Y

,Z
))

E
v
e
ry

m
e
rf

o
lk

is
a

li
z
a
rd

fo
lk

o
r

a
k
o
b

o
ld

.
3
5

4
9

0
.7

1
∧

S
u
b
C

la
O

f(
Y

,Z
)

E
v
e
ry

li
z
a
rd

fo
lk

is
a

k
o
b

o
ld

.
→

S
u
b
C

la
O

f(
X

,Z
)

→
E

v
e
ry

m
e
rf

o
lk

is
a

k
o
b

o
ld

.
2
7

S
u
b
C

la
O

f(
O

b
jS

o
m

V
a
lF

(r
0
,X

),
Y

)
E

v
e
ry

th
in

g
th

a
t

su
p

e
rv

is
e
s

a
w

o
rg

is
a

st
ir

g
e
.

3
5

4
9

0
.7

1
∧

S
u
b
C

la
O

f(
O

b
jA

ll
V

a
lF

(r
0
,⊥

),
Y

)
E

v
e
ry

th
in

g
th

a
t

su
p

e
rv

is
e
s

n
o
th

in
g

a
t

a
ll

is
a

st
ir

g
e
.

→
S
u
b
C

la
O

f(
O

b
jA

ll
V

a
lF

(r
0
,X

),
Y

)
→

E
v
e
ry

th
in

g
th

a
t

su
p

e
rv

is
e
s

o
n
ly

w
o
rg

s
is

a
st

ir
g
e
.

2
8

O
b

jP
ro

p
D

o
m

(r
0
,X

)
A

n
y
th

in
g

th
a
t

is
a
n

o
b
li
v
ia

x
o
f

so
m

e
th

in
g

is
a

k
ra

k
e
n
.

3
4

4
9

0
.6

9
∧

S
y
m

O
b

jP
ro

p
(r

0
)

X
is

a
n

o
b
li
v
ia

x
o
f

Y
if

a
n
d

o
n
ly

if
Y

is
a
n

o
b
li
v
ia

x
o
f

X
.

C
o
n
ti
n
u
ed

o
n

N
e
x
t
P
a
g
e
.
.
.

10



→
O

b
jP

ro
p
R

n
g
(r

0
,X

)
→

A
n
y
th

in
g

th
a
t

so
m

e
th

in
g

is
a
n

o
b
li
v
ia

x
o
f

is
a

k
ra

k
e
n
.

2
9

S
u
b
C

la
O

f(
X

,O
b

jS
o
m

V
a
lF

(r
0
,O

b
jS

o
m

V
a
lF

(r
0
,Y

))
)

E
v
e
ry

d
ra

c
o
n
ia

n
is

a
sp

ri
g
g
a
n

o
f

so
m

e
th

in
g

th
a
t

is
a

sp
ri

g
g
a
n

o
f

a
sh

if
te

r.
3
4

5
0

0
.6

8
∧

T
rn

O
b

jP
ro

p
(r

0
)

If
X

is
a

sp
ri

g
g
a
n

o
f

Y
a
n
d

Y
is

a
sp

ri
g
g
a
n

o
f

Z
th

e
n

X
is

a
sp

ri
g
g
a
n

o
f

Z
.

→
S
u
b
C

la
O

f(
X

,O
b

jS
o
m

V
a
lF

(r
0
,Y

))
→

E
v
e
ry

d
ra

c
o
n
ia

n
is

a
sp

ri
g
g
a
n

o
f

a
sh

if
te

r.
3
0

O
b

jP
ro

p
R

n
g
(r

0
,Z

)
A

n
y
th

in
g

th
a
t

so
m

e
th

in
g

re
se

m
b
le

s
is

a
c
o
ro

ll
a
x
.

3
2

5
0

0
.6

4
∧

S
u
b
C

la
O

f(
X

,O
b

jS
o
m

V
a
lF

(r
0
,Y

))
E

v
e
ry

m
u
d
m

a
w

re
se

m
b
le

s
a

je
rm

la
in

e
.

→
S
u
b
C

la
O

f(
X

,O
b

jS
o
m

V
a
lF

(r
0
,

→
E

v
e
ry

m
u
d
m

a
w

re
se

m
b
le

s
so

m
e
th

in
g

th
a
t

is
b

o
th

O
b

jI
n
tO

f(
Y

,Z
))

)
a

je
rm

la
in

e
a
n
d

a
c
o
ro

ll
a
x
.

3
1

S
u
b
C

la
O

f(
>

,Y
)

E
v
e
ry

th
in

g
is

a
d
a
rf

e
ll
a
n
.

3
0

4
7

0
.6

4
∧

D
is

C
la

(X
,Y

)
N

o
g
ri

p
p
li

is
a

d
a
rf

e
ll
a
n
.

→
S
u
b
C

la
O

f(
X

,⊥
)

→
N

o
th

in
g

is
a

g
ri

p
p
li
.

3
2

S
u
b
C

la
O

f(
X

,O
b

jE
x
tC

a
rd

(n
1
,r

0
,Y

))
E

v
e
ry

o
a
k
e
n

d
e
fe

n
d
e
r

h
a
s

e
x
a
c
tl

y
tw

o
d
ry

le
a
v
e
s.

2
9

4
6

0
.6

3
→

S
u
b
C

la
O

f(
X

,O
b

jM
in

C
a
rd

(n
2
,r

0
,Y

))
→

E
v
e
ry

o
a
k
e
n

d
e
fe

n
d
e
r

h
a
s

a
t

le
a
st

o
n
e

d
ry

le
a
f.

w
h
e
re

n
2
≤

n
1

3
3

O
b

jP
ro

p
D

o
m

(r
0
,X

)
A

n
y
th

in
g

th
a
t

g
y
re

s
so

m
e
th

in
g

is
a

ti
e
fl
in

g
.

2
8

4
6

0
.6

1
∧

S
u
b
O

b
jP

p
O

f(
r1

,r
0
)

T
h
e

p
ro

p
e
rt

y
”
ra

th
s”

is
a

su
b
-p

ro
p

e
rt

y
o
f

”
g
y
re

s”
.

→
O

b
jP

ro
p
D

o
m

(r
1
,X

)
→

A
n
y
th

in
g

th
a
t

ra
th

s
so

m
e
th

in
g

is
a

ti
e
fl

in
g
.

3
4

S
u
b
C

la
O

f(
X

,Y
)

E
v
e
ry

a
a
si

m
a
r

is
a

si
ri

n
e
.

3
0

5
3

0
.5

7
∧

D
is

C
la

(X
,Y

)
N

o
a
a
si

m
a
r

is
a

si
ri

n
e
.

→
S
u
b
C

la
O

f(
X

,⊥
)

→
N

o
th

in
g

is
a
n

a
a
si

m
a
r.

3
5

S
u
b
C

la
O

f(
X

,Y
)

E
v
e
ry

n
e
e
d
le

m
a
n

is
a

b
a
si

d
ir

o
n
d
.

2
7

4
8

0
.5

6
∧

S
u
b
C

la
O

f(
X

,Z
)

E
v
e
ry

n
e
e
d
le

m
a
n

is
a

b
a
tt

le
b
ri

a
r.

∧
D

is
C

la
(Y

,Z
)

N
o

b
a
si

d
ir

o
n
d

is
a

b
a
tt

le
b
ri

a
r.

→
S
u
b
C

la
O

f(
X

,⊥
)

→
N

o
th

in
g

is
a

n
e
e
d
le

m
a
n
.

3
6

T
rn

O
b

jP
ro

p
(r

0
)

If
X

to
v
e
s

Y
a
n
d

Y
to

v
e
s

Z
th

e
n

X
to

v
e
s

Z
.

2
7

4
9

0
.5

5
∧

In
v
O

b
jP

ro
p
(r

0
,r

1
)

X
to

v
e
s

Y
if

a
n
d

o
n
ly

if
Y

is
to

v
e
d

b
y

X
.

→
T

rn
O

b
jP

ro
p
(r

1
)

→
If

X
is

to
v
e
d

b
y

Y
a
n
d

Y
is

to
v
e
d

b
y

Z
th

e
n

X
is

to
v
e
d

b
y

Z
.

3
7

S
u
b
C

la
O

f(
X

,O
b

jS
o
m

V
a
lF

(r
0
,Y

))
E

v
e
ry

h
a
lfl

in
g

is
a
n

a
sc

o
m

o
id

o
f

a
k
e
n
k
u
.

2
8

5
1

0
.5

5
∧

S
u
b
O

b
jP

p
O

f(
r0

,r
1
)

T
h
e

p
ro

p
e
rt

y
”
is

a
n

a
sc

o
m

o
id

o
f”

is
a

su
b
-p

ro
p

e
rt

y
o
f

”
is

a
b
a
si

d
ir

o
n
d

o
f”

.
→

S
u
b
C

la
O

f(
X

,O
b

jS
o
m

V
a
lF

(r
1
,Y

))
→

E
v
e
ry

h
a
lfl

in
g

is
a

b
a
si

d
ir

o
n
d

o
f

a
k
e
n
k
u
.

3
8

O
b

jP
ro

p
R

n
g
(r

1
,X

)
A

n
y
th

in
g

th
a
t

so
m

e
th

in
g

b
ri

ll
ig

s
is

a
g
ir

a
ll
o
n
.

2
4

4
6

0
.5

2
∧

S
u
b
O

b
jP

ro
p
O

f(
r0

,r
1
)

T
h
e

p
ro

p
e
rt

y
”
g
im

b
le

s”
is

a
su

b
-p

ro
p

e
rt

y
o
f

”
b
ri

ll
ig

s”
.

→
O

b
jP

ro
p
R

n
g
(r

0
,X

)
→

A
n
y
th

in
g

th
a
t

so
m

e
th

in
g

g
im

b
le

s
is

a
g
ir

a
ll
o
n
.

3
9

S
u
b
C

la
O

f(
X

,Y
)

E
v
e
ry

d
a
rk

m
a
n
tl

e
is

a
g
o
rg

o
n
.

2
5

4
9

0
.5

1
∧

S
u
b
C

la
O

f(
X

,O
b

jC
o
m

p
O

f(
Y

))
E

v
e
ry

d
a
rk

m
a
n
tl

e
is

n
o
t

a
g
o
rg

o
n
.

→
S
u
b
C

la
O

f(
X

,⊥
)

→
N

o
th

in
g

is
a

d
a
rk

m
a
n
tl

e
.

4
0

S
u
b
C

la
O

f(
X

,O
b

jS
o
m

V
a
lF

(r
0
,O

b
jI

n
tO

f(
Y

,Z
.
.
.
))

)
E

v
e
ry

d
a
e
m

o
n
fe

y
is

p
re

c
e
d
e
d

b
y

so
m

e
th

in
g

th
a
t

is
b

o
th

a
n

a
x
a
n
i

a
n
d

a
p
h
o
e
ra

.
2
5

5
0

0
.5

0
∧

D
is

C
la

(Y
,Z

)
N

o
a
x
a
n
i

is
a

p
h
o
e
ra

.
→

S
u
b
C

la
O

f(
X

,⊥
)

→
N

o
th

in
g

is
a

d
a
e
m

o
n
fe

y
.

4
1

S
u
b
C

la
O

f(
X

,O
b

jM
in

C
a
rd

(n
1
,r

0
,D

o
r>

))
E

v
e
ry

je
rm

la
in

e
p

o
ss

e
ss

e
s

a
t

le
a
st

th
re

e
th

in
g
s.

2
2

4
6

0
.4

8
∧

S
u
b
C

la
O

f(
X

,O
b

jM
in

C
a
rd

(n
2
,r

0
,>

))
,

0
<

n
2
<

n
1

E
v
e
ry

je
rm

la
in

e
p

o
ss

e
ss

e
s

a
t

m
o
st

o
n
e

th
in

g
.

C
o
n
ti
n
u
ed

o
n

N
e
x
t
P
a
g
e
.
.
.

11



→
S
u
b
C

la
O

f(
X

,⊥
)

→
N

o
th

in
g

is
a

je
rm

la
in

e
.

4
2

S
u
b
C

la
O

f(
X

,O
b

jS
o
m

V
a
lF

(r
0
,Y

))
E

v
e
ry

ta
sl

o
i

h
a
s

a
s

o
w

n
e
r

a
n

a
a
si

m
a
r.

2
0

4
4

0
.4

5
∧

S
u
b
C

la
O

f(
Y

,⊥
)

N
o
th

in
g

is
a
n

a
a
si

m
a
r.

→
S
u
b
C

la
O

f(
X

,⊥
)

→
N

o
th

in
g

is
a

ta
sl

o
i.

4
3

F
u
n
D

a
tP

ro
p
(d

0
)

E
v
e
ry

th
in

g
h
a
s

a
s

ra
ti

n
g
s

a
t

m
o
st

o
n
e

v
a
lu

e
.

2
0

4
9

0
.4

1
∧

S
u
b
C

la
O

f(
X

,D
a
ta

M
in

C
a
rd

(n
,d

0
,D

R
0
))

,
n

>
1

E
v
e
ry

b
u
ck

a
w

n
h
a
s

a
s

ra
ti

n
g
s

a
t

le
a
st

fo
u
r

in
te

g
e
r

v
a
lu

e
s.

w
h
e
re

n
>

1
→

N
o
th

in
g

is
a

b
u
ck

a
w

n
.

→
S
u
b
C

la
O

f(
X

,⊥
)

4
4

O
b

jP
ro

p
R

n
g
(r

0
,X

)
A

n
y
th

in
g

th
a
t

so
m

e
th

in
g

g
im

b
le

s
fr

o
m

is
a

te
rl

e
n
.

1
9

4
7

0
.4

0
∧

In
v
O

b
jP

ro
p
(r

0
,r

1
)

X
g
im

b
le

s
fr

o
m

Y
if

a
n
d

o
n
ly

if
Y

g
im

b
le

s
in

to
X

.
→

O
b

jP
ro

p
D

o
m

(r
1
,X

)
→

A
n
y
th

in
g

th
a
t

g
im

b
le

s
in

to
so

m
e
th

in
g

is
a

te
rl

e
n
.

4
5

F
u
n
D

a
tP

ro
p
(d

0
)

E
v
e
ry

th
in

g
h
a
s

a
s

p
o
w

e
r

le
v
e
l

a
t

m
o
st

o
n
e

v
a
lu

e
.

1
8

4
5

0
.4

0
∧

S
u
b
C

la
O

f(
X

,D
a
ta

H
a
sV

a
l(

d
0
,l
0
?
D

T
0
))

E
v
e
ry

si
ri

n
e

h
a
s

a
s

p
o
w

e
r

le
v
e
l

a
n

in
te

g
e
r

v
a
lu

e
o
f

5
.

∧
S
u
b
C

la
O

f(
X

,D
a
ta

H
a
sV

a
l(

d
0
,l
1
?
D

T
1
))

E
v
e
ry

si
ri

n
e

h
a
s

a
s

p
o
w

e
r

le
v
e
l

a
n

in
te

g
e
r

v
a
lu

e
o
f

7
.

w
h
e
re

D
T

0
a
n
d

D
T

1
a
re

d
is

jo
in

t
o
r

l0
6=

l1
→

N
o
th

in
g

is
a

si
ri

n
e
.

→
S
u
b
C

la
O

f(
X

,⊥
)

4
6

F
u
n
c
O

b
jP

ro
p
(r

0
)

E
v
e
ry

th
in

g
w

o
rs

h
ip

s
a
t

m
o
st

o
n
e

th
in

g
.

1
7

4
4

0
.3

9
∧

S
u
b
C

la
O

f(
X

,O
b

jH
a
sV

a
l(

r0
,i
0
))

E
v
e
ry

se
lk

ie
w

o
rs

h
ip

s
A

sh
u
r.

∧
S
u
b
C

la
O

f(
X

,O
b

jH
a
sV

a
l(

r0
,i
1
))

E
v
e
ry

se
lk

ie
w

o
rs

h
ip

s
E

n
k
i.

∧
D

iff
In

d
(i

0
,i
1
.
.
.
)

A
sh

u
r

a
n
d

E
n
k
i

a
re

d
iff

e
re

n
t

in
d
iv

id
u
a
ls

.
→

S
u
b
C

la
O

f(
X

,⊥
)

→
N

o
th

in
g

is
a

se
lk

ie
.

4
7

O
b

jP
ro

p
D

o
m

(r
1
,X

)
A

n
y
th

in
g

th
a
t

g
im

b
le

s
fr

o
m

so
m

e
th

in
g

is
a
n

a
to

m
ie

.
1
8

4
8

0
.3

8
∧

In
v
O

b
jP

ro
p
(r

1
,r

0
)

X
g
im

b
le

s
fr

o
m

Y
if

a
n
d

o
n
ly

if
Y

g
im

b
le

s
in

to
X

.
→

O
b

jP
ro

p
R

n
g
(r

0
,X

)
→

A
n
y
th

in
g

th
a
t

so
m

e
th

in
g

g
im

b
le

s
in

to
is

a
n

a
to

m
ie

.
4
8

S
u
b
C

la
O

f(
X

,O
b

jA
ll
V

a
lF

(r
0
,Y

)
E

v
e
ry

ta
b
a
x
i

to
v
e
s

fr
o
m

o
n
ly

la
m

ia
s.

1
6

5
0

0
.3

2
∧

In
v
O

b
jP

ro
p
(r

0
,r

1
)

X
to

v
e
s

fr
o
m

Y
if

a
n
d

o
n
ly

if
Y

to
v
e
s

in
to

X
.

→
S
u
b
C

la
O

f(
O

b
jS

o
m

V
a
lF

(r
1
,X

),
Y

)
→

E
v
e
ry

th
in

g
th

a
t

to
v
e
s

in
to

a
ta

b
a
x
i

is
a

la
m

ia
.

4
9

D
a
ta

P
ro

p
R

a
n
g
e
(d

0
,D

R
0
)

A
n
y

v
a
lu

e
th

a
t

so
m

e
th

in
g

h
a
s

a
s

d
a
rk

-v
is

io
n

is
a
n

in
te

g
e
r

v
a
lu

e
.

9
4
8

0
.1

9
∧

S
u
b
C

la
O

f(
X

,O
b

jS
o
m

V
a
lF

(r
0
,D

a
ta

H
a
sV

a
l(

d
0
,

E
v
e
ry

e
tt

in
m

a
k
e
s

fr
ie

n
d
s

w
it

h
so

m
e
th

in
g

th
a
t

h
a
s

a
s

d
a
rk

-v
is

io
n

l0
?
D

T
1
))

)
w

h
e
re

D
R

0
&

D
T

1
a
re

d
is

jo
in

t
st

ri
n
g

v
a
lu

e
o
f

”
th

re
e
”
.

→
S
u
b
C

la
O

f(
X

,⊥
)

S
tr

in
g

v
a
lu

e
s

a
re

u
n
c
o
n
v
e
rt

ib
le

to
in

te
g
e
r

v
a
lu

e
s

in
O

W
L

.
→

N
o
th

in
g

is
a
n

e
tt

in
.

5
0

D
a
ta

P
ro

p
R

a
n
g
e
(d

0
,D

R
0
)

A
n
y

v
a
lu

e
th

a
t

so
m

e
th

in
g

h
a
s

a
s

li
fe

e
x
p

e
c
ta

n
c
y

is
a
n

in
te

g
e
r

v
a
lu

e
.

9
4
9

0
.1

8
∧

S
u
b
C

la
O

f(
X

,D
a
ta

S
o
m

e
V

a
lF

rm
(d

0
,D

T
1
))

E
v
e
ry

ti
e
fl
in

g
h
a
s

a
s

li
fe

e
x
p

e
c
ta

n
c
y

a
d
o
u
b
le

v
a
lu

e
.

w
h
e
re

D
R

0
&

D
T

1
a
re

d
is

jo
in

t
D

o
u
b
le

v
a
lu

e
s

a
re

u
n
c
o
n
v
e
rt

ib
le

to
in

te
g
e
r

v
a
lu

e
s

in
O

W
L

.
→

S
u
b
C

la
O

f(
X

,⊥
)

→
N

o
th

in
g

is
a

ti
e
fl
in

g
.

5
1

E
q
v
C

la
(X

,O
b

jA
ll
V

a
lF

(r
0
,Y

)
A

h
ia

te
a

is
a
n
y
th

in
g

th
a
t

e
a
ts

o
n
ly

la
m

ia
s.

2
4
9

0
.0

4
→

S
u
b
C

la
O

f(
O

b
jA

ll
V

a
lF

(r
0
,⊥

),
X

)
→

E
v
e
ry

th
in

g
th

a
t

e
a
ts

n
o
th

in
g

a
t

a
ll

is
a

h
ia

te
a
.

12




