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Abstract 

Teaching Modelica to students of a university re-
quires suitable example models. This paper describes 
a planar mechanical library that is primarily con-
ceived for didactical purposes. It is simple, built out 
of a few components only, but it enables the model-
ing of interesting and complex systems. The library 
is freely available and supported by various Modeli-
ca environments. 
Keywords:Education;Planar Mechanics; 

1 Introduction 

1.1 Motivation 

This paper presents a planar mechanical library that 
has been primarily designed for didactical purposes. 
The idea of such a library is that it is simple and easy 
to understand. In this way, the students can focus on 
learning the principles of equation-based modeling 
and they can avoid the lot of peculiar particularities 
that have meanwhile become part of the language. 

We have used this library in the Modelica course 
at the technical university in Munich [8]. The course 
is enlisted in the computer science department. The 
students of this class mostly study computer science, 
applied mathematics or physics. Computer science 
students in Munich do not have any physics course 
in their basic curriculum. Hence, explaining the 
modeling of physical systems requires explaining the 
physics as well, in this particular case: the funda-
mental laws of motion.  

In planar mechanical systems, we describe the 
physics of a multi body system in a two‐dimensional 
plane. Each body position can be described by the 
coordinates x and y and its orientation by the angle φ 
(see Figure 1). Each body has a mass and its inertia 
can be described by a single scalar. 

Planar models of mechanical systems are useful 
for a number of applications. Very popular is their 
use for contact problems that are a lot simpler in 2D 

than in 3D. The modeling of gear wheel interaction 
is one such example [5]. For this paper their use in 
teaching is of course the main issue. 
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Figure 1: Representation of an object in planar space 

1.2 Suitability of planar mechanics 

Planar mechanical systems are ideally suited for 
teaching equation-based modeling, because their 
components are easy to model and to understand but 
the resulting systems are often complex in behavior 
and demanding in their computational aspects. Or to 
put it in short terms: you can do a lot of cool stuff by 
simple means. 

From the modeling side, planar mechanics offers 
the following advantages: 
• Planar mechanical systems are tangible and vis-

ual systems. All students have played with me-
chanical systems before in their life and every-
one has an intuitive (and sometimes wrong) un-
derstanding about their motion. This motion can 
be visualized in an animation, which is more ap-
pealing to students than studying plots. 

• The physical laws of planar mechanical systems 
are basically taught already in high-school. 
D’Alemberst Principle and Newton’s Law look 
familiar to the students. The equations of motion 
themselves are relatively easy. 
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• Planar mechanical systems can be steered either 
by human interaction or by a control law. Again 
these tasks are very tangible and concrete: eve-
ryone has steered a bicycle and everyone has 
tried to balance a pen in his life. 

 
The resulting system can then be used to demonstrate 
and study the advantages and difficulties of equa-
tion-based modeling. 
 
• First of all, mechanical systems require true non-

causal equation-based modeling. Modeling 
methods that are based on the computational 
flow such as Simulink are of very limited use in 
this domain. A kinematic loop can be used as an 
illustration. 

• Also kinematic loops require the solution of non-
linear equation systems. The corresponding ex-
amples can be used to explain techniques for in-
tialization and state selection. 

 
In contrast to planar mechanical systems, 1D and 3D 
mechanical system are not so well suited for teach-
ing.  

1D mechanical systems are too simple. Of course, 
We teach both rotational and translational mechanic 
prior to planar system, but many interesting configu-
rations such as kinematic loops do not naturally exist 
in 1D. Hence, the topic does not bear long and quick-
ly gets boring unless you enter the specifics of drive-
train modeling which is misplaced in a general Mod-
elica course.  

3D mechanical systems on the other side are way 
too complex. A short look on the components of the 
standard MultiBody Library  [2,7] makes this clear. 
In 3D, the description of a body orientation can be 
performed in many different and potentially redun-
dant ways. This redundancy then leads to further dif-
ficulties so that kinematic loops require special 
treatment. In planar mechanics, the orientation is 
uniquely described by a single angle and kinematic 
loops do not require special modeling tools. 

2 State of the Art in planar mechani-
cal modeling 

The library presented in this paper is not the first 
planar mechanical library that has been developed in 
Modelica.  

Indeed, we have developed one of the first vari-
ants as part of the MultiBondLib [7]. It is freely 
available and it is also well suited for teaching but 
only in a course where bondgraphic modeling is part 

of the program. In contrast, the new library is direct-
ly based on equations and does not require the 
knowledge of bondgraphs. Furthermore, because of 
the use of bondgraphs in the MultiBondLib the con-
nectors contained redundant information and kine-
matic loops required special handling.  

A second planar library has been developed by 
Höbinger and Otter [4]. In addition to the basic me-
chanical components (joints and body parts), the li-
brary contained models for the contact of curved sur-
faces. Although, it was envisioned that this library 
becomes part of the Modelica Standard Library 
(MSL), this has not yet taken place. 

Furthermore new planar mechanical elements 
have developed by van der Linden [5] for the model-
ing of gearwheels. This developments use the same 
interfaces and components as the planar mechanical 
library presented here. 

2.1 Contributions of this Paper 

Since already a significant amount of effort has been 
spent on the development of Modelica code for pla-
nar mechanics, it is important to clarify the contribu-
tion of this paper. Essentially there are three major 
objectives for this work: 
 
• Presentation of a didactical library: This is the 

major part of this paper (section 3 to 5). I will 
present the interfaces and the structure of the li-
brary and show how simple the individual com-
ponents can be modeled.  

 
• Cross-Platform Library for different compil-

ers: The ability to compose complex systems out 
of simple components using only a smaller sub-
set of the language is not only interesting for 
students but also for compiler developers. The 
library turns out to be very well suited for testing 
the abilities of various Modelica environments. 
Also for teaching purposes, it is good if the ma-
terial is not bounded to a certain software tool 
but of general applicability. More on this topic in 
section 6 

 
• Establishment of a standard interface for pla-

nar mechanics: The planar mechanical library 
for didactical purposes is not supposed to be-
come part of the MSL. Libraries that are part of 
the MSL must be optimized with respect to usa-
bility. This in part conflicts with desired level of 
simplicity for teaching. However, there is no rea-
son why a potential library for planar mechanics 
in the MSL and the didactical library should use 
different interfaces.  
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3 Structure of the library 

The interface of a planar mechanical component rep-
resents a flange point. This point is determined by a 
fixed position the plane (x,y) and a fixed orientation 
angle (phi). Forces in x and y direction (fx, fy) as 
well as a torque (t) may act on the flange point. The 
corresponding Modelica connector is hence designed 
as follows: 
 
Listing 1: Connector code 
 
connector Frame 
"General Connector for planar mechanical components" 
 

SI.Position x "x-position"; 
SI.Position y "y-position"; 
SI.Angle phi "angle (counter-clockwise)"; 
flow SI.Force fx "force in x-direction"; 
flow SI.Force fy "force in y-direction"; 
flow SI.Torque t "torque (clockwise)"; 
 

end Frame; 
 
 
For simplicity, the potential use of vectors in the 
connector has been omitted. For beginners it is a lit-
tle easier, to work with x,y, and phi than with a vec-
tor r[2] and phi. The same holds for the forces. 
Given this connector, a variety of planar mechanical 
components can be implemented. Figure 2 provides 
an overview of the library content.  

The standard components are parts and joints. 
These elements were designed in strong resemblance 
to their counterparts in the Modelica MultiBody li-
brary. In addition to the standard components, the 
library contains sub-packages for vehicle wheels and 
gearwheels. 

The wheel models can be used to move with a 
wheel on the x,y-plane. There are ideal wheel models 
and simple slip based models inspired by previous 
works [6].  

Future versions of this library may also contain 
the gear wheel models out of the work of van der 
Linden [5]. They can for instance be used to assem-
ble a planetary gear box. 

All elements in this library contain a suitable vis-
ual representation for the animation. For simplicity 
though, the animation is not as configurable as in the 
MultiBody library. Another difference to the Multi-
Body library is that there is no World model availa-
ble in this library. Again the sheer simplicity is pre-
ferred over a more elaborate solution. 

The library features a large set of examples that 
demonstrate the variety of systems that can be as-

sembled from these components: pendulum, crane 
crab, kinematic loops, or even two-track car vehicle 
models are included. Also examples of controlled 
systems and model inversion are contained in this 
library. 

The library itself is available at [8] or at the Mod-
elica Website. This is made publicly available and 
represents the standard version. The examples in this 
version are all suitable for testing purposes. Further-
more this library is self-contained only requiring a 
few elements of the standard library but not requiring 
any other library. 

The planar mechanical library that is being used 
in the lecture course is slightly different. First of all 
it is developed in several steps as the course pro-
ceeds. In its latter stages, it also contains elements 
from DLR libraries. The lecture course contains also 
slides explaining the components of this library at 
great level of detail. 

 

 
Figure 2: Structure of the planar mechanical library 
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4 Teaching Modelica 

4.1 Context 

When the library is used for teaching, it is not pre-
sented as a whole but gradually developed together 
with the students. The goal is that the students learn 
all relevant processes of modeling in Modelica: from 
punching in equations, plugging together compo-
nents to designing a whole library.  

In the course “Virtual Physics”, the library is be-
ing used from lesson 5 on. In the first 4 lessons, the 
students learn the basics of equation-based modeling 
and the Modelica language. After going through ex-
amples of 1D mechanical systems, we start by the 
most basic mechanic components.  

4.2 Component Modeling 

The most important component is of course the body 
component: 
 
Listing 2: Body component 
 
model Body "Body component with mass and inertia" 
 
  Interfaces.Frame_a frame_a; 
 
  parameter SI.Mass m "mass of the body"; 
  parameter SI.Inertia I "Inertia of the Body"; 
  parameter SI.Acceleration gx =0  
    "gravity acceleration (in x) acting on the mass"; 
  parameter SI.Acceleration gy=-9.81  
    "gravity acceleration(in y) acting on the mass"; 
 
  SI.Velocity vx "velocity in x"; 
  SI.Velocity vy "velocity in y"; 
  SI.AngularVelocity w "angular velocity"; 
  SI.Acceleration ax "acceleration in x"; 
  SI.Acceleration ax "acceleration in y"; 
  SI.AngularAcceleration z "angular acceleration"; 

 
equation  

//The velocity is a time-derivative of the position 
vx = der(frame_a.x); 
vy = der(frame_a.y); 
w = der(frame_a.phi); 
 
//The acceleration is a time-derivative of the velocity 
ax = der(vx); 
ay = der(vy); 
z = der(w); 
 
//Newton's law 
fx + m*gx = m*ax; 
fy + m*gy = m*ay; 
frame_a.t = I*z; 
 

end Body; 
 

Even with plenty of comments the code remains 
compact and is very easy to understand. For the first 
version, everything that may distract the student has 
been removed. Gravity acceleration is a simple pa-
rameter and does not be read out of a strange “world 
model”. There is no animation and there are no op-
tions for initialization or state-selection that pollute 
the code. Just the bare physical equations form the 
model.  

In this version, also no vector notation is used. 
For students of a technical university it seems to 
cause no problems in understanding the model code. 
Teaching experience from universities of applied 
sciences indicates that vector notation is better intro-
duced later on.  Vector notation is used in a subse-
quent version, where also the code of the animation 
is added. The students know at this stage that this 
code is non-essential. 

For joint elements, a neutral element is a good 
starting point. This element implements the lever 
principle but exhibits no forces on its connectors. 
 
Listing 3: Neutral component 
 
model Neutral 

//This component has two frames… 
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_a frame_b; 
 
equation  
 

//…but exhibits no effect. 
  frame_a.fx = 0; 
  frame_a.fy = 0;  
  frame_a.t = 0; 
 

//This is the balance of force and torque 
  including the lever principle 

  frame_a.fx + frame_b.fx = 0; 
  frame_a.fy + frame_b.fy = 0;  
  frame_a.t   
  + frame_b.t  
  + (frame_b.x - frame_a.x)*frame_b.fy 
  - (frame_b.y – frame_a.y)*frame_b.fx 
  = 0; 
 
end Neutral 
 

 
Any joint can now be implemented by replacing the 
assignment of zero force with the corresponding po-
sitional constraints. Furthermore, the lever principle 
can often be simplified. Let us for instance look at 
the revolute joint. Here, two positional constraints 
are enforced: the position must be equal in direction 
of x and y. Since there is no distance between the 
two frames, the lever principle degenerates to a bal-
ance of torque. 
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Listing 4: Revolute joint, first version 
 
model Revolute 
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_a frame_b; 
 
equation  
 

//frame_a.fx = 0 gets  replaced by 
  frame_a.x = frame_b.x; 
 

//frame_a.fy = 0 gets replaced by 
  frame_a.y = frame_b.y; 
 
  frame_a.t = 0; 
 

//since there is no difference in position  
  the lever principle can be simplified 

  frame_a.fx + frame_b.fx = 0; 
  frame_a.fy + frame_b.fy = 0;  
  frame_a.t  + frame_b.t = 0; 
 
 
end Revolute; 
 
 
In a second version, two differential equations and 
one algebraic equation are added since the joint is 
well suited to describe the motion of the system. 
 
Listing 5: Revolute joint, second version 
 
model Revolute 
  Interfaces.Frame_a frame_a; 
  Interfaces.Frame_a frame_b; 
 
//These 3 variables help to describe the motion of a system 
  SI.Angle phi 
  SI.AngularVelocity w; 
  SI.AngularAcceleration z; 
 
equation  
 
//For 3 more variables we need 3 more equations: 
  frame_a.phi + phi = frame_b.phi; 
  w = der(phi); 
  z = der(w); 
 
//Known material… 
  frame_a.x = frame_b.x; 
  frame_a.y = frame_b.y; 
  frame_a.t = 0; 
 
  frame_a.fx + frame_b.fx = 0; 
  frame_a.fy + frame_b.fy = 0;  
  frame_a.t  + frame_b.t = 0; 
 
end Revolute; 
 
 
In this way, also a fixed translation element can be 
explained. The prismatic joint can then be presented 
as a translational element of variable length. 

4.3 Valuable Examples for Teaching 

Having available only five component models for 
 

• body with mass and inertia, 
• revolute joint, 
• prismatic joint, 
• fixed translation, 
• and global fixation 

 
enables us to compose already a lot of interesting 
models.  

 
Figure 3: Chaotic trajectory of a double pendulum 
 
The famous double pendulum can be used to demon-
strate chaotic system behavior. Figure 3 shows the 
erratic trajectory of the peak of the pendulum. Simu-
lating with different values for precision yields each 
time a completely new trajectory and no conver-
gence can be reached. The students learn the im-
portant lesson that a simple non-linearity can lead to 
totally unpredictable and chaotic systems. 
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Figure 4: Model diagram of a simple piston engine 
Figure 4 displays the model diagram of a piston en-
gine. It represents a kinematic loop: although there 
are four joint elements, the complete system has just 
one degree of freedom. This example is used to ex-
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plain the mechanism of initialization and state selec-
tion to the students. The joint elements are then fur-
ther enhanced by an initialization section and attrib-
utes for state selection. Furthermore, the students 
learn about the Pantelides algorithm for reducing the 
differential index of a system. 

body
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angleSensoractuate?
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force

PID
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Ti=1E9

 
Figure 5: Model diagram of an inverted pendulum con-
trolled by a PID element 
 
The inverted pendulum is a famous example in con-
trol theory. It is easy to model by using the planar 
mechanical components. A simple PID controller 
can be added to show how a controller can be de-
signed in Modelica. Furthermore it is possible to in-
vert the model by stipulating the trajectory and com-
puting the forces. In this way, the students can learn 
how flexible a Modelica model can be used: not only 
for simulation but also for control design and model 
inversion. 

5 Tire and vehicle models 

Whereas the standard components already enable the 
creation of many interesting examples, planar me-
chanical systems can also be used to model vehicles 
driving on the plane. To this end three separate 
wheel models are provided: 
 

• An ideal rolling wheel 
• A dry-friction based wheel 
• A slip-based wheel 

 

Listing 6 presents the code for the ideal rolling 
wheel. Although being already significantly more 
complex, this component is not beyond what a good 
student can learn to understand if he is supported by 
sufficient explanations and further material. 
 
Listing 6: Ideal wheel 
 
model IdealWheelJoint 

 
  Interfaces.Frame_a frame_a; 
  Rotational.Interfaces.Flange_a flange_a; 

 
  parameter SI.Length radius  
    "radius of the wheel"; 
  parameter SI.Length r[2]  
    "driving direction of the wheel at angle phi = 0"; 
  final parameter SI.Length l = sqrt(r*r); 
  final parameter Real e[2] =  r/l  
    "normalized driving direction"; 

 
Real e0[2]"normalized direction w.r.t inertial system"; 
Real R[2,2] "Rotation Matrix"; 
 
SI.AngularVelocity w_roll "roll velocity "; 
SI.Velocity v[2] "transl. velocity"; 
SI.Velocity v_long "velocity in longit. direction"; 
SI.Acceleration a "accel. of driving velocity"; 
SI.Force f_long "longitudinal force"; 
 

equation  
 

//Resolve the normalized driving direction in the 
  inertial coordinate system 
R={{cos(frame_a.phi),-sin(frame_a.phi)}, 
   {sin(frame_a.phi),cos(frame_a.phi)}}; 
e0 = R*e; 
 
//Project the longitudinal velocity in the planar space 
 (this implyies that the lateral velocity is zero) 
v = der({frame_a.x,frame_a.y}); 
v = v_long*e0; 
 
//Implement the law of ideal rolling 
w_roll = der(flange_a.phi); 
v_long = radius*w_roll; 
a = der(v_long); 
 
//Project the force on the longitudinal direction 
{frame_a.fx, frame_a.fy}*e0 = f_long; 
 
//model the drive torque 
-f_long*radius = flange_a.tau; 
 
//There is no bore torque 
frame_a.t = 0; 
   

end IdealWheelJoint; 
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The code for the other two wheel models is only a 
little more complex. The students have to learn about 
friction characteristics and regularization techniques.  
Given these wheel models, a simple one-track car 
model can be composed in five minutes: 
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Figure 6: Model diagram of a simple one track vehicle  
Such a model is sufficient to study the influence of 
the trail or the basic difference between front-wheel 
drive and rear-wheel drive.  

The highlight of the course is a two-track car 
model with slip-based wheels. It is enhanced by a 
simple 3D chassis that computes the load balance on 
the four wheels. The car model can be simulated in 
real-time. It is also visualized in real time by the use 
of the SimVis Library [1] (see Figure 7) and can be 
controlled online by the keyboard using components 
from the Modelica Device Drivers library [3]. As a 
result, the students can drive their own car model in 
3D just as in a computer game. Such an example at-
tracts many students to the course and helps to keep 
up their motivation during the course. 

6 Cross-platform compatibility 

Since the library uses only a subset of the Modelica 
language that consists entirely out of well-
established language constructs, it can be supported 
by a large set of different Modelica compilers al-

ready now. 15 examples have been selected for test-
ing the results of various Modelica simulation envi-
ronments. The current test results are summarized in 
figure 8. It shows the test results for all 17 examples 
and for for different compilers. 

First of all, Dymola[9] offers full support of the 
library. It is also the environment that has been used 
for the development of the library and that I use for 
teaching.  

JModelica[11] is also able to parse and process 
the entire library. It does not offer dynamic state-
selection as in Dymola but this feature is not so es-
sential for a didactical library. 

OpenModelica[10] can also parse the entire li-
brary. The correct translation and simulation is pos-
sible for large set of examples but not for all of them. 
In some more complex examples, the back-end of 
the compiler still has some problems with the non-
holonomic constraints equations that originate from 
ideal rolling parts.  

Also SimulationX[12] offers almost full support 
of the library. Some examples require a non-standard 
solver but these are this was the only small problem 
that occurred. For one example of a kinematic loop, 
SimulationX started with the wrong initial position 
but this might be due to modeling ambiguity. 

In all cases the compiler developers are working 
on the occurring problems and there is a fair chance 
that a complete support of the library can be realized 
soon.  

Test of MapleSim[13] have not yet been complet-
ed. First results indicate that MapleSim parses the 
code correctly and that the simulator is capable of 
simulating the test cases. The current problems con-
cern the usability of the models but these problems 
should be solved for the new version of MapleSim. 

Tests within Wolfram SystemModeler [14] have 
not yet been done. 

 

 
Figure 7: 3D-Realtime visualization of the two track ve-
hicle  
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Figure 8: This table displays the current support of the library among different Modelica environments 

7 Conclusions 

Ultimately, the goal is to have a didactical library 
available that can be used to teach Modelica in dif-
ferent modeling and simulation environments.  

I personally hope that this library helps other lec-
turers to create their Modelica courses. It can be used 
for free under the Modelica 2 license. Suggestion (or 
even better: contributions) that help to improve the 
quality of the library are always highly welcome. 
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