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Pål Kittilsen1,2 Svein Olav Hauger1 Stein O. Wasbø1

1Cybernetica AS, 7038 Trondheim, Norway
2Statoil Research Centre, 7005 Trondheim, Norway

pkit@statoil.com
{svein.o.hauger, stein.wasbo}@cybernetica.no

Abstract

Model-based online applications such as soft-sensing,
fault detection or model predictive control require rep-
resentative models. Basing models on physics has
the advantage of naturally describing nonlinear pro-
cesses and potentially describing a wide range of op-
erating conditions. Implementing adaptivity is essen-
tial for online use to avoid model performance degra-
dation over time and to compensate for model imper-
fection. Requirements for identifiability and observ-
ability, numerical robustness and computational speed
place an upper limit on model complexity. These con-
siderations motivate that models for online use should
be balanced-complexity, physically based with online
adaption possible.

Despite potential benefits, the effort required to im-
plement balanced-complexity models, particularly at
large scales, may deter their use. This paper presents
techniques used in the design of balanced-complexity
models. A Modelica-based approach is chosen to
reduce implementation effort by interfacing exported
Modelica models with application code by means of
the generic interface FMI. The suggested approach is
demonstrated by parameter estimation for a process
of offshore oil production: a subsea well-manifold-
pipeline production system.

Keywords: modeling, process control, process mod-
els, process simulators, offshore oil and gas pro-
duction, Modelica, subsea production, multiphase
flow, balanced-complexity models, nonlinear model-
predictive control, FMI

1 Introduction

In this paper the term online model refers to a model
that tracks the state of a process over time and is im-
plemented with adaptivity. Adaptivity in this paper can
refer to either state estimation, parameter estimation,

or both.
Applications that can benefit from online models in-

clude online simulators for “what-if” and look-ahead
analysis, data reconciliation, soft-sensors, fault detec-
tion, advisory decision support systems, (nonlinear-)
model predictive control (nMPC) and real-time op-
timization. Such applications have in common that
real-time computations are performed on a model that
hopefully represents the process with sufficient ac-
curacy. Evaluating and comparing multiple simula-
tion scenarios internally within real-time requirements
place conditions on computational speed. Algorithms
that evaluate models at different combinations of in-
puts, states and parameters place requirements on nu-
merical robustness.

Unless the process is time-invariant and the fitted
model matches the process perfectly, the model’s abil-
ity to track process states will degrade over time. For
industrial processes, both time-variation and model
imperfections must be expected, which makes adaptiv-
ity a crucial factor in the maintenance of model-based
online applications. Adaptivity can also be exploited
to simplify aspects of modeling for online use, to be
discussed.

Identifiability and observability considerations
place limits on how many states and parameters that
can be uniquely adapted to a given set of measure-
ments of a process. As a consequence, adapting all
the parameters and states that are uncertain or time-
varying in complex models will often be an ill-posed
problem for the available set of measurements. Some
authors have suggested converting full-complexity
engineering simulators into online models, see for
instance [11], but few references are found in the
literature of the use of such models for the online
applications listed above.

Balanced-complexity models in this paper refer to
models based mainly on physics which are specifically
designed to adhere to requirements set by online use
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for identifiability, observability, numerical robustness
and computational speed. In control literature many
references to purpose-built online models are found,
some recent applications related to process control and
oil and gas applications are; industrial batch process:
[14], thin-rim oil reservoirs: [13] and [15], riser slug-
ging in multiphase flows: [9] and drilling: [7].

Balanced-complexity models cited in the literature
are usually quite small in scope, and for the applica-
tions listed above they typically describe a particular
piece of equipment or a specific phenomenon of inter-
est in a subsection of a larger plant. Often such mod-
els found in the literature are small-scale, on the or-
der of 10 states or less and are feasible to hand-code.
There may be synergies to monitoring and control-
ling large plants in a unified manner instead of as a
series of smaller subsystems, a recent discussion of
this idea applied to subsea fields is found in [1]. A
balanced-complexity model of such larger systems can
have hundreds of states, for instance when modeling
an entire offshore processing plant, see [16]. At this
scale, balanced-complexity models become challeng-
ing to code and maintain manually, and it can be chal-
lenging to re-use code and to collaborate on model
design. Large-scale in this paper refers to balanced-
complexity models which attempt to describe large
systems, and where challenges related to the scale of
the model can potentially deter their use.

Modelica has several advantages that can aid in
the synthesis of large-scale balanced-complexity mod-
els for online use. First, Modelica is declarative and
equation-based, meaning that models are expressed
by writing differential and algebraic equations, and
Modelica compilers interpret these equations into al-
gorithmic code (usually to the C programming lan-
guage). Second, Modelica is object-oriented and sup-
ports building larger models by connecting smaller
sub-models. Third, Modelica supports collecting sub-
models into libraries that can be shared, re-used and
combined as needed. Fourth, most Modelica environ-
ments support exporting models with functional-mock
up interface(FMI), to be discussed in Section 3.

An earlier reference to work on interfacing trans-
lated Modelica code with online control applications is
found in [8]. A reference to a similar vendor-specific
approach is found in [6]. Several authors have con-
sidered interfacing translated Modelica code with op-
timization algorithms offline, see for instance [10] and
[2] for trajectory planning in power plant control.

This paper is to a large extent motivated by de-
velopment of nMPC for offshore oil and gas produc-

tion, however much of the discussion is independent
of process and application. The excitation resulting
from normal operation in offshore oil and gas fields
can be very low as documented in [3], and this moti-
vates the use of physical modeling and nNMPC, as this
approach has reduced need for excited data, see [5].
Some recent applications of nMPC to smart wells are
[12], who used a full reservoir simulator as a process
model, and [15] who took a balanced-complexity mod-
eling approach. Earlier references to work on large-
scale balanced-complexity modeling for offshore oil
and gas production are found in [8], which considered
the topside processing system, and in [16] which con-
sidered a well-pipeline-riser-processing system.

Despite the widespread use of balanced-complexity
models reported in control engineering literature, the
idea that models for online use should be purpose-built
is not widely accepted by industry practitioners with
backgrounds in other engineering disciplines. Moti-
vated by this observation, the first purpose of this pa-
per is to present argumentation for the use of balanced-
complexity models and then present techniques used
in their design. Secondly, this paper discusses how
Modelica can be used to simplify the process of syn-
thesizing large-scale balanced-complexity models and
to integrate them in online applications.

The paper is structured as follows: Section 2 out-
lines techniques for the design of balanced-complexity
models. Next, Section 3 discusses techniques for inter-
facing models written in Modelica with control appli-
cations. Section 4 presents a case study of using Mod-
elica to build a large-scale balanced-complexity model
of an offshore processing plant for state estimation.

2 Synthesis of balanced-complexity
models for online use

2.1 The purpose dictates the model

Modeling is to map a real world object into a sim-
pler representation - in this context, into a set of equa-
tions. It is the modeler’s choice which of the real ob-
ject’s properties and features the model should mimic.
Emphasis on the purpose of the model leads naturally
to a set of required model properties. Including de-
tails not contributing to fulfilling the model’s purpose
adds computational load, degrades identifiability and
increases challenges of robustness.

Example 1. If the purpose of a model based tool is
to control the pressure in a gas tank, it is sufficient to
model the pressure with the ideal gas law (or poten-
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tially modified with a compressibility factor), lumping
all gas components into one pseudo-component. How-
ever, if the purpose is to control e.g. the CO2 fraction,
one needs to include a component balance and have
at least two components: CO2 and the ‘remaining’-
component.

2.2 Techniques for developing balanced-
complexity models

This section introduces some techniques that can be
useful for developing balanced-complexity models.
The techniques are illustrated with examples from an
in-house Modelica library developed for online use
(see Section 3):

Adaptivity: Candidate adaptivity parameters have
significant influence on the solution, yet are
known to be difficult or complicated to model
with accuracy and/or are slowly time-varying.
Which parameters to adapt is determined by anal-
ysis of the equation set, literature and by com-
parison with real-world data. Adaptivity has the
ability to reduce model complexity as it may re-
duce the need for complex empirical correlations
in the equation set.

Example 2. Modeling multiphase flow in
pipelines is complex, as key parameters such as
pressure drop coefficients and gas-liquid velocity
distributions depend on many factors that may be
difficult to describe accurately with experimen-
tal correlations, and as these parameters may also
vary with time. The ratio of gas velocity to liquid
velocity in multiphase flow can depend on many
factors such as flow-regime, Reynolds-numbers,
incline angles or others. By choosing the slip fac-
tor, the ratio of gas velocity to liquid velocity, as
an adaption parameter the challenge of accurately
modeling this ratio is mitigated. As modeling the
gas-liquid velocity distribution can be complex
and can add to model uncertainty, the resulting
online model with adaption in slip ratio need not
be less accurate than offline counterparts.

Example 3. Centrifugal compressor models are
static and based on compressor maps of poly-
tropic head versus volumetric rate, parameterized
in compressor speed. The compressor maps sup-
plied by equipment vendors may be subject to
inaccuracies and slow changes over time due to
wear and tear. A single adaption parameter is
introduced to linearly scale the compressor map.

Thereby inaccuracies and time-varying effects in
the compressor can be adjusted for in online com-
pressor models.

Explicit models: Deriving model equations from
physics often results in models which are
differential-algebraic equations sets (DAEs).
Solving such equation sets can be both time con-
suming and subject to numerical stability issues.
It is desirable to re-formulate such models as or-
dinary differential equation sets (ODEs) to im-
prove numerical speed and stability. Especially
implicit algebraic equations requiring dedicated
solvers should be avoided. Simple algebraic re-
lations can often be solved by rearranging equa-
tions. Artificial dynamic variables can be intro-
duced in more challenging cases to break alge-
braic loops.

State selection: Another key to avoid implicit equa-
tions is to formulate the problem explicitly in
terms of states. State variables should be se-
lected so that other dependent properties can be
calculated explicitly. This is a common chal-
lenge particularly when calculating thermody-
namic properties. For instance, if thermodynamic
relations are explicit in pressure and temperature,
pressures and temperatures should be chosen as
states. The Modelica language has support for
setting preferred state variables while still formu-
lating derivatives using other variables. A Mod-
elica compiler will automatically differentiate the
differential equations in order to change the state
variables to the preferred set, see [4].

Smoothing: When models are used in conjunction
with optimization algorithms it is important that
they are continuous and differentiable. To ensure
this property, all equations used must be analyzed
with regard to smoothness before use, and where
needed, artificial transition functions can be in-
cluded to enforce smoothness.

Right level of detail: For efficient models, the level
of detail for a specific phenomenon in the model
should match the importance of that particular
phenomenon. As discussed in Section 2.1, phe-
nomena which do not contribute to fulfill the pur-
pose of the model should be left out, illustrated
by the example below:

Example 4. A common approach in process
simulators is to model hydrocarbon fluids with a
multi-component mixture, often with 10 or more
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components. The high number of components
leads to a large number of thermodynamic state
variables. For phase equilibrium calculations the
common approach is to use iterative algorithms
for solving the resulting equation set.

A multiphase medium in an in-house model li-
brary is implemented using a low number of com-
ponents: The gas phase normally contains only
one high and one low molecular weight compo-
nent. This is sufficient to make any gas mix-
ture with an average molecular weight between
the two components. A similar approach is taken
with the oil/condensate phases, optionally with a
water component to be used if water content in
oil/condensate is of interest. In addition to the
low number of state variables resulting from this
approach, an advantage is that a phase equilib-
rium in a two component mixture can always be
calculated explicitly. This is considered as a suf-
ficient level of detail for the purposes of pressure
and level control.

Utilize operational conditions: Knowledge of the
operational conditions for which the model is ap-
plied can simplify the model considerably. It
is unnecessary to include descriptions of oper-
ational conditions which will never occur. For
example, if it is known that the model will be
used for a process with strict temperature control,
it will be a good approximation to drop the en-
ergy balance and use constant temperature in the
model.

Pre-computation of properties: A common model
simplification technique is to tabulate complex
relations, for instance thermodynamic properties.
In this way, complex calculations can be pre-
computed, and when used online models can ac-
cess the ready solutions. If tables are used, at-
tention should be paid to the selection of table
interpolation algorithm as to avoid non-smooth
derivatives of the interpolated functions. Since
searching through large tables is time consuming,
simple function approximations is a good alterna-
tive.

Data-driven modeling: Data from operation of a
process can be used for selecting the right model.
Process data with excitations can reveal hints of
what model structures can emulate the process.
One could either look for a physical phenomenon
giving the same response as the data, or consider

introducing a semi-empirical model component
which replicates the observed response. For em-
pirical equations, care should be taken when ex-
trapolating.

3 Efficient large-scale modeling by
the use of Modelica

The approach to efficient large-scale modeling consid-
ered in this paper is outlined in Figure 1. The ap-
proach is based on implementing the Functional-mock
up interface (FMI)1 in software used in online control
applications. An FMI-standard model component is
shared as a functional mock-up unit (FMU).

Figure 1: Flow of information between models
(rounded edges) and applications (straight edges).

Since the translation from Modelica to FMI is done
by a compiler, and as all low-level code to interface
model and online application is model-independent
and re-usable, the transition from Modelica to online
applications can be made in a matter of minutes. This
framework supports an iterative modeling work flow,
as repeating the conversion from model to application
multiple times is not workload-intensive.

Aside from the advantages of Modelica listed in
Section 1, a benefit of designing models in a Modelica
environment is that sub-modules can be imported from
multiple external sources. The ability to import mod-
ules as FMUs means that the process owner, equip-
ment suppliers or others can supply proprietary mod-
els as pre-compiled FMUs. This also opens an avenue
for suppliers of process simulators to export their mod-
els seamlessly into control applications, provided they
implement support for export of models as FMUs. For
the reasons mentioned in Section 1, it will still be ad-
vantageous for such models to be designed with the
techniques discussed in Section 2.

When designing large-scale models, it is often de-
sirable to model selected subsystems or components

1see http://www.modelisar.com/
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Figure 2: Overview subsea-pipeline-riser-separator system as implemented in Dymola, with piping (solid),
handles to the estimator via FMI (dashed), and PI-control (dashdot).

of the larger system using empirical models, for in-
stance fitted curves or state-space models inferred
from data. An efficient manner of incorporating such
sub-models in a larger Modelica-based framework is
to express empirical models in the Modelica language.
Exporting empirical models in Modelica-form is a task
that can be automated by software for system iden-
tification. The modular buildup of Modelica allows
such exported models to be seamlessly integrated with
physics-based Modelica models.

4 Case-study: Estimation of gas-oil
ratio in offshore oil and gas produc-
tion

The aim of this case study is to illustrate that a large-
scale balanced-complexity model which has been de-
signed along the principles outlined in Section 2 can
be implemented efficiently by the methods outlined in
Section 3. The case considered is stylized in that for
demonstration purposes, the estimator used has a rel-
atively low number of fitted parameters and measure-
ments.

The system considered is shown in Figure 2, and
consists of the joint production of oil, gas and water

from two different wells. The fluids from the wells are
mixed in a subsea template before traveling along a
horizontal pipeline, through a vertical riser, into a top-
side manifold before reaching the topside processing
plant. The production rates from the two wells are not
measured directly, yet these flow rates are of great in-
terest as they determine production revenues and the
feed rates to which the process plant must adapt.

There is a significant static pressure drop from the
reservoir to the sea bead (elevation often being of order
thousands of meters) and from the sea bed to the float-
ing production unit (elevation often of order hundreds
of meters). The static pressure dropdepends on the ra-
tio of gas-to-liquid, and as the proportion of total pro-
duction that is water is often fairly constant, it should
be possible to infer about the gas-oil ratio by model-
ing its relationship to pressure in well and pipeline.
Since pressure in the pipeline depends on the settings
of chokes on each well and upstream of the separator,
these chokes must also be modeled.

A typical full-complexity multiphase pipe flow sim-
ulator could for the well-pipeline-separator system
considered have hundreds or thousands of control vol-
umes, and a full-complexity thermodynamic model
could have on the order of 20 states for each control
volume. Thermodynamic relations would in a full-
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complexity model depend on implicit relations, and a
large number of different empirical closure relations
for different conditions would be used in multiphase
flow models.

From our perspective such a full-complexity model
would be unsuitable for the purposes of estimating
gas-oil ratio online, due to the issues mentioned in
Section 1.

4.1 Modeling

Modules from an in-house Modelica library were used
and put together with the aim of finding the right level
of detail to achieve the desired goal of estimating gas-
oil ratio. It was elected to model flow as a two-phase
flow, lumping oil and water flows into a single liquid
flow. Modules describing wells, horizontal and verti-
cal pipelines and chokes were combined to create the
large-scale model. Each of these modules were origi-
nally designed by combining first-principles with em-
pirical closure relations from the literature that were
revised for simplicity, to obtain smoothness and to
avoid implicit relations. The number of different clo-
sure relations was kept as low as possible, and the
resulting models were validated module-for-module
against real-world data. The modules include han-
dles for introducing adaptivity as needed through ad-
justable parameters such as gas-liquid velocity ratios,
valve coefficients and friction factors. Adapting the
mentioned parameters was omitted here for simplicity.

Some examples of the balanced-complexity princi-
ples in the current case-study follows:

• Exclude flashing. From experience and analysis
of real-world data similar to this case, the flash-
ing (evaporation of dissolved gas in the oil) as
the pressure drops in the pipeline is not expected
to be significant relative to amount of free gas.
Excluding flashing from the model was therefore
judged to be the right level of detail.

• Few discrete mixing volumes. Riser and
pipeline models are finite-volume spatial dis-
cretizations of the underlying partial-differential
flow equations, and the number of discrete vol-
umes for each of these modules are design param-
eters that the user should select at design while
evaluating resulting model accuracy. It is our
experience that no fine discretization is required
for estimators such as considered here to work.
Lumping pipeline submodels into two or even
just one volume is often found to be the right level
of detail. For each volume in each sub-model, a

mass-balance equation is formulated and a sim-
plified thermodynamic relation with a low num-
ber of components that is smooth and explicit, as
described in Example 4, was used.

• Limiting the scope of the model. The three-
phase separator model uses a thermodynamic
equilibrium equation for flashing/vaporization, in
combination with a mass balance that takes in
account separator geometry. Since the estima-
tor considers the portion of the offshore oil and
gas system spanning from wells to the separa-
tor, it was not considered necessary to model fur-
ther downstream process equipment for the de-
sired estimator, motivated by the concept of the
purpose dictating the model.

All the models were expressed in equation-form in
the Modelica language, and the translation capabilities
of Dymolawere used to convert this equation-based
model into an imperative, C-language code that is suit-
able for online use. The model shown as drawn by
Dymolais shown in Figure 2. That the imperative
code of the model is generated rather than hand-coded
directly is useful for iteratively deciding the right level
of detail in the model. The degree of model detail is
easily adjustable in the high-level, modular, equation
based language Modelica, from which multiple esti-
mators based on different low-level implementations
of the model in C can be compared.

4.2 Estimation

Simulations were done for a model with only a sin-
gle node for pipeline and riser. The resulting model
has 48 states, Dymolachoosing five states (pressure
+ 4 component mass fractions) for each of the nodes:
well 1, well 2, subsea manifold, pipeline, riser, topside
manifold and inlet separator.

Pressures at the topside separator (y1) and subsea
manifold (y2) were chosen as outputs. Parameters
were chosen as gas-oil ratios of well 1 (θ1) and well
2 (θ1). Choke openings of valves on well 1 (u1), well
2 (u2) and the topside valve (u3) are varied during the
simulation. The estimator used is a recursive Extended
Kalman Filter (EKF). The model was implemented in
Modelica, compiled as an FMU using Dymola, and
interfaced with a generic and re-usable recursive Ex-
tended Kalman Filter (EKF).

The dataset considered is synthetic, generated by
simulating a copy of the model where the gas-oil ra-
tios of both wells were set equal to 811. Noise of 2%
of average amplitude was added to both pressures.
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Figure 3: Simulation results. Top subplot shows measured and estimated separator pressures. Subplot 2 shows
measured and estimated line pressures. Subplot 3 shows relative choke opening of wells 1 and 2 (u1 and u2)
and of the topside valve (u3). Subplot 4 shows recursive estimates of gas-oil ratios of wells 1 and 2 compared
with the true value.

4.3 Simulations

Estimated and measured pressures and estimated gas-
oil ratios for wells 1 and 2 are shown in Figure 3. The
initial estimate for the gas-oil ratio of well 1 was set
to 1200, while the actual gas-oil ratio for both wells
is 811. The inaccurate initial estimate of gas-oil ra-
tio resulted in an offset between measured and mod-
eled pressures, which the estimator attempts to correct
during simulation. The excitation shown in Figure 3
made it possible to uniquely determine gas-oil ratios
for both wells from the data set, and as the simulation
progresses, the estimated gas-oil ratios move toward
the real value of 811.

4.4 Discussion

The main contribution of this case study is the technol-
ogy and workflow used to implement an online model
including Kalman Filter estimators. The solution was
implemented in a low-level language suitable for on-
line use, yet no line of low-level code was manually
written. The model used has 48 states, and manu-
ally implementing low-level model code would be a
challenging task already at this scale if you consider
that modeling requires several design iterations, col-
laboration among multiple designers, code-reuse and
code validation. Our experience indicates that the
approach could accommodate working efficiently on
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much larger models as well.

5 Conclusion

Balanced-complexity modeling is an approach to bring
physics-based models online while adhering to re-
quirements for online use. Modelica and FMI have
advantages that aid the development of such systems:
efficient model development; reuse of models; and ef-
ficient integration with other software. By calling at-
tention to this topic it is hoped for an increasd recogni-
tion for online applications with purpose-built models
developed with Modelica and FMI.
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