The 27th annual workshop of the Swedish Artificial Intelligence Society (SAIS),
14-15 May 2012, Orebro, Sweden
Published by Linkdping University Electronic Press
http://www.ep.liu.se/ecp_home/index.en.aspx?issue=071

Interleaving Configuration Planning and Action Planning in
Robotic Ecologies

Lia Susana d.C. Silva-Lopez, Lars Karlsson
{lia.silva,lars.karlsson } @aass.oru.se
School of Science and Technology
Orebro University

Abstract

In the context robotic ecologies, the Configuration Plan-
ning Problem (CPP) is concerned with ways to create
a flow of information and a flow of causality between
the members of an ecology and their environment, in
such a way that a goal is satisfied. Ways to solve this
type of CPP have been devised and we discuss some in
this paper. However, most consider only the causal or
information aspects of the members of an ecology, or
rely on abstract actions and task hierarchies. A problem
with considering only causal or information aspects, is
that it complicates modelling situations when both oc-
cur and relate to each other. A problem with abstract
actions and task hierarchies is that it can lead to incom-
pleteness, and require effort and skill to write down.
The goal of this paper is to discuss a way to interleave
configuration planning with action planning, in which
direct interconnections of either causal or information
links, are used to solve the problem of building config-
urations of networked robotic systems. We show with
examples how this approach works, discuss some future
directions on where we want this work to get and more
specifically in the context of the Giraff+ system.

1 Introduction

Robotic ecologies, as proposed by Saffioti and Broxvall
in [10], are collections of devices and programs with
cognition and communication capabilities, in which the
notion of robot emerges from the interaction between
the elements of the ecology. In robotic ecologies, the
purpose is to use a synergy of small devices to fulfil
goals in a flexible way, instead of building complex
universal robots. In the Configuration Planning Prob-

41

lem (CPP) for the context of robotic ecologies (See sec-
tion 2 of this paper), the purpose is to satisfy a goal
by interconnecting a set of available components with
constraints between them. A configuration here, can
be seen as a collection of functional elements that con-
tribute with their capabilities to fulfil a goal, connected
to each other by causal links and information channels.

In this paper, we present some preliminary explo-
rations of how to integrate two kinds of interactions be-
tween entities in a robot ecology. We consider infor-
mation flows, for instance from a light sensor to a pro-
cess that tests whether a certain threshold of light has
been exceeded to an actuator for adjusting the blinds of
a window. We also consider causal flows, e.g. in order
to obtain information using a video camera, the light
first has to be switched on. An important difference
between these two types of interactions is that informa-
tion flows can never interfere with each other, whereas
causal flows can interfere by changing the state of the
environment. For instance, assume that the system also
has the goal to keep the room dark because a person is
sleeping there. Switching on the lights in order to use
the video camera would interfere with that goal. In ad-
dition, for the purpose of this paper we consider causal-
ity to apply from one time step to a later one, whereas
information flows between entities that are active at the
same time step. Our work is motivated by the fact that
in the current literature for solving the CPP, informa-
tion inputs and outputs are either treated as precondi-
tions and postconditions [3] or are not considered in the
action planning. Moreover, goals are defined as actions
to perform, but there is no mechanism for defining in-
formation as a goal.

This work is a step towards building a system capable
of generating configurations for multiple goals set by
an activity recognition system, of dynamically estimat-

ing preferences according to different criteria, and of
updating state variables as the configurations executes,
in a real world scenario. Our system is intended to be
a part of the Giraff+ system [1], an adaptive system
consisting of a Giraff robot, a sensor network, an ac-
tivity recognition system [7](also called context recog-
nition in Figure 1), and a configuration planner. The
purpose of Giraff+ is to help improving quality of inde-
pendence of the elderly, by providing personalised ser-
vices of long-term monitoring in their homes and easier
social interaction. Examples of services for improving
quality of independence, that Giraff+ can provide in a
home would be:

e Displaying time-line information of events of in-
terest in combination with other contextual infor-
mation, such as blood pressure readings after start-
ing the use of a new medication or blood sugar
measurements during days where the patient ex-
ercises.

e Reminding and assisting the person in important
events, such as taking medication or taking blood
sugar or heartbeat measurements.

e Providing long term statistics on e.g. amounts of
physical activity or sleep.

Giraff+ is going to be tested in more than a dozen real
homes, therefore it should be suitable for real applica-
tion domains.

There are a number of ways in which a person can
interact with its surroundings, and a number of ways
to associate sensed data to the activities of a person.
The role of the activity recognition system is to infer
which activities is the human performing, based on in-
formation obtained from the sensor network. For more
on activity recognition, see Ullberg et al [12], in which
some approaches for recognizing human activities are
discussed, and an algorithm for enabling long term and
continuous activity recognition based on a temporal rea-
soner is proposed. For enabling activity recognition,
raw sensor readings may not be enough to get enough
information. There will be cases where the information
may not be available directly, and an interaction with
the environment may be needed to get it. The role of the
configuration planner is to configure the network, ac-
cording to the changing nature of the environment and
the needs of the activity recognition system, in order to
observe or change the value of a state variable.

To illustrate the Giraff+ system we will use Figure
1, where an environment is abstracted as state variables

a a

v Ji“ | Bt o4 %:‘, Users
=
[Service 1] { Service 2 J[Service 3 J Services (WP4)
4

\ |
\ e

| Coritext (timeline] . ‘\
|:|‘ Activities

State variables

Functionalities

Sensor
Network
(WP2)

AEeER(=2Y

Environment

Figure 1: Functional Overview of the Giraff+ System.

that have a value at each point of time. These state vari-
ables may represent, for instance, aspects of the layout
of the apartment (rooms, furniture), position and motion
of individuals in the apartment (e.g. personl in bed-
room, on bed, not moving) or of items in the apartment.
State variables may be observable through sensors. But
in some cases, to observe a state variable, other state
variables need to be changed e.g. to obtain the heart
beat rate of a person, the lights of the room where the
person is have to be turned on. Also, transformations
on raw sensor data may be needed to obtain the value
of a state variable e.g. the raw RSSI values between
some bluetooth devices needs be transformed into the
position of a person, but they can also be transformed
into the trajectory of a movement, or transformed into
a command for opening a door. Now, a functionality
is a program that either operates directly on a sensor or
actuator, or processes information from and/or delivers
information to other functionalities. Note that a sensor
or actuator can perform several functionalities, depend-
ing on which programs make use of it. The configura-
tion planner builds configurations that make the sensor
network provide the information (state variable values)
needed by the activity recognition system, and may also
change state variables.

This paper is organised as follows: Section 2 reviews
related work, Section 3 explains the conceptual frame-
work for our approach on configuration and action plan-
ning, Section 4 presents explanatory examples, and Sec-
tion 5 describes ideas for future work.

42

2 Related Work

The CPP and similar problems have been studied in a
number of fields, from which Robotic Ecologies and
Web Service Composition can be pointed out.

Robotic ecologies, and more particularly ecologies
of networked Physically Embedded Intelligent Sys-
tems (PEILS) as proposed by Saffioti and Broxvall [10],
study how the overall functionalities of robotic sys-
tems go beyond the functionality of isolated robots, by
adding communication and cognition capabilities into
the robots. The CPP in robotic ecologies studies ways
to interconnect the members of an ecology, in order to
reach a goal.

Lundh et al in [6], propose an approach to automati-
cally generate configurations for a given task in a given
environment. An action planner defines which actions
need to be accomplished to get to the goal, and for each
action, a configuration is made. Methods similar to Hi-
erarchical Task Networks (HTNs) planning were used
to hold information on how each action should decom-
pose into configurations. Terminating functionalities
were used to determine when a configuration completed
its task. Goals were defined in terms of actions. The
capabilities of the members of an ecology were mod-
elled as programs that can interact with the environment
through sensing or actuating, and/or use information
to produce additional information; such programs are
called functionalities. Functionalities have causal pre-
conditions, causal postconditions, information inputs
and outputs, and also have costs and resources. Pre-
conditions specify under which circumstances the func-
tionality can be used, postconditions indicate how the
functionality transforms the world state after its exe-
cution, information inputs indicate which information
is required for the functionality to execute, and infor-
mation outputs indicate which information is produced
during functionality execution. A different approach is
suggested by Gritti in [2], were a reactive configuration
algorithm reconfigures the ecology with the available
components, in the event of a failure. This approach is
appropriate for very dynamic scenarios, because it in-
herently removes from the search space those function-
alities that are not available in the time when they are
needed.

Web service composition is concerned with ways of
interconnecting self-contained, self-describing, modu-
lar applications that can be published, located, and in-
voked across the web. A composite service is a set of
services and the control and data flow among them [3].

A number of approaches have been explored, from ge-
netic algorithms, to neo-classical planning. For exam-
ple, Tang et al [11] propose a solution to the optimal
web service selection problem; this problem deals with
selecting web services so that the composite web ser-
vice give the best overall performance, and it can be
seen as the problem of finding an optimal solution to
the CPP under similar parameters. The authors pro-
pose a genetic algorithm with mutation and knowledge-
based crossover as operators, in which each individ-
ual is a plan for Web Service Selection; a local opti-
mizer improves individuals in the population, while the
crossover operator evaluates constraints between ser-
vices. In contrast, Peer [8] proposes an approach in
which the problem of web service composition is au-
tomatically converted into an Al planning problem (see
[9]), represented in PDDL; after that, the goal and do-
main description are matched against available Al plan-
ners, in order to solve the task.

Our approach to configuration planning is closer to
the field of robotic ecologies, and builds on the one
of Lundh et al, but unlike them we don’t It does not
rely on abstract actions or task hierarchies. Instead, we
make direct connections between the different compo-
nents needed to build the configuration, depending on
the type of links needed. We do this because, while task
hierarchies can speed up planning [9], they can also lead
to incompleteness, and require effort and skill to write
down, especially every time we add more functionali-
ties into the system.

3 States and Functionalities

The ideas proposed in this paper are built upon the the-
oretical background presented in [5]. In this way, for
the context of this paper, a configuration is a set of el-
ements called functionalities, and the connections be-
tween them. Every time a functionality has an effect
that changes properties of the world, the state of the
world is changed.

3.1 State

A state s holds information that describes the world, in
the form of a possible assignment of values to state vari-
ables. This assignments can be properties of certain ob-
jects (e.g. position(light1) = kitchen, near(light1,stove)
= true, near(lightl,fridge) = true) or the current state of

43

the different devices on our system (e.g. lightl = on,
phone-bt = off).
Time is not explicitly contemplated as part of a state.

3.2 Functionalities

A functionality is a program that interacts with other
programs by exchanging data, and/or with the physi-
cal world by effecting or observing the value of various
properties of entities. These properties are described as
state variables. Functionalities can operate on devices,
sense, actuate, and may use information to generate in-
formation. They can execute simple actions and gener-
ate simple information pieces, or execute more compli-
cated tasks and generate more information. For exam-
ple, we can have a functionality that provides the loca-
tion of an object as an output and requires no inputs, or
we can have many functionalities together in a config-
uration and give the same output. In this work, we will
use the definition by Lundh [5], in Equation 1.

f=1{Id,1,0,¢,Pr,Po,Re,Cost) (1)

Every functionality has an /d, a set of inputs / and a
set of outputs O that can be of different types, causal
preconditions Pr that indicate which values of state
variables should hold before the execution of the func-
tionality, causal postconditions Po that state which val-
ues of state variables will hold after the execution of
the functionality, a transfer function ¢ that represents
a transformation from inputs to outputs of the informa-
tion before execution, to the information after execu-
tion, and some resources Re and costs Cost. At this
early stage of our work, we have no particular defini-
tion for costs and resources, but they will receive a great
deal of attention later on.

To refer to the element /d of a functionality f, we will
write Idy, and in a similar way we will write Pry,Poy,I 7,
and Oy.

4 Connections and Configurations

A connection between functionalities can be formed ei-
ther by an information link, or by a causal link. Connec-
tions are formed when one functionality satisfies an in-
formation input or a causal precondition with an infor-
mation output or a causal postcondition. Configurations
are formed by building connections between function-
alities. Figure 2 shows an example of a configuration.

Schedule

Initial Next
& &
state s tate s'
Contacts Contacts state s
getDoctor

L,

assignDocDate

getSchedule

Figure 2: Example of a Configuration. Thin lines are
information links. Thick lines are causal links.

4.1 Connections

A connection states a relationship between two func-
tionalities, that can either be defined in terms of an in-
formation link, or a causal link.

Information links state that the output & of a function-
ality a (0’;) satisfy the input j of functionality b (Ilf).
Causal links state that the effects k of functionality a
(Po';) into the world, satisfy condition j that functional-
ity b requires for execution (Prlj,).

The type of link also states the relative execution time
of the functionalities in each connection: when two
functionalities are related by an information link, they
execute within the same interval of time (which we will
call time-step), but when they are related by a causal
link, the functionality that provides the postcondition
for the link executes in a time-step which precedes the
one of the functionality that requires such condition.
Please note that with time-step we mean a finite interval
of time, not a single time point.

In this work, we will use the definition of connections
in Equations 2 and 3.

Cxi = (destF, sourceF,infotype, rT) 2)

Cxc = (destF,sourceF,Sv,SvV,rTd,rTs) (3)

Every connection contains a destination functionality
destF, a source functionality sourceF, and a relative ex-
ecution time rT. The relative execution time in the con-
nection, is used to represent orderings between execu-
tion times of the functionalities. Information links con-
tain the type of information required infotype, in which
the name of the state variable can be used to describe

44

the piece of information that relates the functionalities
in the link. Causal links contain a state variable assign-
ment, where Sy is the name and SVV is the value of the
state variable.

For example, suppose we have a causal goal
for the system, of setting a slot of our free time
with a Doctor’s appointment; we have our schedule
and our contact list in the form of state variables,
functionalities Id; = getDoctor, Idy = getSchedule, and
Idy = assignDocDate. Functionality Idy = getDoctor
knows which number is associated to the Doctor and
has it as an output. Functionality Id; = getSchedule,
gets which slots are available in our schedule and has
them as an output. Functionality Id; = assignDocDate,
negotiates with the Doctor’s appointment system and,
as a postcondition, it sets a slot of our free time with the
value of a Doctor’s, given a number associated to our
Doctor and our available times as inputs.

In the case of building a configuration for the given
goal by using this elements, we will first have a causal
connection between Idf = assignDocDate as sourceF’,
and the goal as destF. In this connection, which Sv and
SvV is a condition of setting a field of the schedule with
the value of a doctors appointment, and the execution
time of SourceF, happens before executing destF. In
the special case of a goal as a destination functionality,
the goal is artificially treated as another functionality;
this means that to have the effect we want in the
world, this functionality would need to be executed
first. We may also have to perform several information
connections, for example, connecting Idy = getDoctor
to Id; = assignDocDate and Idy = getSchedule to
Idy = assignDocDate; in this case, infotype would be
the piece of information provided in each connection,
which can be phone — nr(Doctor) for Idy = getDoctor
to Id; = assignDocDate and schedule(freeSpaces)
for Ids = getSchedule to Idy = assignDocDate, hav-
ing all of them a simultaneous execution, since
Idy = assignDocDate needed both pieces of informa-
tion to execute.

4.2 Configurations

A configuration is a set of connections between a sub-
set F of all functionalities in the world F, that satisfy a
Goal. In this work, we will use the definition of config-
uration in Equation 4.

c=(F,ICX,CCX) C))

45

Here, F is the set of functionalities used in the con-
figuration, /CX is the set of information links, and CCX
is the set of causal links in the configuration. Relative
execution times of functionalities are contained inside
each connection.

4.2.1 Admissibility

For a configuration to be admissible, it must not violate
constraints on costs, resources, information links and
causal links. A proper way to evaluate admissibility on
costs and resources will be devised later on in our work,
but for the approach presented in this paper, we checked
for information admissibility and causal admissibility.

To satisfy information admissibility in a configura-
tion, all inputs in each functionality instance should be
connected to the output of another functionality. To
satisfy causal admissibility, all Preconditions in a func-
tionality should be satisfied before the execution of the
functionality, and no Postconditions of the functional-
ities in the configuration should be in conflict with the
causal links of the configuration. The set of links should
be acyclic.

When both information and causal admissibility are
satisfied in a configuration, we can say that such config-
uration is admissible, and consider it a candidate config-
uration for the goal.

4.2.2 Goals

Since the definition of functionality implies both trans-
forming information and interacting with the physical
world, then is reasonable for the goal of a configuration
to reflect this. We defined two types of goals: informa-
tion goals and action goals, in Equations 5 and 6.

gi = (Stv) (5)

8a = (Stv,StvV) 6)

Goals are defined in terms of state variables. Stv is a
state variable. If the goal is to obtain (or sense) the value
of Stv, then it is an information goal. For information
goals, the outputs of functionalities are examined to find
which one delivers the value of Stv. If the goal is to in-
teract with the world in such a way that we set the value
of state variable Stv to StvV, then it is an action goal.
For action goals, the postconditions of functionalities
are examined to find an effect in which the value of Stv
is set to StvV.

For the planning in the algorithms in Section 5, the
Goal can be seen as a Goal Functionality, in which the
inputs of the functionality are the information goals,
and the preconditions are the action goals.

4.3 Configuration Planning Problem

In our Configuration Planning Problem, given a goal g;
or a goal g,, a set of available functionalities F and a
set of state variable assignments in the start state s, find
an admissible configuration c such that £, C F, in such
a way that the goal is satisfied.

S An Algorithm for Configuration
Planning

Our first approach to generating configurations with
both direct causal and information links between the
functionalities, is presented in Algorithms 1 and 2. We
have an implementation of this approach in C++, avail-
able for downloading in [4].

Algorithm 1 (ConAc) requires the assignments of
state variables in the start state s, a list of all function-
alities in the world F, and a goal g, and delivers a list L
of all admissible configurations. L is a global variable
for algorithms 1 and 2. ConAc builds a functionality
fe¢ € F, in which the inputs of the functionality are the
information goals of g, and the preconditions are the ac-
tion goals of g. Functionality f, is added to (currently
empty) partial configuration ¢, and into the list of func-
tionalities of ¢, F,, and an initial state functionality (f;)
is used to emulate the conditions of s in order to be able
to establish causal links to it, but no causal or informa-
tion connections have been performed so far, so ICX,
and CCX, are empty in this assignment. Then, ConAc
calls genConf with the goal functionality as the only
member of the partial configuration. Then, genConf re-
cursively aggregates all admissible configurations into
L. In the end, ConAc returns the list L of all admissible
configurations suitable for goal g.

Algorithm 2 (genConf), requires a partial configura-
tion ¢, a list of all functionalities in the world F, and the
relative time of the last source functionality added into
the configuration RT. genConf modifies the list of all
admissible configurations L by adding admissible con-
figurations as it searches partial configurations. Please
note that after execution of Algorithm Algorithm 1, F
contains f, and f;.

Algorithm 1 ConAc. State variables in the start state s,
available functionalities F, goal g, list of all admissible
functionalities L
Require: s,F.g
Ensure: L

1: build goal functionality f, € F using goal g
build initial functionality f; € F using s
¢ ({fe.£i},0.0)
L+ 0
genConf(c,F,0) */ Algorithm 2 */
if L == 0 then

return failure

end if
return L

R A A T o

genConf first attempts to satisfy information admis-
sibility by checking on functionalities already existing
in the configuration, whose relative execution time does
not come after the functionality that we are trying to sat-
isfy. Then, it attempts to satisfy information admissibil-
ity with the rest of the functionalities in F. Functionali-
ties connected with information links are executed dur-
ing the same time step.

If information admissibility is satisfied in a con-
figuration, it stars checking for causal admissibility.
genConf first checks if causal admissibility can satis-
fied by f;. If it can be satisfied by f;, then causal links
are created. If there are still causal links to be satisfied,
we choose one targetcond in target € F,, executing in
timestep targetime, and we check if any functionality
in the current configuration has a postcondition that can
satisfy targetcond, as long as its execution time comes
before the rargetime.

On every case where a new connection is created,
genConf calls itself recursively with the partial config-
uration ¢,

6 Explanatory Example: Locating
the Human

With this example, we intend to show two points. First,
we want to show that it is possible to build admissible
configurations just by interleaving the right information
and causal links between functionalities.

This will be done without the need of HTNs, and
without defining terminating functionalities. Second,
we want to show that it is possible to define the goal

46

Algorithm 2 genConf. Partial configuration ¢, available functionalities F

Require: c,F
1: if inf. admiss. not satisfied then

2: choose target € F. with unsat. in. targetIn, executing in targettime

3: for all f € F. : targetIn € Oy N fexecutiontime == targettime do

4: d+c

5: append(ICXy,link(target,f , targetln, targettime))

6: genConf(c',F)

7: end for

8: for all f € (F\F.):targetln € Oy do

9: d+c

10: append(ICXy,link(target,f , targetln, targettime))

11: append(Fy, f)

12: genConf(c',F)

13: end for

14: else if causal admiss. not satisfied then

15: choose rarget € F, with unsat. prec. targetcond, executing in targettime
16: for all f € F. : targetcond € Pos N fexecutiontime = targettime do

17: d«c

18: append(CCX , link(target, f, targetcond targettime, foxecutiontime))
19: genConf(c F)
20: end for
21: for all f € (F\ F;) : targetcond € Poy AnoConflict(Pos,CCX.) do
22: d+c
23: append(CCX ., link(target, f,target,targettime,targettime + 1))
24 append(Fy, f)
25: genConf(c F)
26: end for

27: else

28: append(L,c)

29: return 0

30: end if

of a configuration not only as an action that needs to be
performed, but also as information that we want to get
from the world.

The state variables and functionalities available in the
world are described in Tables 1 and 2. Our world can be
described as the home of a person that needs some assis-
tance in the daily life, with matters like localizing med-
ications or health devices, tracking activities, or daily
chores.

In this example, an information goal is accomplished
with a configuration that contains direct information
and causal links. The goal is to provide a position of
the cell phone, which we bind to the position of the hu-
man. In the state variables, the position of the phone
is unknown or outdated, so we need to acquire it again.

Table 1: State Variables.

Name Value
bt (phone) off
position (phone) -
number (phone) 777

To get the position of the phone, Table 2 shows two
functionalities that can help, which are ger — ph — GPS
and bt — tracker. Functionality get — ph — GPS obtains
the position of the phone as GPS coordinates, if it has
as an input the number of the phone. Functionality
bt — tracker obtains the position of the phone in terms
of how close the phone is to a certain bluetooth source,
if it has as an input the number of the phone, and if the

47

Table 2: Available Functionalities.

Id Ins Outs Prec Post
get-ph-nr - number (phone) -

get-ph-GPS number (phone) position (phone) -

bt-tracker number (phone) position (phone) bt (phone) = on

turn-phbt-on number (phone)

bt (phone) =on

bluetooth of the phone is on. In the case of generating
a configuration that uses bt — tracker, the phone blue-
tooth is off (Table 1). In order to satisfy causal admis-
sibility, a causal link needs to be used. Such link can be
done to functionality turn — phbt — on. This functional-
ity turns on the bluetooth in a phone whose number is
given as an input; turn — phbt — on can be implemented
by combining a program that runs in a local computer
and sends an SMS with a code to the desired phone, and
another program that when receiving the SMS with the
code, turns on the bluetooth in the phone. In each case,
the planner will call itself recursively until satisfying
all admissibility criteria, reaching a limit size, or after
recursively finding that there is no way to satisfy admis-
sibility in any partial configuration, and then a failure is
returned. For more details, see Section 5. In figure 3,
the configurations obtained by applying our approach in
this situation are summarized.

Execution monitoring is not part of this planner, but
it if we had a system that monitored when a failure was
found on applying a certain functionality, or a function-
ality is no longer available, then another program could
update the description of functionalities, and our plan-
ner could be launched again with that feedback. How-
ever, a better approach for execution monitoring can be
devised later on.

7 Conclusions and Future Work

In this paper, we have presented an algorithm for con-
figuration planning in which functionalities can connect
to each other directly by using either action or informa-
tion links, without the help of a hierarchy definition,
just by matching the information and causal needs of
every functionality that is added into the configuration.
Our planner can handle both causal goals and informa-
tion goals. The combination of this features allow the
execution of an action in order to fulfil an information
requirement, and the capture of an information piece in
order to execute an action.

Our current approach has a number of limitations that
we would like to overcome. However, we would like
to keep the idea of direct information and causal links
in a configuration and we would like keep the idea of
defining goals as interactions with the world or as in-
formation pieces to obtain. But we would like a more
expressive way of defining goals, and of defining how
information and causal requirements relate with the ex-
ecution time of the functionality; an example of the lat-
ter is being able to discern if a functionality changes a
state variable or gives an information output either dur-
ing its execution time, after execution, or from the start
of its execution. Also, the planning in the causal dimen-
sion in our proposed algorithm, is based on causal links
planning without any guidance of heuristics. In order
for our planner to scale up to more causally challenging
problems, this needs to be addressed.

For the application of our work in the Giraff+
Project, we want to handle limited resources, multi-
ple goals with preferences, and interactions with ac-
tivity recognition. More particularly, we are interested
on describing preferences for reliability, quality, perfor-
mance, use of resources and handling of undesired con-
sequences. We are interested on studying interactions
between multiple requests, requests that can not be ful-
filled because of a conflict or resource scarcity, and on
handling disjunctive requests. For challenges associ-
ated to real application domains, we are interested on
seamless ways of adding and removing functionalities
in the system, on handling failures and degradation of
performance in configurations, and on execution moni-
toring.

In order to address many of the previous matters, for
the near future we are defining a language for express-
ing goal preferences, as well as interactions of time
with causal and information requirements in functional-
ity definitions. We are also defining heuristics and will
use semiring soft constraints for guiding the construc-
tion of configurations in a smarter way.

48

Initial
state s

T position (phone)
get-ph-GPS
number (phone)

get-ph-nr

il

Configuration 1

Next
state s'

turn-phbt-on

number (

get-ph-nr

bt (phone) = on

phone)

bt-tracker

position (phone)

number (phone)

get-ph-nr

Configuration 2

Figure 3: Configurations on Example ’Locating the Human’

Acknowledgements Giraff+ is funded by the Eu-
ropean Community’s Framework Programme Seven
(FP7) under contract #28817

References

[1] Giraff+ website. http://www.giraffplus.eu/.

[2] M. Gritti, M. Broxvall, and A. Saffiotti. Reactive
self-configuration of an ecology of robots. In Pro-
ceedings of the ICRA-07 Workshop on Network
Robot Systems., 2007.

[3] X. Su. J. Rao. A survey of automated web service
composition methods. Semantic Web Services and
Web Process Composition. Lecture Notes in Com-
puter Science, Springer, 3387:43-54, 2005.

[4] LSilvaWebsite. http://aass.oru.se/ “lcsz/.

[5] R. Lundh. Robots that Help Each Other: Self-
Configuration of Distributed Robot Systems. PhD
thesis, Orebro University, 2009.

[6] R. Lundh, L. Karlsson, and A. Saffiotti. Au-
tonomous functional configuration of a network
robot system. Robotics and Autonomous Systems,

Elsevier, 56(10):819-830, 2008.

[7] F. Pecora, M. Cirillo, F. Dell’Osa, J. Ullberg,
and A. Saffiotti. A constraint-based approach for

proactive, context-aware human support. Journal

49

(8]

(9]

[10]

of Ambient Intelligence and Smart Environments,
2012. (To appear).

J. Peer. A PDDL based tool for automatic web
service composition. Principles and Practice of
Semantic Web Reasoning, Lecture Notes in Com-
puter Science, Springer, 3208:149-164, 2004.

S. Russell and P. Norvig. Artificial Intelligence:
A Modern Approach. Prentice Hall, third edition,
2010.

A. Saffiotti and M. Broxvall. Peis ecologies: Am-
bient intelligence meets autonomous robotics. In
Proc. of the Int. Conf. on Smart Objects and Am-
bient Intelligence (sOc-EUSAI), pages 275-280,
2005.

M. Tang. A hybrid genetic algorithm for the op-
timal constrained web service selection problem
in web service composition. In Proceeding of the
2010 IEEE World Congress on Computational In-
telligence, 2010.

J. Ullberg, A. Loutfi, and F. Pecora. Towards
continuous activity monitoring with temporal con-
straints. In Proceedings of the Workshop on Plan-

ning and Plan Execution for Real-World Systems
at ICAPS09, 2009.

