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Abstract 

Train platforming is critical for ensuring safety and efficiency of train operations within the 

stations, especially when train delays occur. This paper studies the problem of re-

optimization of train platforming, where the train station is modeled using discretization of 

the platform track time-space resources. To solve the re-optimization problem, we propose 

a binary integer programming model which minimizes the weighted sum of total train 

delays as well as platform track utilization costs, subject to constraints defined by 

operational requirements. Moreover, we design an efficient heuristic algorithm to solve the 

model with a good precision. A real-world case is taken as an example to show the 

effectiveness of the proposed model and algorithm. The results show that the model 

established in this paper can describe re-optimization of train platforming accurately and 

can be solved quickly by the proposed heuristic algorithm. In addition, the model and 

algorithm developed in this paper can provide an effective computer-aided decision-making 

tool for the train dispatchers in case of train delays. 
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1 Introduction 

Train operations of the trains at stations, including arrival, dwell, and departure or passing 

through, are usually optimized by solving the train platforming problem (Lusby et al., 

2011). In general, due to the hierarchal planning process of the railway, train timetable is 

specified first, and then train platforming problem is optimized with given train arrival and 

departure times (Lusby et al., 2011). Train platforming is a classic NP-hard combinational 

optimization problem (Kroon et al., 1997), and a lot of work has been done to generate high-

quality train operation plan within stations. Zwaneveld et al. (1996) defined the train route 

as a collection of station equipment traveled by a train from inbound to the outbound of the 

station, and they built a mixed integer linear programming (MILP) model based on node 

packing problem to maximize the number of trains routed through the station. Chakroborty 

and Vikram (2008) developed a MILP model for optimally allocating trains to the platform 

tracks, where the accurate train arrival times can only be available shortly before the train 
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arrives at the station such that trains could be reassigned to different platforms. Besides, the 

headway between two trains was also considered while delaying the train arrival and 

departure times. Caprara et al. (2011) assumed that the arrival and departure times of trains 

could be slightly flexible, and they presented a quadratic binary integer programming model 

to solve the train platforming problem. Later, Lusby et al. (2013) built MILP models based 

on the set packing model to maximize total revenue and minimize the total costs of all trains. 

Sels et al. (2014) developed a MILP model to solve the train platforming problem from 

strategic and tactical levels. 

Trains may suffer from all kinds of disturbances and disruptions, such as bad weather, 

equipment failure, management factors, etc. When train delays occur, the scheduled train 

timetable within stations needs to be re-optimized in real time. However, very few 

researchers have focused on the problem of re-optimization of train platforming in case of 

train delays. In this study, we aim to re-optimize the train platforming in case of train delays 

and generate a new train operation plan within the station in real time. Our solution is to 

develop a Mixed-Integer Linear Programming (MILP) model, where the train station is 

modeled using the discretized platform track time-space resources, and to propose an 

efficient heuristic algorithm. The goal of the proposed model and algorithm is to 

simultaneously minimize the deviation from the train timetable and the total train operating 

costs, realizing the coherence between train operations and the station management. 

The contributions of this study include the following three aspects. First, the train 

arrival and departure times and the train platform assignment are optimized simultaneously 

in order that the negative influence of train delays can be minimized. Second, the novel 

modeling method based on the discretized platform track time-space resources can describe 

the train conflicts accurately, where the complex binary train sequencing variables in the 

big-M modeling framework can be avoided (Chakroborty and Vikram, 2008). Third, an 

efficient heuristic algorithm is designed to quickly obtain the near-optimal solutions for the 

real-time re-optimization of train platforming. 

 

2 Analysis of platform track time-space resources 

In the planned horizonT , we handle the time resources as small time units  . The 

number of time units is equal to | | [ / ]T  T  in the entire planned horizon. In addition, 

the number of platform tracks in a station is denoted by | |I , i.e., the maximum spatial 

capacity. Hence, the platform track time-space resources of a station can be represented by 

a two-dimensional matrix X , 

1,1 1,2 1,| |

2,1 2,2 2,| |

,

| |,1 | |,2 | |,| |
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where i  and t  are the indexes of the platform track and the time unit, respectively, 

and a binary variable ,i tx  in matrix X  denotes the occupation and vacancy state of the 

platform track time-space resource ( ,  )i t , where 

,

1,     platform track time-space resource ( ,  ) is used 

0,     othewise
i t

i t
x


 

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Fig. 1 provides an illustrative example of the modeling method of platform track time-

space resources. Suppose that 5 trains successively arrive at or depart from station M which 

has 6 platform tracks within the planned horizon of 60 min. The detailed schedules of train 

operations in both directions are given in Fig. 1 (b) and (c), and the time unit   is set to 

5 min. Platform track time-space resources and the corresponding matrix X  of a feasible 

usage plan are described in Fig. 2 (d) and (e), respectively. The application requirements of 

the time-space resources modeling method for the re-optimization of train platforming 

problem can be formulated as follows: 

(1) Inseparability. A train must occupy only one platform track and cannot occupy 

more than one platform track simultaneously. 

(2) Exclusivity. One platform track can only store one train at any time unit. 

(3) Continuity. A train operation on one platform track with the duration equal to t  

time units cannot be interrupted. If one train starts to use track i  at time t, it continues to 

occupy the platform track i  until t t  , i.e., , , 1 , 2 ,... 1i t i t i t i t tx x x x       . 
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Figure 1: Layout and train schedules of station M 
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Figure 2: Platform track time-space resource usage plan and time-space resource matrix 

 

3 Modeling of re-optimization of train platforming 

3.1 Parameters description 

 

Parameters of this study are defined in Table 1. We assume that all parameters and values 

related to time are multiplies of the time unit  . 
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Table 1: Illustration of Parameters 

Symbol Definition 

L  Set of trains, indexed by l  

1L  Set of delayed trains 

I  Set of platform tracks, indexed by i  

,l ic  Cost of train l  assigned to platform track i  

l  The 0-1 parameter equals to 1 if train l  is running in the inbound 

direction; 0, otherwise 

,l iq  The 0-1 parameter equals to 1 if train l  was initially assigned to 

platform track i  before a delay occurs; 0, otherwise 

T  Length of the planning horizon 

S  The time when train delays’ information is updated 

,l at  The scheduled arrival time of train l  

,l dt  The scheduled departure time of train l  

1
,l at  The estimated arrival time of train l  when a delay occurs 

1
,l dt  The estimated departure time of train l when a delay occurs 

l  Dwell time of train l  

lP  Priority of train l  

D  Safety time interval for platform track operation 

MT  
Sum of the length of the planning horizon T and the safety time 

interval for platform track operation D  

max  Maximum dwell time among trains 

ah  Headway between two arrival trains running in the same direction 

dh  Headway between two departure trains running in the same direction 

  Objective function weighting factor 

M  A sufficiently large number 

 

 

3.2 Variable definitions 

 

For each train ,l k L , each platform track i ( i I ), and each moment t (1 t MT  ), 

the following variables are defined in the model. 

(1) Platform track choice variable ,l iw  and ,l kz  

,

1,     train  chooses platform track   

0,     othewise
l i

l i
w


 


 

,

1,     train  and train  chooses the same platform track  

0,     othewise
l k

l k
z


 


 

(2) Platform track occupancy state variable , ,l i tx  
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, ,

1,     train  occupies platform track  at moment  

0,     othewise
l i t

l i t
x


 


 

(3) Platform track occupancy state variable , ,l i tu  and clearance state variable , ,l i tv  

In order to describe arrival and departure process of train l , platform track occupancy 

state variable , ,l i tu  as well as platform track clearance state variable , ,l i tv  are defined to 

denote the state of platform track i  when train l  arrives at and leaves from platform 

track i . 

, ,

1,     train  has not yet arrived at platform track  at moment  

0,     othewise
l i t

l i t
u


 


     

, ,

1,     train  has left platform track  at moment  

0,     othewise
l i t

l i t
v


 


 

(4) Train sequence variables ,l k  and ,l k  

In order to describe the sequences of trains arriving at and departing from stations, the 

train sequence variables ,l k  and ,l k  are defined as follows. 

,

1,     train  arrives at the station before train   

0,     othewise
l k

l k



 


 

,

1,     train  departs from the station before train   

0,     othewise
l k

l k



 


 

 

3.3 Objective function 

 

The objective function in equation (1) contains the weighted sum of two parts. The former 

part is the sum of train arrival and departure delays, considering the train priority 
lP  and 

the weighting factor  , and the latter part is the total platform track occupancy costs. 

, , , , , ,min ( ) ( )
l

l l a l a l d l d l i l i

l L l L i I

z P y t + y t D w c
  

          (1) 

 

3.4 Constraints 

 

According to definitions of , ,l i tx , , ,l i tu , and , ,l i tv , the relationship among those 

variables can be expressed in constraint (1). Constraints (2) and (3) show that values of 

actual arrival time ,l ay  and actual departure time ,l dy  of train l  can be inferred from 

, ,l i tu  and , ,l i tv . Constraint (5) requires that each train l  can only be assigned to one 

platform track. Constraint (6) ensures that any platform track i  can only be occupied by 

at most one train at any time t . Constraints (7)–(9) guarantee that train operations on the 

platform tracks should be consecutive, by enforcing the condition that the values of 

variables , ,l i tu  and , ,l i tv  are continuous. Constraints (10)–(15) impose the required safety 

headway between two arriving or departing trains running in the same direction, and the 

train sequence variables ,l k , ,l k  as well as the platform track choice variable ,l iw  and 
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,l kz  are also embedded in those constraints. Constraint (16) enforces the minimum dwell 

time for each train l . Note that the safety time interval for platform track operation D  is 

included in the right side of the constraints so that the required safety time interval for trains 

assigned to the same platform track is imposed. In addition, the minimum dwell time l  

of a train l is a deterministic value. Constraints (17)–(19) specify that the actual arrival and 

departure times of the trains should be no less than the corresponding planned arrival and 

departure times, respectively. Constraints (20)–(26) assign initial values to the variables

, ,l i tu , , ,l i tv , ,l iw , ,l ay  and ,l ay , so that all trains adhere to their original plan before the 

train delay occurs. Finally, constraints (27)–(29) define the domain of variables. Note that 

, ,l i tx , ,l ay  and ,l dy  are intermediate variables to facilitate model definition, and their 

values can be inferred from , ,l i tu  and , ,l i tv . 

 

, , , , , ,1 ( )l i t l i t l i tx u v     (2) 

, , ,

1

(1 )
MT

l a l i t

i I t

y MT u
 

     (3) 

, , ,

1

MT

l d l i t

i I t

y MT v
 

    (4) 

, 1,l i

i I

w   l L


     (5) 

, , 1, , 1l i t

l L

x   i I  t MT


        (6) 

, , , , 1 , 1, , , 1l i t l i t l iu u w   l L i I t MT            (7) 

, , , , 1 , 1, , , 1l i t l i t l iv v w   l L i I t MT            (8) 

, , , , 1 , , , , 1l i t l i t l iu u w   l L i I t MT           (9) 

, , , , ,(1 ) , , : ,l a k a l k a l k l k l ky y z h z D M   l k L l k             (10) 

, , , , ,(1 ) , , : ,l d k d l k d l k l k l ky y z h z D M   l k L l k             (11) 

, , , 1, , , : ,l k l i k i l k l kz w w   l k L i I I k l              (12) 

, , , , : ,l k k l l kz z   l k L k l         (13) 

, , 1, , : ,l k k l l k  l k L k l           (14) 

, , 1, , : ,l k k l l k  l k L k l           (15) 

, , ,

1

( ),
MT

l i t l i l

t

x w D   l L, i I


          (16) 

, , ,l a l ay t   l L     (17) 

, , ,l d l dy t D   l L      (18) 

, , ,l d l a ly y D   l L       (19) 

, ,1 1, ,l iu   l L i I       (20) 

, ,1 0, ,l iv   l L i I       (21) 
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, , ,, , :l i l i l aw q   l L i I t S        (22) 

, , ,, :l a l a l ay t   l L t S      (23) 

, , ,, :l d l d l ay t   l L t S      (24) 

1

, , 1,l a l at t   l L     (25) 

1

, , 1,l d l dt t   l L     (26) 

, {0,1}, ,l iw   l L i I       (27) 

, , , ,, {0,1}, , , 1l i t l i tu v   l L i I t MT          (28) 

, , ,, , {0,1}, , : ,l k l k l k l kz     l k L l k          (29) 

 

3.5 Valid equalities 

 

Valid equalities are constraints that can strengthen the model formulation, as shown in 

constraints (30)–(33). 

, , ,1 , , 1l i t l iu w ,  l L i I t MT           (30) 

, , , , , 1l i t l iv w ,  l L i I t MT          (31) 

, , , , , 1l i t l ix w ,  l L i I t MT          (32) 

, , , , max0,  , ,  or l i t l a l dx l L i I t t t t D            (33) 

Principle of valid inequalities (30), (31) and (32) are similar. For example, in valid 

inequality (30), if train l  occupies platform track i , then valid inequality (30) is 

equivalent to , , 0l i tu   which turns out to be ineffective. However, if train l  does not 

occupy the platform track i , then valid inequality (30) is equivalent to , , 1l i tu   which 

implies , , =1l i tu . Valid inequality (33) considers when the station capacity is not sufficient 

and two conflicting trains need to be assigned to the same platform track, then one of the 

two trains with lower priority can be delayed at most by max , which means , ,l i tx  can be 

constrained to 0 when ,l at t  or , maxl dt t D   . 

4 Genetic and simulated annealing hybrid algorithm 

In order to recover the train operations as soon as possible in case of train delays, a genetic 

and simulated annealing hybrid algorithm (GSAHA) is designed to solve the optimization 

model efficiently and effectively (Xing et al., 2006). The GSAHA algorithm combines the 

advantages of genetic algorithm (GA) and simulated annealing algorithm (SA). Moreover, 

GSAHA is robust on the convergence performance while avoiding being trapped into the 

local optimal solutions. The implementation details for the components of GSAHA are 

illustrated as follows. 

 

4.1 Chromosome representation 

 

Fig. 3 shows the one-dimensional real-value encoding method that is used to represent 

chromosomes. Each chromosome denotes a platform track assignment plan, i.e., if the value 
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of the thl gene is equal to i , then the thl train is assigned to platform track i  with its 

scheduled arrival and departure time. The length of each chromosome is equal to the number 

of trains | |L , and the genes in a chromosome are numbered in decreasing order according 

to the scheduled arrival time of trains, where the value range of each gene is located within 

the range [1,  | I |]  , and there could be | || | LI  chromosomes in total. 

 

5

Train

Platform track 2 3 6 ... 4 7 1

1 2 3 4 | | 2L  | | 1L  | |L...  
Figure 3: Illustration of chromosome representation 

 

4.2 Generate initial population 

 

Considering diversity and rationality of individuals in the initial population, the following 

strategies are proposed to generate the initial population. 

Step 1. Denote platform tracks whose number is smaller than the number of platform 

tracks | |I  as the set 1I . 

Step 2. Select ⌊ | | / (| | 1)L  I  ⌋ trains that have not been selected yet and assign those 

trains to one of the unassigned platform tracks in set 1I . 

Step 3. Repeat Step 1 until all platform tracks in set 1I  are assigned, and assign the 

rest | |L  ⌊ | | / (| | 1)L  I  ⌋ (| | 1) I   trains to the last platform track numbered as | |I . 

Step 4. Repeat Step 2 and Step 3 until all individuals in the initial population are 

generated. 

 

4.3 Obtain a feasible solution 

 

The chromosome designed in Section 4.1 only assigns trains to platform tracks, i.e., to 

determine the platform track spatial resources that each train occupies. However, it is still 

possible that two trains may conflict with each other on the occupation of platform track 

temporal resources due to the violation of safety headway requirements, namely, the 

headway between two trains assigned to the same platform track D , headway between two 

arrival trains running in the same direction ah , and headway between two departure trains 

running in the same direction dh . Hence, a heuristic rule is designed to resolve the 

temporal conflicts according to the constraints in Section 3.4: 

Step 1. Sort all trains in decreasing order by their scheduled or estimated arrival time 

and number them from 1 to | |L . 

Step 2. Use Algorithm 1 to resolve the temporal conflicts between any two trains in 

the order given in Step 1. Note that Algorithm 1 will not lead to a deadlock between trains 

where trains can always be delayed to resolve the temporal conflicts. 

 

Algorithm 1: heuristic method to resolve the temporal conflicts with given train order 

For each train i  (1 | |)i L   

    For each train j  (1 )j i   

        If train i  conflicts with train j  
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            Fix the arrival and departure times of train i  and record the weighted- 

            sum delay amount i  after resolving the conflicts of trains number  

            before train i ; 

            Fix the arrival and departure times of train j  and record the weighted- 

            sum delay amount 
j  after resolving the conflicts of trains number 

            before train i ; 

                If i i   

                   Adopt the adjust method by fixing the arrival and departure times 

                   of train i ; 

                Else 

                   Adopt the adjust method by fixing the arrival and departure 

                   times of train j ; 

                End If i i   

        End If train i  conflicts with train j  

    End For each train j  (1 )j i   

End For each train i  (1 | |)i L   

 

Step 3. Calculate the weighted sum of arrival and departure delays compared to the 

scheduled or estimated arrival and departure times. This operation considers all trains in set 

L  and the platform track occupancy costs. The value calculated during this step serves as 

the objective value of the corresponding chromosome. 

 

4.4 Fitness function 

 

The fitness function in equation (34) is designed to evaluate each individual such that the 

algorithm can achieve a better convergence performance: 

min( )
( ) expi k

k

f i f
f t

t

 
  

 
 , (34) 

where kt  represents the temperature at the thk  generation, ( )f i  represents the 

objective value of the 
thi  chromosome, minf  represents the minimal objective value at the 

thk  generation, and ( )i kf t  represents fitness value of the 
thi chromosome when the 

temperature is kt . Fitness function in equation (34) is an important feature of the simulated 

annealing (SA) algorithm, and it has a good capacity to accelerate the convergence of the 

algorithm. 

 

4.5 Temperature decline function 

 

After determining the initial temperature T , the temperature decline function in equation 

(35) is used to lower the temperature at each iteration: 

k

kt T    , (35) 

where kt  represents the temperature at the thk  generation, and the constant 
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represents the temperature decline rate in the SA algorithm. 

 

4.6 Genetic operators 

Neighborhood Search 

Neighborhood search operator is applied to every chromosome. For instance, neighborhood 

search operator modifies the value of one gene in chromosome i  randomly to generate a 

new chromosome j , and the objective value ( )f j  of chromosome j  is recalculated. 

Chromosome j  is accepted or rejected to replace chromosome i  according to the 

probability ( )ij kP t  in equation (36). 

( ) ( )
( ) min 1,expij k

k

f j f i
P t

t

   
   

  
  (36) 

If ( )ij kP t  is greater than the random number 1r  generated within the range [0, 1), 

then chromosome i  is replaced by chromosome j . Neighborhood search operator is 

another important feature of the SA algorithm and it can enlarge the search space with the 

probability of resulting in better solutions. Moreover, neighborhood search operator is one 

of the main operators that can increase population diversity when the algorithm is trapped 

into local optimal solutions. 

Selection 

Roulette method is adopted to select parents according to the cumulative probability, as 

shown in equation (37): 

1 1

i N

i k k

k k

C f f
 

   , (37) 

where N  represents the number of individuals in the population. A random number 

2r  is generated within [0, 1), if 2 ( ,  )i jr C C , then chromosome j  is chosen as a parent. 

The elitism strategy is used to reduce randomness of the algorithm. Additionally, 

individuals are restricted to be consecutively chosen as parents to avoid the situation when 

the algorithm is trapped into a local optimal solution too early. 

Crossover 

Two individuals are chosen as parents each time and a random number 3r  is generated 

within the range [0, 1). If 3r  is greater than or equal to the given crossover rate, then the 

crossover operator is not used and the two parents are reserved as children directly; 

otherwise, 2-point crossover operator is performed. 

Mutation 

For each gene of a chromosome, a random number 4r  is generated within the range [0, 1). 

If 4r  is smaller than the given mutation rate, then the mutation operator is applied, i.e., a 

different platform track is randomly assigned to the gene. 

5 Numerical experiments  

The proposed model is applied to a railway passenger station as shown in Fig. 4, with five 
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platform tracks (Ⅰ, 3, 5, 7, 9, 11) in the inbound direction, and four platform tracks (Ⅱ, 4, 6, 

8, 10) in the outbound direction. The time unit   is set as 1 min. There are 70 inbound 

and outbound trains which need to conduct the necessary operations from 16:00 to 22:00. 

Trains have assigned priorities from 1 to 3, and the initially scheduled train operation plan 

within the station is illustrated as shown in Table 2 and Fig. 5. Additionally, the platform 

track occupancy costs for the inbound and outbound trains are given in Tables 3 and 4. 

There is a penalty of 10,000 for trains which use the platform tracks in the opposite 

direction. Moreover, it is known that 6 inbound trains and 4 outbound trains are delayed at 

18:38, and the estimated arrival and departure times of those delayed trains are given in 

Table 5. The maximum dwell time max  is 43 min, and the length of the scheduled 

horizon T is 360 min. The safety interval time on the platform track D  is 6 min, and the 

headway between two arriving or departing trains in the same direction are set as 5 min. 

The weighting factor   is set as 200. Please note that the value of   can be flexible 

adjusted by the train dispatchers. In addition, we believe that keeping trains on time with 

guaranteed train service quality is more important than assigning the trains to their preferred 

platform tracks, and thus the penalty parameters on train delays are relatively larger than 

the platform track occupancy costs. 

First, we use the commercial solver CPLEX 12.7.0 to solve the model in section 2. The 

test computer is an Intel(R) Core(TM) i7-5600U 2.6GHZ CPU with 12G RAM. CPLEX 

can obtain optimal solutions after 608 seconds with the objective value of 17,059. Table 7 

shows that arrival and departure times of 11 trains are delayed after the re-optimization, and 

14 trains are assigned different platform tracks. The new train operation plan within the 

station is shown in Table 6 and Fig. 6, where all safety headway requirements are satisfied. 

Please note that the trains in Table 6 with bold fonts represent that those trains have been 

reassigned to different platform tracks. 

Ⅱ

4
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11

6

Ⅰ

5

7

9

8

10

Inbound entry

Outbound exit

Inbound exit

Outbound entry

  
Figure 4: Layout of the railway passenger station 

 

Table 2: Initial platform tack assignment plan between 16:00 and 22:00 

Platform track number Occupation trains 

11 T9, T29 

9 T5, T19, T31, T41, T49 

7 T11, T21, T27, T33, T43, T47, T55, T63, T69 

5 T1, T7, T15, T25, T35, T39, T53, T61, T67, T73 

3 T3, T13, T17, T23, T37, T45, T51, T57, T59, T65, T71, T75 

Ⅰ  

Ⅱ  

4 T2, T8, T18, T22, T30, T34, T40, T42, T48, T54, T60, T64 

6 T4, T12, T16, T24, T32, T38, T44, T50, T56, T62 
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8 T6, T14, T20, T28, T36, T46, T52, T58 

10 T10, T26 
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T2 T8 T18 T22 T30 T34 T40 T42 T48 T54 T60 T64

T4 T12 T16 T24 T32 T38 T44 T50 T56 T62

T6 T14 T20 T28 T36 T46 T52 T58

T10 T26

 
Figure 5: Arrival and departure track utilization scheme between 16:00 and 22:00 

 

Table 3: Platform track occupancy costs for inbound trains with different priorities 

Train direction Train priority 
Platform track number 

Ⅰ 3 5 7 9 11 

Inbound 

1 600 6 12 24 48 96 

2 300 3 6 12 24 48 

3 200 2 4 8 16 32 

 

Table 4: Platform track occupancy costs for outbound trains with different priorities 

Train direction Train priority 
Platform track number 

Ⅱ 4 6 8 10 

Outbound 

1 600 6 12 24 48 

2 300 3 6 12 24 

3 200 2 4 8 16 

 

Table 5: Estimated arrival and departure times for delayed trains 

Train 
Arrival 

delay 

Expected 

arrival time 

Expected 

departure time 
Dwell time Priority 

T39 20 187 210 23 1 

T41 25 197 209 12 3 

T43 25 203 220 17 3 

T45 27 211 227 16 1 

T47 30 240 260 20 3 

T55 30 266 286 20 3 
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T32 30 202 217 15 3 

T36 32 227 250 23 3 

T38 35 235 243 8 3 

T44 40 272 283 11 1 

 

Table 6: Platform tack assignment plan after re-optimization with CPLEX 

Platform track number Occupation trains 

11 T9, T29 

9 T5, T19, T31, T41, T49, T55 

7 T11, T21, T27, T33, T43, T53, T63, T69 

5 T1, T7, T15, T25, T35, T45, T47, T61, T67, T73 

3 T3, T13, T17, T23, T37, T39, T51, T57, T59, T65, T71, T75 

Ⅰ  

Ⅱ  

4 T2, T8, T18, T22, T28, T34, T40, T42, T48, T44, T60, T64 

6 T4, T12, T16, T24, T30, T32, T38, T50, T54, T58, T62 

8 T6, T14, T20, T46, T56 

10 T10, T26, T36, T52 
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Figure 6: Platform track use scheme after re-optimization with CPLEX 

 

 

Table 7: Amount of secondary delay for the trains obtained by CPLEX   

Train Priority 
Secondary arrival 

delay(min) 

Secondary departure 

delay (min) 

T39 1 0 4 

T55 3 0 2 

T32 3 0 3 
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T38 3 2 2 

T40 3 2 2 

T42 1 5 5 

T46 2 2 2 

T48 1 2 2 

T50 1 0 1 

T52 3 2 2 

T54 1 2 2 

 

Parameters for GSAHA are set as follows. The number of individuals in the population 

is 50, the maximum number of generations is 300, the crossover rate is 0.98, the mutation 

rate is 0.1, the initial temperature T is 8000 ℃, the temperature decline rate   is 0.9, and 

the temperature is increased to 4000 ℃ if the objective value of the best individual in the 

current generation remains unchanged for 3 iterations. The GSAHA is implemented in C++, 

and the average objective value of GSAHA for total 20 runs is 17,612, which is only 3.24% 

higher than the optimal solution of CPLEX. In addition, the average running time of the 

GSAHA is only 27 seconds. The convergence process of the simulated annealing hybrid 

algorithm for a specific run is shown in Fig. 7, where the algorithm can reach the near-

optimal solution only after 70 iterations.  
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Figure 7: Convergence process of GSAHA 

 

Meanwhile, the sensitivity analysis of different values of weighting factor  is 

performed by increasing the value of  from 40 to 440 with the step size equal to 40. The 

optimization results of CPLEX and GSAHA are listed in Table 8, and the parameter settings 

for the GSAHA remain unchanged, and the objective value of GSAHA takes the average 

results of 20 times. It can be shown that the objective values of CPLEX and GSAHA 

increase as the value of   increases, and the solution times of CPLEX range from 329 to 

764 seconds while the solution times of GSAHA only range from 27 to 29 seconds. In 

addition, the objective values of GSAHA are 2.80%–5.10% larger than that of CPLEX. 
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Hence, the stable performance of GSAHA regarding the solution quality and solution times 

show that our proposed GSAHA is suitable to serve as an effective computer-aided decision-

making tool for the train dispatchers in case of train delays. 

 

Table 8: Optimization results of CPLEX and the GSAHA with different weighting factors   

Weighting 

factor α 

CPLEX GSAHA 

Objective 

value 

CPU time 

(sec) 

Objective 

value 

CPU 

time (sec) 

GAP with 

CPLEX (%) 

40 3939 740 4140 28 5.10 

80 7219 589 7507 28 3.99 

120 10499 764 10914 28 3.95 

160 13783 447 14233 28 3.26 

200 17059 679 17612 27 3.24 

240 20339 388 20951 27 3.01 

280 23619 360 24342 27 3.06 

320 26899 596 27681 28 2.91 

360 30179 329 31069 28 2.95 

400 33459 340 34402 29 2.82 

440 36739 412 37808 28 2.91 

 

6 Conclusions 

The problem of re-optimization of the train platforming is essential in recovering the 

train operations within the station and minimizing the negative influences of train delays. 

This paper proposes a MILP re-optimization model, where the train station is represented 

using discretized platform track time-space resources. The resulting model is solved by 

CPLEX and the designed heuristic algorithm GSAHA. The effectiveness of the proposed 

MILP model is verified by using the CPLEX solver, and the proposed heuristic algorithm 

further speeds up the solving process with near-optimal solutions. In addition, the 

performance of GSAHA is stable when the values of weighting factor   vary from 40 to 

440. 

 The work in this paper can be extended in several interesting directions. First, instead 

of ensuring the arrival and departure safety headway between two different trains 

(Chakroborty and Vikram, 2008), the explicit consideration of train entrance and exit route 

conflicts can increase the station throughput capacity and reduce the train delays 

(Zwaneveld et al., 1996). Second, the MILP model and the heuristic algorithm GSAHA 

proposed in this paper can be further developed to consider different station types, such as 

the terminal station where trains need to perform the turn-around movement which makes 

the train platforming problem more complicated. Third, the effectiveness of the heuristic 

algorithm GSAHA can be tested and improved for bigger railway stations with more 

complex station layout structure. 
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