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Abstract
This paper presents a combined method of fuzzy theory and rough sets theory for the early 
warning of high-speed railway (HSR) under adverse weather conditions. Based on the 
monitoring data of meteorological indicators along the railway, a fuzzy c-means (FCM) 
clustering is first applied in order to figure out the fuzzy distribution of sample data and to 
fit the corresponding membership function of every indicator. According to the clustering 
results, every original sample is transformed into its cluster level as string data for the 
subsequent application of rough sets theory. Then a series of effective rough rules 
between conditional indicators and the decision indicator is extracted after attribute 
reduction by the Rosetta toolkit, where the decision indicator is represented by the train 
deceleration rate. Since the value of an indicator may correspond to several fuzzy levels, 
the multiple combinations of different conditional indicators will activate multiple rough 
rules. In order to forecast a clear value of the decision indicator, a centroid-based Max-
Min compound arithmetic is applied to clarify relevant rules and determine the warning 
level. Using the designed algorithm, a case analysis of an HSR line section is conducted to 
verify the feasibility of the combined method, all meteorological data and operation 
records are provided by the Shanghai Railway Bureau in China. The results prove that the 
hybrid algorithm can be applied in the real-time forewarning of HSR train operation, with 
a global accuracy over 86%. 
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1 Introduction

High-speed railway (HSR) has recently become an important share of the transport market 
in China, with advantages of comfort, convenience and punctuality. Currently, in view of 
the high service frequency and high management demand, developing the forewarning 
system has become an essential way to proactively secure the train operation and 
guarantee the transport efficiency. The early warning of HSR operation has been 
extensively explored in the literature. Risk factors of HSR accidents usually come from
railway infrastructure, train equipment, operation management and external environmental 
conditions (Goverde and Meng, 2011; Li et al., 2018). The infrastructure failure, train 
equipment malfunction and operation error are usually unexpected and are uncertain with 
emergency responses (Fan et al., 2015; Ouyang et al., 2010), while the escalation of 
environmental conditions can be predictable under the real-time monitoring. Meanwhile, 
adverse weather conditions such as wind gust and heavy rainfall have strong effects on 
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high-speed train operation according to the aerodynamic analysis (Baker, 2010; Shao et 
al., 2011; Du and Ni, 2016), and relevant possibility of derailment is higher. Xia et al. 
(2013) also found that the train arrival punctuality and cancellation rate become worse 
under bad weather conditions. Therefore, it is necessary to establish an effective 
forewarning method to guide the HSR operation under bad weather. 

Forewarning methods such as the decision tree algorithm, Bayesian training network
and support vector machine (SVM) algorithm are frequently used in training datasets and 
predicting the impacts of occurring event, based on the data of high nonlinearity and 
dynamicity (Castillo et al., 2016; Jiang et al., 2017; Annelies et al., 2018; Yan et al.,
2018). In addition, An et al. (2016) applied fuzzy analytical hierarchy process (AHP) 
approaches in the railway risk decision making process. Hu et al. (2018) constructed a 
rough measurement model to describe the safety of high-speed train operation. However, 
when faced with the forewarning of train operation under adverse weather conditions, 
some algorithms will have limitations. To our best knowledge, the decision tree algorithm 
is unable to distinguish the noisy datasets from valid datasets (Oates and Jensen, 1997). 
The SVM is a learning method for small sample data (Yang et al., 2018), and it is hard to 
deal with complex multi-dimensional data of weather conditions. Meanwhile, the 
Bayesian network model requires that the data obey a Gaussian distribution (Xie et al.,
2017), which doesn’t meet the abrupt changes of meteorological indicators such as rain 
intensity and wind speed, meanwhile prediction failure occurs when a real-time data is 
outside of the original training set.

On the basis of above mentioned limitations, this study presents a hybrid algorithm of 
fuzzy theory and rough sets theory, composed of fuzzy c-means (FCM) clustering, fuzzy 
distribution fitting, attribute reduction, rough rules extraction and Max-Min compound 
arithmetic. This combined method was designed with advantages of mitigating the 
influence of noisy data for efficient forecasting, due to the correlation between indicators. 
This algorithm has been applied to an HSR section (shown in Figure 1) of Shanghai 
Railway Bureau in China, based on the historical monitoring data of meteorological 
conditions and operation records. 

Hongqiao 
Station

Suzhou 
Station

Beijing-Shanghai High-speed Railway

Figure 1: The railroad section of Beijing-Shanghai HSR

The remainder of this paper is structured as follows. Section 2 first outlines the 
algorithm framework; Section 3 describes the details of models in fuzzy theory and rough
sets theory. Following this, Section 4 performs a case analysis using real monitoring data 
under adverse weather, where the results are fully discussed. Eventually, Section 5 
reaches some conclusions and makes suggestions for future work and research aspects. 
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2 Algorithm design

In China, current forewarning system for train operation under adverse weather is 
designed according to the Regulations on Railway Technical Management and the 
Detailed Rules on Organization of Train Operation, where speed limits have been 
regulated for train operation under windy weather and rainy weather seperately, as shown 
in Table 1. Since the speed limits for wind speed are inconsistent with the hourly rainfall, 
we found difficulties in train dispatching when faced with complex weather conditions, 
especially the wind-driven rain. 

Table 1: Speed-limit standards under windy weather and rainy weather
Wind Speed

(m/s)
Top Speed

(km/h)
Rainfall
(mm/h)

Top Speed
(km/h)

[0, 20] 300 [0, 30] 300
(20, 25] 200 (30, 45] 250
(25, 30] 120 (45, 60] 120> 30 Stop > 60 45

Therefore, it is essential to propose a forewarning algorithm to support the decision 
making of train operation under complex weather conditions. For this purpose, a hybrid
algorithm of fuzzy theory and rough sets is then developed, shown in Figure 2.

Input training data sets
Meteorological
indicators
Train operation
indicator

FCM clustering
Generate FCM
centers for each
indicator
Calculate the matrix
of fuzzy membership

Membership function
Apply the trapezoidal
distribution function
to fit the fuzzy 
distribution

Attribute reduction
Establish the knowledge
expression system
Find associations and 
erase unnecessary
indicators

Rule extraction
Define the decision rule
and certainty factor
Remove the redundancy 
in the association rules Compound arithmetic

Generate a clear
value using centroid-
based Max-Min
arithmetic

Output a knowledge base
Store the value range of
different clusters for
every indicator
Store effective rules

Input a real-time data

Rules activation
Determine possible
fuzzy clusters of each
indicator
Activate rules under
multiple fuzzy
combinations

Output the final 
forewarning level

Rough Sets

Fuzzy theroy

Figure 2: The algorithm process

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 1185



Five major steps in the algorithm procedure are listed below. 
Setp1. FCM clustering. For each indicator (including conditional indicators and 

decision indicator), several cluster centers and fuzzy membership grades are generated 
from corresponding original data. 

Step2. Membership function fitting. The membership function of each conditional 
indicator is fitted to the fuzzy membership grades. To simplify the calculation, the 
trapezoidal distribution function is applied to each cluster level of indicators.

Step3. Attribute reduction. The FCM is an independent fuzzy classification of each 
indicator, while the attribute reduction can efficiently find out associations and erase 
unnecessary indicators according to the rough sets theory.

Step4. Rule extraction. This step is a further analysis to remove the redundancy in the 
association rules, and to reduce the impact of noisy data. Upon introduced certainty factor, 
effective rules between conditional indicators and the decision indicator are figured out.

Step5. Compound arithmetic. Given a real-time monitoring data of conditional 
indicators, an intersection set is naturally output from the multiple combinations of fuzzy 
levels. The centroid-based Max-min compound arithmetic is applied in order to defuzzy 
the calculation and to get a clear value for judging the forewarning level.

3 The combination of fuzzy theory and rough sets 

3.1 Fuzzy theory

Fuzzy c-means clustering
As compared to traditional clustering models like k-means method and density-based 
methods, the FCM can better accommodate the rough sets theory in discretizing the 
original datasets and in performing a comprehensive arithmetic based on the value of 
fuzzy membership. For each indicator, the FCM clustering is performed based on the
original data set, which is a column vector. Assuming that n is the number of samples in 
the original data set, and = { , , , } is the values set, the problem of FCM 
clustering can be formulated as: 

2

1 1
min{ }, 1

K n

ij i j
j i

T v p m (1)
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ij
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where vij denotes the probability when the ith sample belongs to the jth clustering center, 
namely the fuzzy membership, mj represents the value of the jth clustering center, K is the 
number of clustering centers, and is the fuzzy parameter with a positive relation to the 
fuzziness (Gong et al., 2005). It is important to note that initial centers are random 
selected from P, and the value of K should consider practical significance.

Fuzzy membership function
According to the coverage of clustering centers, the distribution patterns of membership 
function include left type, right type and center type, where the triangular function and 
trapezoidal function are included in the center type distribution, shown in Figure 3. Since 
the left type and right type distribution are two special cases of the trapezoidal distribution
(Botzheim et al., 2001), the center type is selected to fit the fuzzy distribution. 
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Figure 3: Three typical distribution patterns of membership function

3.2 Rough sets theory

Attribute reduction
The rough sets theory was first proposed by Pawlak (1982), which can be applied in fields 
of machine learning, knowledge acquisition, decision analysis and process control 
(Pawlak, 2002). Before attribute reduction, a knowledge expression system (KES) of the 
rough sets should be established, which is defined as: 

( , , , )S U A V f (3)
In this equation, U is the set of samples defined as = { , , , }, where xi is a 

row vector representing the ith individual sample. A is the set of attributes including 
conditional indicators (denoted by C) and the decision indicator (denoted by D). V is the 
set of value ranges of all attribute indicators. f represents the information function. It is 
noted that every indicator’s value of xi is uniquely determined in V. 

Based on the discernible matrix from original decision table, attributes should get 
reducted to erase the linearity between conditional indicators as much as possible. The 
decision table is defined by T = (U, A, C, D), and the corresponding discernible matrix is 
denoted as an n×n matrix M(T). Any element in M(T) is determined by: 

( , ) ( , ) , ( , ) ( )

, ( , ) ( )
i j i j

ij

i j

a a C & f a x f a x   x x ind D
c =

  x x ind D
(4)

where cij represents the set of attributes which can distinguish sample xi from sample xj, 
and ind (D) is the indiscernible set of samples with the same attributes values of D. 
Obviously, cij is an empty set when samples xi and xj belong to the same indiscernible set.

Rough rules extraction
Rough rules extraction is in a critical position between the attribute reduction and 
compound arithmetic, aiming to output decision rules from conditional indicators to the 
decision indicator (Maji and Garai, 2013). For example, if a decision table contains 2 
conditional indicators and 1 decision indicator, assuming every indicator has 3 clustering 
levels, then there are 27 decision rules in an exhaustive way, while the number of rules 
will get significantly reduced by the rules extraction considering the certainty of each rule.  

During rules extraction, the decision rule is defined as: 
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: ( ) ( ),ij i j i jr des C des D C D (5)
( ) ( , ) ( , ) ,i a ades C a V f x a v a C (6)
( ) ( , ) ( , ) ,j a ades D a V f x a v a D (7)

Also, the corresponding certainty factor of rule rij is therefore determined by: 

j i
ij i j

i

card D C
C D

card C
(8)

where μij denotes the certainty factor, ranging from 0 to 1. Rule rij is a certain decision 
rule when μij is 1, otherwise it is uncertain. Decision rules with high certainty are output 
into a knowledge base to improve the calculation efficiency of subsequent work.

3.3 Compound arithmetic

Given a real time monitoring data, values of conditional indicators correspond to different 
levels and will activate different rough rules in the knowledge base. The compound 
arithmetic is a centroid-based Max-Min arithmetic (Wang, 2009) used to forecast a clear 
value of decision indicator under different rough rules activated by the same sample data 
of conditional indicators. The basic function centroid-based Max-Min arithmetic is: 
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1 2= max{min[ ( ), ( ), , ( ), ( )]}i
x C C Ck DU v x v x v x v x (10) 

where denotes the clear value of the decision indicator, ( ) is the fuzzy distribution 
function of the decision indicator, ( ) is the fuzzy distribution function of the ith

conditional  indicator, represents the domain set activated by the ith rough rule, and P is 
the number of activated rough rules under current sample data.

4 The Case Analysis 

4.1 Data collection

The original monitoring data of weather conditions and train operation under adverse 
weather conditions of an HSR section (see Figure 1) are provided by the Shanghai 
Railway Bureau in China. As shown in Figure 4, rainfall indicators and wind indicators 
are two key targets in current safety monitoring system of HSR. With the help of this 
system, continuous monitoring data of meteorological indicators are easily associated with 
train operation records under adverse weather conditions. The date of collected data is 10th

June, 2017, a day during stormy weather. 
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(a) Monitoring rainfall indicators (b) Monitoring wind indicators
Figure 4: The disaster prevention and safety monitoring system of HSR

The meteorological indicators function as the conditional indicators, including wind 
speed (WS), wind direction (WD), rainfall intensity (RI), hourly rainfall (HR), daily 
rainfall (DR) and continuous rainfall (CR). The actual deceleration rate (AD) functions as 
the decision indicator to determine the level of early warning. The training data of 297 
valid samples under bad weather have been studied, as shown in Table 2. 

Table 2: Original sample data of HSR operation under adverse weather conditions

4.2 Algorithm application

Based on the sample data, FCM is first performed to obtain the fuzzy membership 
distribution of each indicator, shown in Figure 5. Using the indicator of wind speed as an 
example, data of wind speed have been classified into level , , and , and the 
corresponding function curves are plotted by different colors.  Similarly, indicators of 
wind direction, rainfall intensity, hourly rainfall, daily rainfall and continuous rainfall are 
classified into 3, 4, 5, 3 and 3 levels respectively, where the number of levels are carefully 
determined to satisfy relevant HSR technical regulations.

A Conditional indicators Decision 
indicator

C1 C2 C3 C4 C5 C6 D1

n WS
(m/s)

WD
[0,180°]

RI
(mm)

HR
(mm/h)

DR
(mm/day)

CR
(mm)

AD 
(m/s2)

1 12.1 46.4 0.0 0.0 0.3 0.3 0.11
2 12.8 39.4 0.0 0.0 0.3 0.3 0.14
3 13.6 40.7 0.0 0.0 0.3 0.3 0.17 

175 15.3 88.1 25.5 53.0 44.1 150.9 0.97
176 15.6 88.0 25.4 52.4 44.3 151.2 1.17
177 15.8 87.0 22.5 51.9 44.5 151.4 0.94
178 16.0 93.5 14.5 51.4 44.8 151.6 1.03

295 9.7 60.6 0.0 1.0 27.8 155.6 0.08
296 9.6 65.4 0.0 1.0 27.8 155.6 0.00
297 9.4 60.4 0.0 0.9 27.8 155.6 0.03
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Figure 5: The fuzzy membership distribution of 6 conditional indicators

Based on the results of fuzzy clustering of each indicator, original numeric data of 
attributes are converted into string type data for the analysis in Rosetta toolkit. Through 
attribute reduction, the indicator C6 (CR) is removed from the original data set, and 66 
rough rules have been generated. Given a sample data set {21.2, 67.9, 47.5, 52.3, 86.7}, 
six rough rules are activated, shown in Table 3.  
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Table 3: Activated rough rules
Activated rules
(Inputs Output)

Fuzzy Membership Grade
Min value

WS WD RI HR DR
, , , , 0.271 0.401 0.148 0.548 0.718 0.148
, , , , 0.271 0.645 0.148 0.548 0.718 0.148
, , , , 0.271 0.645 0.883 0.519 0.718 0.271
, , , , 0.591 0.401 0.148 0.519 0.718 0.148
, , , , 0.591 0.645 0.148 0.548 0.718 0.148
, , , , 0.591 0.645 0.883 0.519 0.718 0.519

Then the max-min compound arithmetic is applied based on the 6 activated rules. In 
combination with the fuzzy membership function of deceleration rate, the max-min area is 
designated by the shaded area, as shown in Figure 6. The clear value of decision indicator 
DR is 0.994 m/s2 according to the centroid arithmetic in Equations (9) and (10); the 
corresponding forewarning level is . 

Figure 6: The max-min area of decision indicator DR under 6 activated rough rules

4.3 Discussion 

Before evaluating the accuracy of this hybrid algorithm, samples are divided into 2 groups 
(Group 1 and Group 2) according to the actual deceleration rate. Under current early 
warning system, the service braking curve is frequently applied to HSR train operation. 
Based on the braking curves of CRH2 series train (Shangguan et al., 2011) at an initial 
velocity 300 km/h (see Figure 7), the average deceleration rate under service braking is 
approximately 0.83 m/s2. Based on this, Group 1 contains sample data with actual 
deceleration rates below this average value, and Group 2 contains sample data with 
deceleration rates above the average value.
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Figure 7: Braking curves of CRH2 series train

The accuracy is defined as the proportion of samples whose forecasting levels are 
consistent with practical levels. To acquire the accuracy rate, the hybrid forewarning
algorithm is applied to all 297 samples, and the results are shown in Table 4.

Table 4: Forewarning accuracy of samples in Group 1 and Group 2

Group Number of 
samples

Forewarning 
accuracy

Global 
accuracy

Group 1 (AD<0.83) 174 83.33%
86.53%

Group 2 (AD 0.83) 123 91.06%

As indicated in Table 4, we have 174 samples in Group 1 with a forewarning accuracy 
of 83.33%, and 123 samples in Group 2 with a forewarning accuracy 91.06%. Meanwhile, 
it is obvious that Group 2 has a higher forewarning accuracy as compared to Group1. As 
we know, the actual deceleration rate is correlated with weather conditions, and the 
deceleration rate increases with weather conditions getting worse. Since the actual 
deceleration rates of Group 2 are bigger than Group 1, the weather conditions of samples 
in Group 2 are worse than Group 1. 

Based on the above analysis, the hybrid model seems better suited to data under 
extremely adverse weather conditions. The phenomenon may be explained the indicator 
level is sensitive under extremely adverse weather, which is easy to identify by the hybrid 
algorithm. In general, the global accuracy of all 297 samples is approximately 86.53%.

Meanwhile, the suggested top speed can be obtained by combining the threshold 
intervals of forewarning levels with the characteristics of the service braking curve, shown 
in Table 5. In the case study, the final , meaning that the 
corresponding top speed for train operation is suggested to be 200 km/h.

Table 5: Suggested top speed under each forewarning level of DR
Level
Threshold Interval
(m/s2) [0,0.17) [0.17,0.46) [0.46,0.74) [0.74,1.03) [1.03, 1.4]

Top Speed (km/h) 300 300 250 200 100

0 1000 2000 3000 4000 5000 6000
0

50

100

150

200

250

300

Braking distance (m)

V
el

oc
ity

 (k
m

/h
)

Emergency Braking Curve
Service Braking Curve

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 1192



The algorithm is logically divided into parts of offline computation and real-time 
computation. Basic decision rules get extracted or updated by training and analyzing 
historical datasets in the offline computation, while the compound arithmetic is operated 
efficiently in the real-time computation with a little computational load.

5 Conclusions

In this paper, authors contribute to the forewarning method for train operation under 
adverse weather conditions. It is a combined algorithm of fuzzy clustering and rough sets, 
where monitoring data of meteorological indicators like wind speed and rain intensity are 
used for the data training and analysis. Main novelties introduced by this paper are the 
adoption of combining the fuzzy theory with rough sets theory, characterized by: (a) a 
fuzzy distribution of original conditional indicators and the decision indicator; (b) a set of 
reducted indicators after attributes reduction; (c) effective rough rules represented by the 
level of conditional indicators and the decision indicator; (d) a clear value output by the 
compound arithmetic under activated rough rules.

The application of this early warning method has indicated the feasibility of decision 
rules. The global forewarning accuracy is approximately 86.53%, where the accuracy is 
higher for 123 samples under extremely adverse weather conditions. Nonetheless, due to 
the difficulty in data collection considering some confidentiality and privacy, the number 
of valid samples is below our expectation. Given more sample data, the conditional 
attributes will get fully reducted, and the rough rules will describe the relationship 
between conditional attributes and decision attributes more precisely, thus the algorithm 
can guarantee the accuracy of the forewarning level. 

Further developments will be focused on the expansion of conditional indicators such 
as atmospheric pressure and ambient temperature, and additional efforts has to be spent in 
the modification of reduction algorithm to guarantee the nonlinearity among conditional 
indicators. Nevertheless, the authors believe that the proposed method can be applied in 
the revision of corresponding rules and regulations, and the hybrid algorithm can provide 
basic support for HSR train operation under complex adverse weather conditions. 
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	Jun Zhang, Yuling Ye and Yunfei Zhou. A Hybrid Forewarning Algorithm for Train Operation under Adverse Weather Conditions

