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Abstract
Railway timetabling is a prominent research area in railway research. The timetable is
usually shown as a time-space diagram. However, even algorithms that try to adapt/add to an
existing timetable rely mainly on mixed integer programming, but do not use the geometric
representation of the timetable. In this paper, we consider the problem of determining
residual train paths in an existing timetable. We aim to restrict possible disturbance on
existing (passenger) traffic, and, hence, insert train paths of a specified minimum temporal
distance to other trains. We show how we can extend algorithms for thick paths in polygonal
domains to compute the maximum number of trains with a specified robustness to insert.
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1 Introduction

Both passenger traffic and freight traffic volumes in Sweden significantly increased over
the last 20 years—from 1996 to 2016 by 82% (from about 7 to 12.8 billion passenger
kilometers) and by 23% (from about 55 to about 68 million tonne-kilometers), respectively,
see Trafikanalys (2017a,b). Over the last years the freight volume transported via railway
within the EU has stagnated, but both road congestion and oil prices make road transport
more expensive and less attractive. In contrast, railway transport is safer and more environ-
mental friendly. However, already with the current traffic load, railway infrastructure is
often overloaded. This is particular true for marshalling yards: trains that are already
completed occupy highly demanded space until their departure. To free this capacity,
both the freight operator and the infrastructure manager (IM) often agree in their goal to
depart ahead of schedule. Today, such a request is answered manually by looking a few
stations ahead, and if the completed freight train will not interrupt operations on this limited
considered stretch, an earlier departure will be permitted. This procedure hardly takes into
account the already congested rail network, where freight traffic interacts with passenger
traffic with high requirements on punctuality. The early departed freight train might be
stuck at a sidetrack before its destination for long stretches of time due to the limited spatial
and temporal horizon considered for the decision by the IM. Having several early departing
freight trains only worsens this situation. Similarly, early arrivals contribute to congestion,
when no track capacity is available at the destination yard.
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To make sure both that the existing (passenger) traffic is not affected by the train path
of the freight train and that the freight train actually obtains a feasible train path to its
destination, it is essential to optimize the process. In Ljunggren et al. (2018), we proposed an
algorithm that computes a maximum robust train path for inserting a single additional train
(at a time). Here, we aim to determine how many additional trains with certain properties
can be added to the existing timetable, that is, we aim to determine the residual capacity for
additional train paths within given time windows. This could be particularly interesting for
adding freight trains, but also adding passenger trains can be of interest.

Timetabling is a problem that has been extensively studied, in the majority a new time-
table, or a larger part of it, is constructed from scratch, see, e.g., Hansen and Pachl (2014);
Liebchen (2008) for an overview.

Adding a new train to an existing timetable was considered, e.g., by Burdett and Kozan
(2009). Flier et al. (2009)(see also Flier (2011)) present a shortest path model using a time-
expanded graph, which integrates linear regression models based on extensive historical
delay data, that gives Pareto optimal train paths w.r.t. travel time and risk of delay. Ingolotti
et al. (2004) consider adding new trains to a heterogeneous, heavily loaded railway network,
and aim to minimize the traversal time for each additional train. Cacchiani et al. (2010) also
consider the problem of inserting a single freight train into an existing schedule of fixed
passenger trains. They assume that the operator specifies an ideal timetable that the IM can
modify, which also includes the use of a different path. Cacchiani et al. aim to add the
maximum number of new freight trains, such that their timetable is as close as possible to
the ideal one. To do so, they use a heuristic algorithm based on a lagrangian relaxation of
an Integer Linear Program (ILP).

UIC (2004) has developed a compression technique for computing capacity utilization.
This technique is widely used for assessing capacity utilization in the railway network. For
example the Swedish infrastructure manager routinely makes an annual report about the
network congestion (Trafikverket (2018)). The corresponding analysis for year 2011 has
also been presented in English, see Grimm (2012). The UIC 406 compression technique
is an easy and effective way of estimating the capacity consumption, but it is possible to
expound it in different ways leading to different estimates. Landex et al. (2006), who explain
how the method has been implemented in Denmark, show the importance of choosing the
right length of the line sections and examine how line sections with multiple tracks are
considered. Also Lindner (2011) discusses some aspects of this problem. In particular,
the UIC 406 code calculates a capacity consumption, that is, it evaluates how much of the
available capacity is consumed by the existing traffic. It first compresses the timetable,
that is, the existing train paths on the considered line section are shifted as close together
as possible. At this stage, they represent trains running within a certain time interval, but
no longer are considered during the actual time they occupy the line. After this shifting
certain blocking time elements and indirect occupancies are integrated to obtain the capacity
utilization. The extension of the compression technique given in the second edition (UIC
(2013)) mainly concerns how the method can be applied at station areas and in complex
nodes. For the aggregated type of analysis in an annual report, we believe that the UIC
compression technique is well suited. However, for determining the actual number of exe-
cutable train paths between two nodes, which can be added to the existing timetable, the
method is insufficient. In this paper, we address the problem to obtain as many train paths
that such a network part still allows. Moreover, we allow a trade-off between adding further
trains and influencing the existing trains as little as possible: the required temporal distance
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to the existing train is an input parameter to our computation. When we use the minimal
required temporal distance we can add more trains than with a larger temporal distance,
however, this comes at the price of a higher impact on other trains. Additionally, we may
add train paths over topological different routes.

Pellegrini et al. (2017) and Lucchini et al. (2001) considered the saturation problem: an
existing (possibly empty) timetable and a set of saturation trains are given, and the goal is
to add as many trains to the timetable as possible. Lucchini et al. (2001) use the CAPRES
method—in which stations and junctions are modeled as a graph on which a constraint
program is solved—to determine how many freight trains can run on the North-South rail
corridor in Switzerland. Pellegrini et al. (2017) used a MILP approach, . In the saturation
problem, various train types (possibly with number of trains per type) are considered, while
we assume a specific type, but aim at disturbing the passenger traffic as little as possible,
and obtain a trade-off with the temporal distance to other trains. CAPRES uses heuristics,
Pellegrini et al. (2017) output the best feasible solution found until a time limit is reached,
while we present an optimal solution.

A timetable is usually shown as a time-space diagram. However, even when we only
aim at inserting something into an existing timetable, or make some limited adaptations to
it, this geometric representation is not used in algorithms (while it is used in the practical,
mainly manual, process). We present a roadmap on how we will make use of this geometric
representation in Section 2. There exist various results on thick paths and flows within a
polygonal domain, we present basic definitions and the results important for this paper in
Section 3. In Section 4 we describe our general approach, and detail in Subsection 4.1 how
we construct our polygonal domain, in Subsection 4.2 how to extend the path computation
to our needs, and in Subsection 4.3 how we combine these to compute the maximum number
of additional trains.

2 Roadmap for Our Strategy

We aim to insert additional trains to a given timetable, where we consider the existing
trains as fixed. When we consider the time-space diagram of the given timetable (where
we consider time on the x-, and space on the y-axis), inserting new trains means to route
paths from their start to their end station. However, these paths cannot be arbitrarily close to
each other: we need to keep a certain temporal distance to consecutive trains on any track.
Let ds and do denote this temporal distance for trains running in the same and for trains
running in the opposite direction as the trains to be inserted, respectively (these values
may coincide, but will usually not). So, instead of thinking of the existing trains as line
segments in the time-space representation of the timetable, we can think of them as “blown-
up” line segments (blown up by the temporal distance), that is polygons. Similarly, the
trains that we route are not just curves in R2, but thick paths, where the thickness represents
the temporal distance we need to keep to neighboring trains, d. For our algorithm, we can
choose d according to the minimal necessary temporal distance between trains, or—with
the motivation of disturbing the existing trains as little as possible, e.g., because we insert
freight trains shortly before operation, see Ljunggren et al. (2018)—we can choose a larger
value.

We will use concepts from Computational Geometry that allow routing such thick paths.
Of course, if we would just “blow up” all existing trains, no thick paths could overtake
any other train at a station, as the line segments representing the stations and the existing
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trains would constitute obstacles. To enable such options, we will need to make certain
adaptations to the “blown up” time-space representation, we show how to construct the
appropriate polygonal domain for our problem in Subsection 4.1. We are given a time-
window for possible departure on the start station and a time-window for possible arrival at
the end station, these will coincide with special edges, the source and sink, of the polygonal
domain, between which we need to route the thick paths.

To determine the maximum number of trains that we can insert into a timetable, we then
need to determine the maximum number of thick paths that we can route in that polygonal
domain. However, we do not want to route arbitrary thick paths, for example, paths that
are parallel to the y-axis, would mean that our trains run with infinite speed. We are given
a maximum speed, and this limits the slope of the feasible train paths. If we denote time
along the x-axis, we of course aim for x-monotone paths (as we should not allow our trains
to go back in time, implementing none-x-monotone paths will result in definite problems).
Hence, we aim for thick (non-crossing) x-monotone paths of a limited slope.

Polishchuk (2007) presented an algorithm to compute the maximum number of (x-)
monotone thick non-crossing paths, we will describe this algorithm in Section 3.

We need to extend the algorithm for x-monotone thick paths to compute thick paths of a
limited slope, see Subsection 4.2. We will then combine this general algorithm (Subsection
4.2) and the constructed polygonal domain (Subsection 4.1) to determine the maximum
number of additional train paths in Subsection 4.3.

3 Routing a Maximum Number of Thick Paths through a Polygonal
Domain

Various authors studied maximum flows in geometric domains Hu (1969); Hu et al. (1992);
Strang (1983); Mitchell (1990); Eriksson-Bique et al. (2014), Mitchell (1990) presented
efficient algorithms for computing maximum flows in polygonal domains. Here, we are,
however, interested in routing thick paths through a domain, and not a flow, see Polishchuk
(2007). A thick path is the Minkowski sum of a “normal” (zero-thickness, or “thin”) path
and a disk (for some metric). Hence, we try to wire a maximum number of “threads” (of a
specific thickness) between given edges of the domain. The domain is usually given by a
polygon. We detail the necessary notation in Subsection 3.1, and present a polynomial-time
algorithm by Arkin et al. (2010) (see also Polishchuk (2007)) to compute the maximum
number of thick paths in Subsection 3.2.

3.1 Notation

We use the notation given by Polishchuk (2007). A polygon can either be simple, or contain
holes. Both are possible inputs: We are given a polygonal domain, Ω, defined by the outer
simple polygon, P , and a set H of h holes H1, . . . ,Hh within P . (In case of a simple
polygon, we have H = ∅.) For any set Q ⊂ R2 we let δ(Q) denote its boundary; if
Q 6= δ(Q), that is, if Q has interior points, we will assume that Q is open (i.e., ∀p ∈
δ(Q), p /∈ Q).

Two edges on δ(P ) are specifically marked: they are the source and the sink in our
domain—that is, the edges from and to which we want to route the thick paths. We denote
them by Γs and Γt. δ(P ) \ (Γs ∪ Γt) has two connected components, the “top” T, and the
“bottom” B.
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A “thin” (normal) path π is a simple curve. For r > 0 we let Cr denote the open disk
of radius r centered at the origin; we use C = C1. For a set S ⊂ R2 we let (S)r denote
the Minkowski sum S

⊕ Cr, with S
⊕ Cr = {x + y|x ∈ S, y ∈ Cr}. A thick path is the

Minkowski sum of a “thin” (normal) reference path, that is, a curve in R2, and a unit disk
(or, more general, a disk of radius r): a thick path Π with reference path π is the Minkowski
sum of π and C, that is, Π = (π)1, such that Π does not intersect P ’s exterior.

3.2 Computing the Maximum Number of Thick Paths

We now aim to find the maximum number of thick paths from Γs to Γt, where the paths
should avoid all the obstacles (holes) and be non-crossing, that is, for any wo paths Πi,Πj

we have Πi ∩ Πj = ∅. This requires the interiors of paths to be disjoint, thick paths may
share boundary.

No path can run outside Ω. We add B and T to the set of holes H, that is, H0 =
T,Hh+1 = B. Arkin et al. (2010) used the concept introduced by Mitchell (1990), and we
follow this idea: we assume that Ω has been “perforated” at Γs and Γt, and that Riemann
flaps were glued to Ω at these two perforated edges. This circumnavigates complications
from a thick path protruding through Γs and Γt.

Arkin et al. (2010) showed that the maximum number of x-monotone thick non-crossing
paths can be found in O(nh + n log n). The routing of these thick non-crossing paths, or
wires, is different to just routing the maximum number of self-overlapping thick paths (for
example, there exist domains in which only the latter exist at all).

A single self-overlapping thick path from Γs to Γt that avoids all obstacles can be found
by first building the offset of all holes by 1 (that is, building the Minkowski sum (Hi)

1∀i),
and then solving the “usual” shortest path problem in the presence of these new, offset
obstacles. The path found by this procedure yields the reference path for an optimal thick
path Liu and Arimoto (1995); Chen et al. (2001). This does not translate to the case of wires
(non-crossing thick paths).

The idea of the algorithm by Arkin, Mitchell and Polishchuk is to use an adaptation
of the so-called “grass fire” analogy from Mitchell (1990): the free space Ω \ H is grass
over which fire travels at speed 1. All the holes are highly flammable, that is, once they are
ignited, the fire moves through them with infinite speed. We start setting the bottom on fire.
The wavefront at time τ is the boundary of the burnt grass by time τ . Whenever the fire
has not hit a hole after burning for 2 time units, we can route a thick path through the burnt
grass: Arkin et al. showed that a thick path does exist when the fire has burnt for 2 time
units, and that routing a thick path at that point does not hamper the construction of any of
the other paths in a maximum set of such paths. Once a thick path has been routed, we use
the wavefront as the new bottom, and start over.

If a hole H is hit after τ < 2, Arkin et al. define e to be the segment of length τ
connecting H to B (or, to T , as they started the fire at the top, we will use the bottom in our
application and adapted the description accordingly). We split the free space along e and
around δ(H) (thus, the hole is no longer a hole), and glue a Riemann sheet to each copy of
e, where we place a circular segment of radius 2 with e as chord in each. Then we continue
the grass fire by igniting H and a belt of thickness τ around it, as the fire flips to the other
side of H and runs there.

Polishchuk and Mitchell (2007) proved a continuous version of the discrete network
Flow Decomposition Theorem, the Continuous Flow Decomposition Theorem (CFDT),
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(a) (b)

Figure 1: (a) A polygonal environment with two obstacles (gray), and the source and sink shown
in bold. (b) shows the wavefronts after 2 time units each (which induce the x-monotone paths).
Waterfalls are depicted in green.

which states that the support of a minimum-cost flow can be decomposed into a set of
thick paths; the size of the decomposition is linear in the size of the description of the
flow (Theorem 5.5. in Polishchuk (2007)). This enables the proof that the above algorithm
actually routes the maximum number of thick non- crossing paths. Its runtime is O(nh +
n log n).

Monotone Thick Paths Polishchuk also aimed for x-monotone thick paths, where a thick
path Π is x-monotone if its reference path π is x-monotone (each vertical line intersects π
in at most one point). Each x-monotone thick paths is a monotone simple polygon.

To compute the maximum number of monotone thick non-crossing paths, Polishchuk
extended the algorithm for the maximum number of thick non- crossing paths. First, we
need a monotone δ(P ). Hence, we need to add “waterfalls” (following notation from Arkin
et al. (1989)): the inner x-monotone hull of P is the largest x-monotone polygon that is
contained in P ; to compute it (see Polishchuk (2007)), we can sweep a vertical line in x
direction, for every vertex v ∈ P , connect v to the first point of P hit when going up
from v, and when going down. Whenever we hit a hole (with the wavefront of our burning
fire), we use the waterfalls to outer-monotonize the hole. See Figure 1(a) for an exemplary
polygonal domain, and Figure 1(b) for the waterfalls of the obstacles (note that P was
already monotone) and the maximum number of thick paths.

4 Inserting a Maximum Number of Trains in a Timetable

We consider the existing trains as fixed, are given a time-window for possible departure on
the start station and a time-window for possible arrival at the end station, and a maximum
speed for the trains to be inserted. Moreover, we are given a minimum temporal distance,
d, that we need to keep between consecutive inserted trains on any track.

The idea is that thick paths through the timetable reflect train paths with a certain
temporal distance to neighboring trains. That is, we still use the algorithms with the “grass
fire” analogy and route trains when the fire burnt without hitting obstacles—given by other
trains–for d time units. However, to be able to do so, we need to complete two steps:

1. The timetable is given by line segments for trains and stations, we need to make
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certain adaptations to generate our polygonal domains: stations are not obstacles and
we need to remove these lines; we need to keep a required safety distance to the
existing trains, hence, we will extend the line segments to polygonal obstacles, such
that a train path passing this new obstacles keeps the safety distance to the existing
train, et cetera. We describe the construction in Subsection 4.1.

2. The algorithm presented by Arkin et al. (2010) is for x-monotone paths. For example,
applying it to our problem, this would allow for paths parallel to the y-axis, that is,
our trains would run with infinite speed. We are given a maximum speed, and this
limits the slope of the feasible train paths. Hence, we need to extend the algorithm for
x-monotone thick paths to compute thick paths of a limited slope, see Subsection 4.2.

Finally, we can combine this general geometric algorithm with our specific polygonal
domain to compute the maximum number of trains in Subsection 4.3.

4.1 Construct Polygonal Domain from Timetable

We are given: a starting station s0 and an end station sM for the trains to be inserted; time
windows ws = [wa

s , w
e
s] for earliest arrival and latest departure of the trains at station s

for all, or some of, the stations; the train-specific running times ti,i+1 for the trains from
station i to i + 1 ∀i ∈ {0, . . . ,M − 1}, given by a maximum possible speed (defining the
maximum slope for our thick paths); the timetable of all trains in the set T : all trains that
run in [wa

0−ε1, we
M +ε2], where εi is defined such that the trains that depart before or arrive

after a possible path for new trains at any station are included; the required temporal safety
distances ds, do between any other train τ and inserted trains. For s = 0 the time window
describes all possible departure times from the origin, and for s = M the time window
describes all possible arrival times at the destination. A time window at an intermediate
station may also be given, e.g., due to staff schedule or wagon coupling/uncoupling, here
we concentrate on the case with time windows at s = 0, s = M , the other case can easily
be integrated in the construction, by using the algorithm between any consecutive time
windows, given that the intermediate station with a time window has enough side tracks.
The minimum number of train paths over all consecutive sections will determine the total
number of additional train paths to be inserted.

The following construction of the polygonal domain Ω depends on d and the cone for
the allowed slope (that is, different values will result in different polygonal domains for the
same timetable). See Figure 2 for an exemplary construction, the time-space diagram of the
considered timetable is given in Figure 2(a) (where the bold lines denote the given departure
and arrival time windows).

1. Extend the time windows by d
2 to both sides to create Γs and Γt, let Γs =

[p1, p2],Γt = [p3, p4], see Figure 2(b). The train path, our reference path π, can
depart anyway in w0 = [wa

0 , w
e
0] and arrive anyway in wM = [wa

M , w
e
M ], if we

cut our polygon at the end of edges that represent these time windows any thick
path would be restricted to that interval, hence, the train path could only depart in
w0 = [wa

0 + d/2, we
0 − d/2] and arrive in wM = [wa

M + d/2, we
M − d/2]. This

would not be the correct solution, hence, we add d
2 to both ends of the time windows

to create our source and sink edge.
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(a) (b)

(c)

(d) (e) (f)

(g)

cone:
thick path:

(h)

Figure 2: Example for the construction of the polygonal domain. The dotted lines and yellow blocks
are given just for visual help and are not present in the domain. The width of the thick paths is shown
in light gray below the diagrams. (a) Time-space diagram for the timetable we consider with given
time windows w0 = [wa

0 , w
e
0] and wM = [wa

M , w
e
M ],M = 3. (b) Extension of the time windows by

d
2

to both sides to create Γs and Γt (the bold blue and black line segments together constitute Γs and
Γt). (c) “Cut open” (intermediate) stations s1, s2, insert a vertical distance (yellow): for s1 we assume
two side tracks, for s2 no such limit exists. Moreover, the stations are shifted horizontally according
to the procedure described in Figure 3. (d) Construction of the set of potential holes Hp by inserting
the security distance (ds, do) around the existing trains (ds is shown in dark gray, do in light gray). (e)
Insert `1, `2, (f) insert `3, `4, (g) insert `5, `6. (h) The polygonal domain Ω obtained by intersecting
the potential holes from Hp with δ(P ) to construct the holes H, and P .
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Figure 3: Time-space diagram with three stations si−1, si, si+1. As we cut the diagram open in step
2 (insert the yellow vertical distance), and we have a limited slope for allowed paths, we also need
to shift consecutive stations horizontally. The green train arrives and departs si at the point in time
denoted by the gray vertical line. With the added vertical distance, the red point of departure cannot
be reached, hence, all stations above are shifted by the pink distance.

2. “Cut” the diagram “open” at intermediate stations (s1, . . . , sM−1), delete the
vertical line for the station, insert an appropriate vertical distance (“blow up”
each station) and shift the next stations according to the inserted vertical distance,
see Figure 2(c). Consider Figure 3: If we keep the stations as is, the lines would block
any trains, and no train can stay at a siding at a station (and hence switch from the
“left” of a train to the “right” of a train). To allow this, we cut each station open,
and insert a vertical distance between arrival at station s and departure from station
s (shown in yellow in Figure 3). If the station s has exactly k sidetracks, we insert
a vertical distance of k · d, if no such limit exists, we can insert a vertical distance
of min{|Γs|, |Γt|} (which would allow the maximum possible number of additional
trains to stay at a station). For the case of k sidetracks, if one or several tracks is
occupied, we insert a height d rectangles to block the according height. Just inserting
a vertical distance is not enough: We shift consecutive stations horizontally, as we
do not allow the paths to run in parallel to the y-axis, which they would have to do
when just passing through a blown-up station. So, we shift the consecutive station to
the right, such that this path can be reached with limited slope. Our new trains, one
of which is shown in green in Figure 3 has a limited velocity, which for us translates
to the limited slope of our path. The green train arrives at station si at the point in
time denoted by the gray vertical line. However, when we insert the yellow vertical
distance, the limited slope path cannot reach the same point in time at which it should
depart si, marked by a red point. Hence, we need to shift all stations above, and all
existing trains departing si by the pink distance in Figure 3.

3. Insert the security distance (ds, do) around the existing trains, that is, construct
the potential holes Hp, see Figure 2(d) (for the example, we use ds = d, and
do = d

2 and denote these in dark and light gray, respectively).

4. Construct a line segment of maximal slope from p4 down to s1, `1, and from p1
up to sM−1, `2, see Figure 2(e).

5. Construct a line segment of maximal slope from p2 up to s2, `3, and a horizontal
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Figure 4: Paths with a limited slope that are restricted to directions in the cone shown in the lower
right corner. Waterfalls are depicted in green, the wavefronts after d time units each (which induce the
C-respecting paths) are shown in light yellow. The polygonal domain is the domain from Figure 1(a).

line segment `4 from the end of `3 to the intersection with `1, see Figure 2(f).

6. Construct a line segment of maximal slope from p3 down to sn−1, `5, and a
horizontal line segment `6 from the end of `5 to the intersection with `2, see
Figure 2(g).

7. The edges Γs,Γt, `1, . . . , `6 define δ(P ). If we would have no other trains, we could
route any thick path within the constructed polygon P .

8. Intersect the potential holes fromHp with δ(P ), the part of the potential holes in
the interior of P determines the holes H, together with P they constitute Ω, the
polygonal domain, see Figure 2(h).

4.2 Thick Paths with Limited Slope

If we think of our train paths (with temporal buffer around them) as thick paths, we do not
just aim for thick paths, but for a path with a limited slope, that is, within a cone limited by
the x-axis and a line somewhere between the x- and the y-axis.

We show that we can adapt the waterfall construction from Subsection 3.2, shown in
Figure 1, to restrict our paths to the given cone, see Figure 4. Note that, while P in the
example is already x-monotone, we need to use waterfalls from the bottom to make the first
path feasible.

Let C be a cone limited by the x-axis and a line somewhere between the x- and the
y-axis. We call a thick path C-respecting if its reference path π is C-respecting, i.e., if every
line that is orthogonal to a half-line within C intersects π in at most one point. Accordingly,
we call a flow C-respecting if each of its streamlines is C-respecting.

We extend the algorithm from Polishchuk for monotone thick path to find C-respecting
paths: First we make B C-respecting: We use a different type of waterfalls than Polishchuk
(2007), Arkin et al. (2010) and Mitchell (1990). First, we sweep a horizontal line in the
y direction. For every vertex v ∈ B, we connect v to the first point of P hit when going
right from v. Additionally, we sweep a line of the maximum slope in C orthogonally to this
direction. For every vertex v ∈ B, we connect v to the first point of P hit when going left
from v. After this procedure B is C-respecting.
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Then we run the shortest path maxflow algorithm from Mitchell (1990) to fill the free
space with flowlines. As the new bottom B is C-respecting, all flowlines are also C-
respecting.

When a hole is hit by a wavefront, we make the hole outer-C-respecting. Essentially,
this means that we outer-monotonize a hole w.r.t to two directions, see Arkin et al. (1989)
for efficient algorithms for monotonization of the holes. If a waterfall during this process
hits another hole, this holes is also made outer-C-respecting. We assign the wavefront and
the boundaries of the new, outer-C-respecting holes to the new bottom B. We the make the
new bottom C-respecting and continue the grass fire. See Figure 4 for an example of this
process.

Theorem 4.1. A representation of the maximum number of C-respecting thick non-crossing
paths can be found in O(nh+ n log n) time.

4.3 Maximum Number of Trains

Now, we can compute the maximum number of trains to be inserted into a timetable by
computing the maximum number of C-respecting thick non-crossing paths in the polygonal
domain constructed in Subsection 4.1. See Figure 5 for an example for the construction of
the maximum number of C-respecting thick non-crossing paths for the polygonal domain
constructed in Figure 2, and the resulting maximum number of train paths.

Let s denote the number of stations in our domain, and t the number of existing trains.
We have O(ts) holes, and O(ts) vertices (because we have at most four vertices per train
in between two stations). This yields (using Theorem 4.1):

Corollary 4.1.1. A representation of the maximum number of train paths can be found in
O(t · s · t · s+ t · s · log(ts)) = O(t2s2) time. (Or, if we consider the number of times some
train departs from some stations, x, in O(x2).)

Paths of Different Thicknesses. Note that if we want to compute paths of different
thickness, that is, train paths with different temporal buffers, we can use the same algorithm
if the order of the trains is given. If the order of the paths is not given, Kim et al. (2012)
showed the problem to be NP-hard.

5 Conclusion

We showed how to convert the time-space diagram of a timetable into a polygonal domain
Ω, such that finding a maximum number of C-respecting thick non-crossing paths in Ω gives
the maximum number of additional trains that can be inserted into the timetable. To compute
this, we extended a known algorithm to compute the maximum number of x-monotone thick
non-crossing paths to an algorithm that can compute the maximum number of C-respecting
thick non-crossing paths in a polygonal domain. In general, this provides an application of
using the geometric representation of a timetable with a geometric algorithm. In the future,
it would of course be interesting to study what other geometric concepts could be extended
to this geometric representation, that is, which railway problems could be solved using
geometric algorithms. Moreover, future work will include the application of our algorithm
to real-world scenarios. This includes the more general problem of converting headway
based capacity measures on macro level to real blocking times.
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Figure 5: Example for the construction of thick paths with limited slopes for the polygonal domain
constructed in Figure 2. Waterfalls are shown in turquoise, the wavefront covered after d time units
each in pink. (a)-(d) Waterfalls and wavefronts/thick path construction. (e) The light pink line is the
(thin) reference path (the dotted part will not be considered, as the blown-up stations are not part of
the original timetable). (f) The obtained train paths inserted in the original timetable Figure 2(a).
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