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Abstract
This paper tackles the real-time Railway Traffic Management Problem (rtRTMP). It is the
problem of finding an optimal choice for the train schedules and routes to reduce the delays
of trains due to conflicts. We present a new formulation of the rtRTMP. This new formu-
lation is based on a previously proposed one that models railway traffic at a microscopic
level with optional activities using a Constraint Based Scheduling (CBS) approach. To ease
the modelling of optional activities, a new concept based on a tree data structure and a spe-
cific filtering algorithm was extended through the introduction of conditional time-interval
variables in Ilog CP-optimizer library. The new formulation of the rtRTMP presented in
this paper exploits the conditional time-interval variables. The formulation has been vali-
dated with experiments on a large set of instances. The experimental results demonstrate
the effectiveness of this new CBS model and show its good performance compared with the
state-of-the art RECIFE-MILP algorithm.

Keywords
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1 Introduction

The design of railway services is a complex process in which the planning of the schedule
of trains and the necessary resources can lead to conflicts at the operational level. These
conflicts are due to unforeseen perturbation events. The main consequence of these con-
flicts is the delays suffered by trains and, consequently, the increase of passenger travel
time. Delays due to conflicts between two trains are called “secondary” delays. Railway
operators try to limit secondary delays inserting time allowances in the timetable design
phase. Nevertheless, time allowance is not always sufficient to avoid conflicts or even their
propagation to other trains in a snowball (or domino) effect. To limit this propagation, the
dispatcher in charge of traffic management can change the dwell times at scheduled stops,
the train orders at stations or junctions, or the routes assignment. The problem of finding an
optimal choice for the train schedules and routes is defined as the real-time Railway Traffic
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Management Problem (rtRTMP) (Pellegrini et al., 2014). A rich literature exists on formu-
lations and methods for solving the rtRTMP, the reader is referred to Lusby et al. (2011),
Cacchiani et al. (2014), Fang et al. (2015) for recent literature surveys.

The surveys point out that integer programming (IP) and mixed-integer programming
(MIP) models are the most popular approaches along with graph models, while constraint
programming (CP) ones are more seldom used. Nevertheless, CP models have some un-
deniable merits which make them interesting for this problem. In particular, they are able
to generate feasible solutions for some hard problems in a short computation time. As an
example, to generate the cyclic timetables of the Dutch network (Kroon et al., 2009), the
method of the CADANS module to solve the Periodic Event Scheduling Problem (PESP)
formulation is based on CP techniques (Schrijver and Steenbeek, 1994). We can also men-
tion that the PESP instances of the whole inter city nertwork of Germany and the south and
east subnetworks have been solved with a SAT-solver (Großmann et al., 2012), which uses
specific CP techniques for variables with boolean domains.

For a given problem instance, CP models typically have fewer variables and constraints
than the other approaches, and therefore requires less memory for the instances formulation.
It is also worthwhile mentioning that despite the diversity of models and solutions methods,
very few publications compare and analyse their relative performances and advantages.

Since our first proposal of a CP model in (Rodriguez, 2007), new features of CP and
Constraint Based Scheduling (CBS) have been developed. CBS extends CP to get stronger
propagation algorithms for specific constraints to solve scheduling problems. One feature is
the ability to model optional activities along with powerful propagation algorithms (Vilı́m
et al., 2005). In addition, exact algorithms that use hybrid methods (i.e. CP and Linear
programming) and provide optimality proofs have been developped (Laborie and Rogerie,
2016). In this research, we aim to deeply investigate some CP and CBS modelling possibili-
ties in the light of the new features developed in the last decade and we initiate a comparison
of the achievable performance with the ones of other algorithms.

To do so, in this paper, we present a new CBS formulation of the rtRTMP that has been
validated with experiments on a large set of instances. The performances of the heuristic
resolution method for this new CBS formulation has been compared with the one of the
state-of-the art RECIFE-MILP heuristic (Pellegrini et al., 2014).

2 CBS formulation

2.1 Scheduling theory

The basic idea of the CBS model of the rtRTMP is that a train passing through a control
area is a job. According to scheduling theory, the concept of job is a set of activities linked
by a set of temporal constraints. The rtRTMP can be viewed as a joint problem of allocating
resources (the infrastructure broken down into track sections) to some activities sequences
(the movement of a train).

In a CBS formulation, temporal constraints connect the temporal variables concerning
activities (e.g., start, end or duration variables) according to principles which are specific to
each application. The resource constraints are linked to the use and sharing of the resources
by activities. Resources are divided into consumable or renewable resources, with the lat-
ter being either of limited capacity or with limited states. By sharing resources, indirect
links between the temporal activity variables are generated by capacity or state resource
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Figure 1: Train movement as a sequence of activities.

constraints.
This modelling approach for train scheduling was first proposed by Spzigel (1973) and

then formulates the train scheduling problem on a single track line as a job-shop scheduling
problem. Trains are jobs and their traveling through the single track connecting consecutive
stations are activities.

In the remaining part of this paper, the formulation of the rtRTMP by Rodriguez (2007)
is named RECIFE-CP1 and the new formulation presented in this paper is named RECIFE-
CP2. We will refer to RECIFE-CP when we consider common parts to both formulations.

2.2 Microscroscopic model of the rtRTMP

The overall approach named RECIFE-CP is based on a microscroscopic model of the
rtRTMP where train movements are controlled with a fixed block signalling system. The
first modeling principle characterizing it considers a detailed decomposition of a train jour-
ney into a sequence of activities. Each activity is an elementary movement of the train
through a track detection section (tds), as illustrated in Figure 1. A track detection sec-
tion allows the detection of the occupation of a part of the railway infrastructure by a train.
Tds’s correspond in many railway infrastructures to electric devices named “track circuits”
and are part of the block signalling system that ensure the safe movements of trains.

During normal operation, most of the time only one train should be detected by a tds
at any point in time. Hence, tds’s are modelled as unary resources. A unary resource is a
resource allowing only one activity to use it at any point in time. However, an exception
occurrs if a train set is splitted to operate two trains or, conversely, two train sets are joined
to operate one train. This exception must be taken into account for the tds’s corresponding
to station platforms where split and join operations are performed.

2.3 Temporal constraints

A second modeling principle of RECIFE-CP consists in the consideration of detailed tem-
poral constraints between activities. They allow modeling some characteristics of the block
signalling system1 such as: the length of trains, the number of signalling aspects, the watch-
ing time (e.g. running time of the sight distance), the sectional route release of the inter-
locking system.

A brief overview of the temporal constraints between activities is illustrated by a time
over distance diagram in Figure 2. Along the horizontal axis of this diagram, we have the

1Additional characteristics are ommitted , e.g., time for clearing signal or release time, to simplify the presen-
tation
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Figure 2: Head running activity and tds blocking time reservation

sequence of tds’s that the “blue” train runs through. The line is broken down into blocks that
are bounded by signals providing driving information to the train driver. A block can have
one or more tds’s depending on the configuration of the line. In the diagram, blue dashed
lines report the position of the head and the tail of the train.

In RECIFE-CP1, we consider for each tds only one activity. The temporal constraints
to maintain safe headway with a preceeding train (i.e., the blocking time theory constraints
(Hansen, 2008)) are expressed according the start and end of these activities (Rodriguez,
2007). Instead, in RECIFE-CP2 we define two nested activities for each tds. The first one
is the running of the head of the train through the tds. The sequence of the head running
activities are shown with filled blue rectangles in Figure 2. Each activity is linked by a
“start at end” constraint with the precedent activity. The second activity associated to a
tds includes the first one and is extended to contain the reservation time to comply with
the blocking time theory constraints. This second type of activities are shown with striped
rectangles in Figure 2 for the case of 3-aspect block signalling sytem. All tds’s of a block
must be reserved when the train reaches the watching distance point of the previous block.
The additional detection time due to the length of the train (called clearing time) is shown
by the extended striped rectangle. It lasts until the tail of the train is no more detected by
the tds. When there are switches within a block, separated tds’s for each switch allow the
interlocking system to release and set earlier the sequence of incompatible routes and then
safely optimise the traffic. The sectional route release of the interlocking system is modelled
in RECIFE-CP with separed activities for each tds of a block section (c.f. Figure 2).

Mascis and Pacciarelli (2002) showed that these temporal constraints have the same
properties as the ones of a job-shop scheduling problem with blocking and no-wait con-
straints of the classic scheduling theory.
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2.4 Alternative route choices

A third modeling principle of RECIFE-CP consists in considering alternative routes. There-
fore, decision variables are defined to select one from the set of alternative routes for each
train to avoid conflicts or to reduce secondary delays. The ability to model optional activities
(Vilı́m et al., 2005; Laborie and Rogerie, 2008) has substantially changed the formulation
of the model for the re-routing decisions.

In RECIFE-CP1 a train run is modelled with only one sequence of activities whatever the
chosen route. Hence, each activity does not necessarily correspond to a real train movement
through a tds as not all routes have the same tds sequence length. On the other hand, in
RECIFE-CP2 a train run is modelled with as many sequences of activities as route choices.
The sequence of head running activities length is equal to the tds sequence length of the
chosen route. It should be noted that each blocking time reservation activity covers a head
running activity, thus there is a sequence of blocking time reservation activities “enveloping”
the sequence of head running activities. To illustrate both types of model, let us first consider
the example of train that has two alternative routes r1 and r2 in Figure 3.

In RECIFE-CP1, a single sequence of six activities is defined, Figure 4 gives the dif-
ferent tds’s that can be used by each activity according to the route choices r1 and r2. If
r2 is chosen, a tds is assigned to each activity which models the time to block and to run
through it. If r1 is chosen, a “dummy” tds, named tds∗, is added in the sequence of r1 for
an additional “fictive” activity as r1 have only five tds’s. tds∗ can be added at any position
within the sequence. In the example of Figure 4, it is added in the fourth position, therefore
a4 is the additional fictive activity. In a similar way, more than one tds∗ can be added and
put at any position within the sequence. The duration of the fictive activities cannot be zero
due to the temporal constraints that link the sequence of activities: they are both equal to
the clearing time of the previous activity. Therefore, tds∗ can be viewed as a tds with zero
length. Many activities can require tds∗ as fictive elementary runs at any point in time,
then the resource tds∗ has an infinite capacity to satisfy all these capacity requirements.
Adding tds∗ with the former properties allows the definition of the same kind of resource
and temporal constraints to all the activities of the sequence.

In RECIFE-CP2, we have two sequences of activities for this example. A sequence with
five activities for r1 and a sequence with six activities for r2. To reduce the number of vari-
ables and improve the constraint propagation algorithm, the activities of two routes that have
the same tds sequence with same running times are merged. After merging the equivalent
activities, we obtain a graph of activities such that a path from the first tds activity to the last
tds activity gives a sequence of activities for r1 and a different sequence activities for r2. In
the example, the activities for the elementary run through tds1 and tds7 are merged as they
have the same characteristics for r1 and r2. Conversely, for the elementary runs through
tds2 and tds6, two activities are kept separated because the minimal running time for r1
is different from the one for r2. If r1 is chosen, the activities ar2,tds2 , ar2,tds3 , ar2,tds5 ,
ar2,tds6 are “non-executed” and all related constraints and variables are useless. Similarly
if r1 is chosen, ar1,tds2 , ar1,tds4 , ar1,tds6 are non-executed. When all route assignments are
done, we have to get only one sequence of executed activities for each train coherent with
the route choice.

To improve the constraint propagation and hence the solution method, we create in
RECIFE-CP2 a hierarchical model with new global constraints on groups of activities.
These global constraints allow the encapsulation of a group of activities into one high-level
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Figure 3: Example of tds route sequences

RECIFE-CP1 model

sequence of
activities

tds sequences
r1 (tds1, tds2, tds4, tds∗, tds6, tds7)

r2 (tds1, tds2, tds3, tds5, tds6, tds7)

RECIFE-CP2 model

tds sequence r1 (tds1, tds2, tds4, tds6, tds7)

graph of head
running activities

tds sequence r2 (tds1, tds2, tds3 tds5, tds6, tds7)

Figure 4: Sequences of activities and tds’s for the two RECIFE-CP models

activity. Derived high-level activities can be used with any temporal constraint in the same
way as low-level ones.

In the example of Figure 3, we can notice that each activity of the group G1 = {ar1tds2 ,
ar2tds2} always starts after the end of activity ar1,r2tds1

. In the same way, activity ar1,r2tds7
always

starts after the end of each of activity of the group G2 = {ar1tds6 , ar2tds6}. Let aG1 (resp. aG2 )
the high-level activity linked by a “group constraint” to the group G1 (resp. G2), then we
can state the precedence constraints ar1,r2tds1

≺ aG1
and aG2

≺ ar1,r2tds7
.

More generally, we define a precedence constraint between a pair of high-level activities
(aGprec , aGsucc) such that each high-level activity is linked by a “group constraint” to a
group of activities Gprec and Gsucc respectively: each activity of Gprec precedes an activity
of Gsucc and conversely each activity of Gsucc follows an activity of Gprec.

Two group constraints are used: span(aG, a1, . . . , an) states that activity aG, if exe-
cuted, spans over all executed activities of the set {a1, . . . , an}; alternative(aG, a1, . . . , an)
states that if activity aG is executed then exactly only one of activities {a1, . . . , an} is exe-
cuted and aG starts and ends together with this chosen one. Activity aG is non-executed if
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Figure 5: Example of tds sequences to illustrate group constraints

Figure 6: Graph of activities for the example of Figure 5

and only if none of activities {a1, . . . , an} is executed (Laborie and Rogerie, 2016).

To illustrate the definition of high-level activities and the group constraints, let us con-
sider another example, depicted in Figure 5. To simplify the presentation, we consider
that the elementary runs through a tds have the same characteristics whatever the route
considered. Therefore all the activities corresponding to runs through a common tds are
merged into one activity which is not indexed by routes. The lower part of the Figure 6
shows the graph of head running activities. Remark that contrary to the example of Fig-
ure 3 not all paths of the precedence graph correspond to a tds sequence activities for a
route. The activities of each group are shown with red dotted shapes linked with a red dot-
ted line to the corresponding group activity. The links are named with the group constraint
used. The first hierarchical activity aG1

is linked by an alternative constraint to the
set of activities {atds2 , atds3} to state the precedence constraint atds1 ≺ aG1 . The group
G2 = {atds4 ,atds5 , atds6} is an example in which the activity aG2 cannot be linked with an
alternative constraint because atds6 precedes atds5 thus the activities of G2 are linked
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with a span constraint to aG2
. This span constraint with aG2

allows to state the precedence
constraint aG1

≺ aG2
. All in all, the group activities of this example add six high-level

activities and five precedence constraints (red arrows).

2.5 Conditional time-interval variables

In many works of scheduling theory, the main decisions are assigning resources to activities
and scheduling activities. However in industrial applications, it is also necessary to consider
the choice of activities that will be executed in the final schedule, for example when there
are alternative production processes in response to an order. As in Artificial Intelligence
Planning which requires to choose a sequence of actions to achieve a goal, recent develope-
ments in scheduling consider problems involving the choice of whether to execute or not
some activities. This translates into the introduction of optional activities.

Vilı́m et al. (2005) introduce a tree data structure and a specific constraint propagation
algorithm to model optional activities. This was later extended by the introduction of con-
ditional time-interval variables in Ilog CP-optimizer library (Laborie and Rogerie, 2008).

A conditional time-interval variable (or time-interval variable for the sake of simplicity),
noted a, represents an interval of time of interest in a schedule. In many cases, as in the
problem modelled here, a time-interval variable is the time interval in which an activity is
executed.

Let ⊥ a value meaning the interval of time of interest is not present in the solution
schedule or an activity is non-executed. The domain of a time-interval variable is a subset
of {⊥} ∪ {[s, e)|s, e ∈ Z, s 6 e}. Like any other variable in a constraint satisfaction
problem, a time-interval variable is said to be fixed if its domain is reduced to a singleton.
Let a denotes a fixed time-interval variable, then a =⊥ means that the activity is non-
executed (not present in the solution schedule) or a = [s, e) means that the activity is
executed (present in the solution schedule). The values s and e are respectively the start
and end time of the activity. A time-interval variable is said to be non-executed if it is not
considered by any constraint or expression it is involved in, said in a different way, it is as if
they were deleted. An execution or presence status noted pres(a) is equal to 1 if the activity
is executed and 0 if it is non-executed.

When a is linked by a precedence constraint to another time-interval variable b and a
is non-executed, then the precedence constraint impacts b. More generally all constraint
definitions (i.e. propagation algorithms) must specify how they manage non-executed time-
interval variables.

The conditional time-interval variables are linked by two kinds of constraints : the logi-
cal constraints and the temporal constraints.

The logical constraints link the execution status of the time-interval variables. These
constraints are aggregated in a 2-SAT (2-satisfiability) constraint network. For example, the
execution status of the time-interval variables for two alternative tds’s that correspond to
two route choices will be linked by a clause with an ∨ operator.

The temporal constraints state the different temporal positions of the start and end events
of the time-interval variables, i.e., “start before start” or “start at end”. These constraints
are aggregated in a Simple Temporal Network (STN) extended to the presence statuses.
The temporal constraints are “hybrid” in the sense that they combine the logical aspect of
activities (i.e. “executed” or “non-executed” ) and the temporal aspect (i.e., it represents an
activity with a start, end and duration).
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Beside the expressiveness of the time-interval variables, the 2-SAT and STN constraint
networks ensure a strong constraint propagation and therefore an efficient search for the
optimization engine.

3 Formulation

For the formulation, we use a notation close the one introduced by Pellegrini et al. (2014)
and then as follows:
T,R,TDS set of trains, routes and track detection sections, respectively,
Rt ⊆ R set of routes that can be used by train t,
TDS r set of track detection sections composing route r,
tyt type corresponding to train t (indicating characteristics as weight,

length, engine power, etc.),
TDS t ⊆ TDS set of track detection sections that can be used by train t (TDS t =⋃

r∈Rt
TDS r),

PL ⊂ TDS set of track detection sections corresponding to platforms (if the
control area includes a station),

PLt,t′ ⊂ PL set of track detection sections corresponding to the possible depar-
ture platforms of a train t′ which uses the same rolling stock as train
t and results from the turnaround of train t,

bsr,tds block section including track detection section tds along route r,
pr,tds track detection sections preceding tds along route r,
ref r,tds reference track detection section for the blocking time reservation of

tds along route r: first track detection section of the n− 2nd block
section preceding bsr,tds , with n number of aspects characterizing
the signaling system,

rt ty,r,tds running time of track detection section tds along route r for a train
of type ty ,

ct ty,r,tds clearing time of track detection section tds along route r for a train
of type ty ,

forbs , relbs formation and release time for block section bs , respectively,
init t earliest time at which train t can be operated: either expected arrival

in the control area or expected departure from a platform within the
control area,

exit t earliest time at which train t can reach its destination given init t,
the route assigned to t in the timetable and the intermediate stops,

i(t, t′) indicator function: 1 if trains t and t′ use the same rolling stock and
t′ results from the turnaround of train t, 0 otherwise,

mst,t′ minimum separation between the arrival of a train t and the depar-
ture of another train t′ using the same rolling stock,

St, TDSt,s set of stations where train t has a scheduled stop and set of track
detection sections that can be used by t for stopping at station s,

arr t,s scheduled arrival times for train t at station s.
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3.1 Decision variables

We define following decision time-interval variables :
for all triplets of t ∈ T , r ∈ Rt and tds ∈ TDS r:
at,rtds,h : optional time-interval variable which represents the running time activity of t’s

head through tds along r,
at,rtds,b : optional time-interval variable which represents the blocking time reservation

activity of tds for t along r,
for all t ∈ T :
Darr

t , Dexit
t : delay suffered by train t at station arrivals (cumulated) and at the exit

from the control area.
Moreover, we define binary variables for the route choices:

for all pairs of train t ∈ T and route r ∈ Rt:

xt,r =

{
1 if t uses r,
0 otherwise, not;

The objective is the minimization of the total secondary delays suffered by trains at their
departure from stations and exit from the control area:

min
∑

t∈T
(Darr

t +Dexit
t ) (1)

To define the constraints, let us consider the following additional notations :
s(a), e(a), d(a), pres(a) the start, end, duration and presence status for time-interval

variable a, respectively,
first(at,rtds,h), last(at,rtds,h) boolean functions that return true if at,rtds,h is the first, respec-

tively the last, head running activity of train t through the tds
sequence for route r,

{(Gt
prec, G

t
succ)} set of pairs of groups of tds of train t Gt

prec ∈ P(TDSt)
2,

Gt
succ ∈ P(TDSt ) with the folllowing property : each head

running activity through a tds ∈ Gt
prec (resp. tds ∈ Gt

succ)
precedes (resp. follows) at least one head running activity
through a tds ∈ Gt

succ (resp. tds ∈ Gt
prec),

prec(G) boolean function that returns true if ∃(tds, tds′) ∈ G such
that the head running activities through tds and tds′ are
linked with a precedence constraint, otherwise false is re-
turned.

The constraints are :

∑

r∈Rt

xt,r = 1∀t ∈ T, (2)

if(xt,r = 1)⇒ pres(at,rtds,h) = 1∀t ∈ T, r ∈ Rt, tds ∈ TDS r, (3)

if(xt,r = 1)⇒ pres(at,rtds,b) = 1∀t ∈ T, r ∈ Rt, tds ∈ TDS r, (4)

s(at,rtds,h) > initt∀t ∈ T, r ∈ Rt, tds ∈ TDS r, (5)

2We use the notation P(S) to denote the power set of a set S .
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d(at,rtds,h) > rt ty,r,tds∀t ∈ T, r ∈ Rt, tds ∈ TDS r, (6)

s(at,rtds,h) = e(at,rpr,tds ,h
)∀t ∈ T, r ∈ Rt, tds ∈ TDS r, (7)

e(at,rtds,b) = e(at,rtds,h) + ct ty,r,tds + relbsr,tds∀t ∈ T, r ∈ Rt, tds ∈ TDS r, (8)

s(at,rtds,b) = at,rref r,tds ,h
− for bsr,ref r,tds

∀t ∈ T, r ∈ Rt, tds ∈ TDS r, (9)

alternative(atG, a
t,r1
tds1,h

, . . . , at,rntdsn,h
), G = {at,r1tds1,h

, . . . , at,rntdsn,h
}

∀t ∈ T,G ∈ (Gt
prec ∪Gt

succ) : ¬prec(G)
(10)

span(atG, a
t,r1
tds1,h

, . . . , at,rntdsn,h
), G = {at,r1tds1,h

, . . . , at,rntdsn,h
}

∀t ∈ T,G ∈ (Gt
prec ∪Gt

succ) : prec(G)
(11)

e(atG) = s(atG′)

∀t ∈ T, (G,G′) ∈ {(Gt
prec, G

t
succ)}

(12)

pres(at
′,r′

tds,h) = pres(at,rtds,h)

∀t, t′ ∈ T, r ∈ Rt, r
′ ∈ Rt′ : i(t, t

′) = 1 ∧ tds ∈ PLt,t′
(13)

s(at
′,r′

tds,h) > e(at,rtds,h) + mst,t′∀t, t′ ∈ T, r ∈ Rt, r
′ ∈ Rt′ :

i(t, t′) = 1 ∧ last(at,rtds,h) ∧ first(at
′,r′

tds,h) ∧ tds ∈ PLt,t′
(14)

s(at
′,r′

tds,b) = e(at,rtds,b)∀t, t′ ∈ T, r ∈ Rt, r
′ ∈ Rt′ :

i(t, t′) = 1 ∧ last(at,rtds,h) ∧ first(at
′,r′

tds,h) ∧ tds ∈ PLt,t′
(15)

noOverlap(at,rtds,b)∀t ∈ T, r ∈ Rt : tds ∈ TDS (16)

Dexit
t =

∑

r∈Rt,tds∈TDSr:

last(at,r
tds,h)

e(at,rtds,h)−exit t∀t ∈ T (17)

Darr
t =

∑

r∈Rt

∑

s∈St,
tds∈TDSt,s

(s(at,rtds,h)+rt ty,r,tds − dept,sxt,r)∀t ∈ T (18)

Constraints (2) ensure that exactly one route is used by each train.
Constraints (3) and (4) link the choice of a route r and the presence of the corresponding
activities, i.e., if route r is chosen all the activities must be executed (be present in the solu-
tion schedule) .
Constraints (5) state that trains cannot be operated earlier than initt.
Constraints (6) impose that the duration of the running time head activities are greater than
the running time of track detection section tds along route r for a train of type ty .
Constraints (7) impose a precedence constraints between running time head activities of a
train.
For constraints (8), the blocking time reservation lasts after the tail of the train clears tds,
which corresponds to the start of the head running plus a clearing time for the type of train
ty plus the block section release time.
Constraints (9) state that the blocking time reservation activity is synchronized with the time
the head of the train is detected by the reference track detection section ref r,tds minus the
route formation time.
Constraints (10) and (11) link a group of activities G = {at,r1tds1,h

, . . . , at,rntdsn,h
} into a high-
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level activity atG according to the presence of precedence constraints between low-level
activities. High-level activities are linked to low-level activities by span or alternative
constraints.
Constraints (12) state the precedence constraints between high-level activities.
Constraints (13) ensure local coherence: trains using the same rolling stock must use the
same platform where they turnaround.
Constraints (14) ensure that a minimum separation time must separate the arrival and de-
parture of trains using the same rolling stock for a turnaround.
Constraints (15) ensure the tds where the turnaround takes place is utilized for the whole
time between t′’s arrival and t’s departure. Thus, the first activity blocking time reservation
of t′ starts when the last activity blocking time reservation of t ends.
Constraints (16) ensure that the blocking time activities of a shared tds do not overlap.
Constaints (17) and (18) state that the values of the delays Dexit

t and Darr
t of a train t is

the difference between the actual and the scheduled times at the exit of the infrastructure,
respectively at the arrival at stop stations.

4 Solution method

The solution method uses the algorithm of Vilı́m et al. (2015) for scheduling problems
which combines a Failure-Directed Search (FDS) with Self-Adapting Large Neighborhood
Search (SA-LNS).

First, SA-LNS (Laborie and Godard, 2007) aims to find a good quality solution quickly.
It is an iterative improvement method with following steps:

1. Start with an existing solution (heuristic or CP search)

2. Select a Large Neighborhood (LN) and a Completion Strategy (CS)

3. Apply LN to relax part of the solution and fix the rest

4. Apply CS to improve solution using a limited search tree

5. If time limit is reached then stop else go to 2

SA-LNS uses the following components to improve the search:

• Constraint propagation algorithms for the logical and the precedence constraints net-
works (Vilı́m et al., 2005),

• Enhanced selection of LN and CS: machine learning techniques to portfolios of LN
and CS that quickly converge on good solutions (Laborie and Godard, 2007),

• Temporal Linear Relaxation: use CPLEX’s LP solver for a solution to a relaxed ver-
sion of the problem to guide heuristics (Laborie and Rogerie, 2016).

FDS is activated when the search space seems to be small enough, and SA-LNS has
difficulties improving the current solution. It builds a complete search tree and it drives the
search into conflicts in order to prove that the current branch is infeasible. It uses a restart
scheme with nogoods.
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Junction Line Terminal stations
# 1 # 2 # 3 # 4
Gonesse MLJ-Rouen Lille StLazare

Infrastructure

Length (km) 15 80 7 4.5
Routes 37 187 2409 84
Blocks 79 157 829 197
Track Circuits 89 236 299 212
Stations 0 13 1 4
Platforms 0 33 17 51

Timetable
Trains/Day 336 237 589 1212
Routes alternatives/Train 5-13 1-24 1-71 1-9
Turnarounds 0 6 298 606

Table 1: Case-studies characteristics

5 Experiments

5.1 Case-studies

In the experimental analysis, we tested our formulation on perturbations of real instances
representing four French control areas with different characteristics: a junction with mixed
traffic, a line with intermediate stops, and two passenger terminal stations with high den-
sity traffic. Namely, they cover the Gonesse junction north of Paris (# 1), the line between
Mante-La-Jolie and Rouen-Rive-Droite (# 2) and the Lille-Flandres (# 3) and Paris–Saint-
Lazare (# 4) stations. Their characteristics are detailed in Table 1 and their layout in Ap-
pendix A. Notes that the second line of Table 1 gives the values of parameter R and the
heighth line gives the bounds of the number of routes per train (bounds of |Rt|).

5.2 Experiments settings

The experiments involve RECIFE-CP2 (named CP) and RECIFE-MILP (named MILP) in
order to compare their performances in various cases.
Both algorithms are configured to perform a two-step approach:

• in the first step, a maximum of 10 seconds CPU time is allocated for “fixed-route”
solution, which means that the route fixed in the timetable is used for each train,

• in the second step, the best solution of the previous step is used for initializing the
“all-route” resolution, which means that all possible routes are used.

A limit of 180s CPU time is imposed for the resolution of these two steps on an Intel(R)
Xeon(R) CPU E5-2643 v4 @ 3.40GHz, 24 cores, 128go RAM.
For each control area, we used two methods to increase incrementally instance difficulties:

• Horizon size variation,

• Perturbation rate variation.
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5.3 Horizon size variation

For each of the 4 control areas, we generates 30 disruption scenarios: starting from the
original timetable, 20% of randomly selected trains are delayed with a value in the interval
between 5 and 15 minutes.

To cover a variety of instances difficulty, for each disruption scenario, we have selected
12 morning time intervals starting at 8 am with duration from 10 minutes to 120 minutes
with 10 minute step.

In this experimental set, 1440 problem instances are solved by each algorithm.

5.4 Perturbation rate variation

For each of the 4 control areas, one hour horizon scenario starting at 8 am is considered.
Starting from the original timetable, the rate of randomly selected delayed trains for assign-
ing the 5 to 15 minutes delay varies from 10% to 60% . The percentage is increased at a
10% step. We generates 30 scenarios for each of the perturbation percentage value.

In this experimental set, 720 problem instances are solved by each algorithm.

6 Results

On Figures 7 and 8, we introduce three types of graphs in order to explain the results,
separately for each case study and as a function of horizon size and perturbation rate:

(a) in the first column, the curves indicate the mean frequency at which an algorithm re-
turns the best solution among those found by both CP and MILP. The green squares
(respectively the red circles) presents the mean performance of CP (respectively MILP).
For example, in Figure 7, for case study #1, CP and MILP provide 100 % of the best
solutions for 10 minutes horizon instance set: they always return solutions with the
same values. In the same figure, CP, respectively MILP, provides 70 %, respectively
53 %, of the best solutions for the 120 minutes horizon instance set.

(b) in the second column, reports the boxplots show the distribution of the differences of
objective values between the two algorithms. Observing these distributions, we can
better undestand the performance results of (a) curves. For example, in Figure 7, for
case study #2, in the curve (a), CP, respectively MILP, provides 80 %, respectively
100 %, of the best solutions for the 70 minutes horizon instance set. However, for
this instance set, (b) boxplots indicate that the objective values of both algorithms are
very close as the median of the differences is close to zero. The y axis reports the
difference between the best objective value given by MILP minus the one given by
CP. This means that the points above the origin are those for which CP provides better
solutions than MILP,

(c) in the third column, the curves quantify the frequency at which an algorithm is able
to prove the optimality of the returned solution during the allowed CPU time.

6.1 Horizon size variation

Figure 7 allows a comparison of the solution quality given by CP and MILP on each case
study for the horizon size variation. The x-axis represents the horizon size in minutes, which
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Figure 7: Experimental results for horizon size variation. In column 1 and 3, red circles for
MILP, green squares for CP. In column 2, difference MILP minus CP.
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is incrementally increased for this set of experiments.
These results show some general tendencies, common for all case studies:

• MILP has a better ability to prove optimality than CP, it outperforms CP for almost
all horizon size problems according to this indicator, shown in column 3.. The # 1, #
2 # 3, # 4 case study instances are of increasing difficulty from this point of view: the
success frequency of MILP decreases sharply after 90, 40, 30 and 20 minutes horizon
size respectively,

• Regarding the best objective values indicator shown in column 1, CP and MILP have
generally the same performance for small horizon sizes. As the horizon size increases,
CP outperforms MILP starting from the following sizes:

– around 110 minutes in # 1,

– around 100 minutes in # 2,

– before 10 minutes in # 3, note that after 90 minutes, the frequency of MILP
increase,

– around 40 minutes in # 4, note that after 60 minutes, the frequency of MILP
increase and another crossing that reverses the performances order of the algo-
rithms occurs around 70 min.

Further analysis shows that, for difficult instances of case studies (#3 and #4), MILP
is not able to provide a solution during the all-routes solution phase. Therefore, the so-
lution initially found during the fixed-route search phase is returned. Conversely, in these
instances, CP provides poor solutions during the fixed-route search phase and is able to
improve them during the all-routes solution phase. However, the improvement is not large
enough to overtake the quality of the MILP ones.

6.2 Perturbation rate variation

The results reported in Figure 8 consider another difficulty parameter, namely the rate of
perturbations with a fixed one hour size horizon. The x-axis of the plotted curves is the
percentage of delayed trains: six configurations of perturbed scenarios are reported with
10 % to 60 % of delayed trains.

The results show different trends according to the case studies:

• For the instances of case studies # 1 and # 2, the best objective curves are close
and does not show an important variation as for the case of horizon size variation.
Regarding the optimality proof frequencies, MILP have reaches values above 80% ,
whatever the level of perturbations. This is not the case for CP whose frequencies
decrease sharply after the first increase of perturbation level.

• For the instances of case studies # 3 and # 4, the one hour horizon scenarios con-
sidered are difficult to solve to the optimum, whatever the level of perturbation. The
optimality proof rate of MILP for the instances of case study # 3 decreases under 10
% after 30 % of delayed trains, and the optimality is never proven for instances of
case study # 4.

Regarding the best objective indicator, CP either keeps good frequencies all along the
level of perturbation, either improves over MILP above 20 % rate of delayed trains.
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Figure 8: Experimental results for perturbation rate variation. In column 1 and 3, red circles
for MILP, green squares for CP. In column 2, difference MILP minus CP.
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The boxplots confirm the trend: the more we have perturbations, the more CP gives
better objective values than MILP.

7 Conclusion

In this paper, we propose a new formulation of a Constraint Programming for the real-time
Railway Traffic Management Problem. It is based on the concept of Time-interval variables
which simplifies the formulation of optional activities. The solution method integrates Con-
straint Programming and Mathematical Programming techniques. Preliminary results show
good performance of the proposed approach compared with the state-of-the art RECIFE-
MILP algorithm.

The model is fed by two types of information: static information and dynamic infor-
mation. Static information includes tds characteristics, block limits, number of aspects,
platforms positions, train set parameters . . . Dynamic information includes scheduled ar-
rival and departure of trains in stations, running and clearing times of tds for trains and train
delays. All information was provided by French railways and information on delays are
supposed to be provided by a traffic state prediction module a few minutes before the start
of the scenario. The prediction module can be based on simulation, statistics or an artificial
intelligence learning technique.

This research is an addtional contribution toward the applicability and relevance of the
approache of a microscopic model to tackle real-time control of traffic perturbations. Pre-
viously, the output of the European project ON-TIME Quaglietta et al. (2016) provided
a proof-of-concept of a framework where the RECIFE-MILP algorithm were used in a
closed-loop with a simulation environment and tested on different networks of European
infrastructure managers.

As perspectives of this research, we will exploit the use of state resources to better
manage opposite direction conflicts, hence to improve algorithm performance. In addition,
an in-depth analysis of weaknesses and strengths of RECIFE-MILP and RECIFE-CP should
allow the proposal of a hybrid solution approach.
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