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Abstract
In railway scheduling, a nominal traffic schedule is established well in advance for the main
resources: train-paths, rolling stock and crew. However, it has to be adapted each time
a change in the input data occurs. In this paper, we focus on the costs in the adaptation
phase. We introduce the concept of adaptive nominal solution which minimizes adaptation
costs with respect to a given set of potential changes. We illustrate this framework with
the rolling stock scheduling problem with scenarios corresponding to increasing demand
in terms of rolling stock units. We define adaptation costs for a rolling stock schedule and
propose two MILPs. The first one adapts, at minimal cost, an existing rolling stock schedule
with respect to a given scenario. The second MILP considers a set of given scenarios and
computes an adaptive nominal rolling stock schedule together with an adapted solution to
each scenario, again while minimizing adaptation costs. We illustrate our models with
computational experiments on realistic SNCF instances.
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1 Introduction

Railway scheduling is generally divided into different problems, which are solved sequen-
tially. The line planning problem computes train lines based on the existing rail network,
defining a list of stations and an associated frequency for each line. The timetabling prob-
lem defines a set of trains with departure and arrival times for each station of the considered
lines, with respect to the frequency, providing a complete feasible timetable. The rolling
stock scheduling problem defines compositions for each train, assigning physical rolling
stock units to the given input timetable. The crew scheduling problem operates in a similar
manner, assigning crew members (e.g. train drivers) to each train and each station with
respect to specific legal constraints. Finally, the platforming problem is solved for each sta-
tion, assigning a track to each train stopping by or passing through it during the planning
horizon.

Ideally, we would like to solve most of these problems together in an integrated manner
a few days before the date of operations; in practice, these problems are solved sequen-
tially several years or months in advance for historical, legal and practical reasons. Thus,
a complete nominal schedule is built some months in advance for each railway resource:
train-paths, rolling stock and crew.
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The nominal instance

The nominal rolling stock schedule R̃
A scenario s

The adapted rolling stock schedule
Rs

Reactive
algorithm

(a) The Rolling Stock Adaptation Problem

The nominal instance

A set of k scenarios S = {s1, ...sk}

The nominal rolling stock schedule R̃
The adapted rolling stock schedules
Rs1 , ... , Rsk

Proactive
algorithm

(b) The Adaptive Rolling Stock Scheduling Problem

Figure 1: The two different methods described in this paper

However, changes may occur afterwards, either prior or during operations. They may
either concern the availability of resources, such as infrastructure blockades or rolling stock
failures, or some new requirements, such as additional trains to schedule or some changes
in their required compositions.

Whenever changes occur, the schedules must be updated. We focus on midterm changes
during the adaptation phase, which corresponds to rescheduling of resources a few weeks or
months before operational time. A schedule can be adapted many times if changes during
the adaptation phase are frequent. We describe the changes with the notion of scenario,
corresponding to a modification in the input data. An adapted schedule with regards to this
scenario is then computed, in order to satisfy the changes. Our main objective is to reduce
the total cost of the adaptation phase.

The rest of this paper is organized as follows. Section 2 is dedicated to a literature re-
view on the main issues discussed in this paper, with a focus on rolling stock resource. We
describe in Section 3 the adaptation costs in general railway scheduling, and propose a new
approach to assessing adaptation costs for the rolling stock resource. Besides considering
the performance of the new schedule, we also consider structural adaptation costs to assess
the differences between the nominal and the adapted schedules. We introduce in Section 4
the Rolling Stock Adaptation Problem with respect to a given scenario in the case of demand
changes. This is the reactive problem appearing during the adaptation phase where a given
scenario is revealed (see Figure 1a). A MILP formulation based on the literature review is
proposed. In Section 5, we define the notion of adaptive nominal solution with regards to
a set of scenarios. A nominal solution in the conception phase is said to be adaptive with
respect to a set of scenarios if its adaptation cost to each of these scenarios is low. The
corresponding proactive problem (see Figure 1b) appears in the conception phase where in-
formation is available about the probability of occurrence of certain possible scenarios. The
Adaptive Rolling Stock Scheduling Problem is introduced and a MILP is proposed to solve
it. We present in Section 6 computational experiments with realistic instances of SNCF, the
major French train operating company. Finally, Section 7 concludes and highlights future
perspectives.
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2 Literature Review

Models for Rolling Stock Scheduling
There exist a lot of models to schedule rolling stock, with different assumptions.

Fioole et al. (2006) introduce the Rolling Stock Circulation Problem, defining a MILP
with variables affecting a unique composition to each trip. They define a dedicated event
graph and obtain a flow formulation. Each trip has one or two successor trips defined as
input, which is a strong assumption because it restricts the possibilities.

Cacchiani et al. (2010) introduce the Train Unit Assignment Problem. They define a
graph where each node corresponds to a trip. The authors solve a flow problem with a path
formulation, and propose some improvements for the linear relaxation by describing the
convex hull of a set of constraints. In this paper, we use a graph similar to this one in order
to formulate the MILPs. However, we use a flow formulation, which is more relevant to
model adaptation costs.

Giacco et al (2014) introduce a rolling stock scheduling problem integrating the main-
tenance requirements and the empty moves possibility. They define a dedicated graph and
propose a MILP to compute a set of hamiltonian paths respecting the maintenance con-
straints.

Borndörfer et al. (2016) introduce a novel approach to schedule railway vehicle rota-
tions. They define a generic hypergraph where each train has a departure and an arrival
node for each possible composition. Oriented hyperarcs are defined between two set of
nodes of two different trains, and indicate the possibility to cover these trains with the same
rolling stock units. A MILP formulation is proposed with additional maintenance require-
ments. It is solved with a dedicated algorithm using column generation and rapid branching
heuristics.

Adaptation Costs of a Rolling Stock Schedule
Many papers address real-time disruption management of rolling stock. These rescheduling
models generally use models deriving from those presented above for rolling stock schedul-
ing. They mostly model the rolling stock adaptation costs by assessing the new performance
of the adapted rolling stock schedule and try to minimize the new shunting operations.

Nielsen et al. (2012) propose a generic framework for rolling stock rescheduling with
rolling horizon approach based on the Rolling Stock Circulation Problem of Fioole et al.
(2006). They assume major disruptions (infrastructure blockades) and try to reschedule the
rolling stock with a dedicated real-time heuristic. Their main objective is to minimize the
cancelled trips because of a lack of rolling stock. More recently, Wagenaar et al. (2017)
propose a MILP formulation based on Fioole’s model for the Rolling Stock Rescheduling
Problem, while considering dead-head trips (empty moves) possibility and dynamic passen-
ger demands. It allows respectively to decrease the number of cancelled trips and to capture
the fact that a cancelled trip will have influence on the passenger demand for the next trip
with the same origin and destination. Lusby et al. (2017) propose an original approach to
solve a rescheduling problem with a dedicated Branch&Price framework. It is based on a
path formulation with specific constraints representing operational requirements.

Some papers deal with changing circumstances in the short-term planning stage. Ben-
Khedher et al. (1998) describe the Capacity Adjustment Problem: considering the number
of reservations for each train and some forecasts of a yield management system, they try
to adjust the compositions of the scheduled trains in order to maximize the expected profit.
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The model computes a feasible schedule with these new compositions, but adaptation costs
are not explicitly taken into account.

Lingaya et al. (2002) propose a MILP model to schedule locomotives and carriages a
few days before operations. They consider a changing (static) demand in terms of cars
and specific operational constraints in their problem such as maintenance requirements or
minimum connection times. They try to modify the current rolling stock schedule to fit these
demand changes and operational constraints. They do not explicitly focus on structural
adaptation costs, but they consider it implicitly: they only accept to make changes in the
car cycles, and do not modify the locomotive schedules. Thus, changes are limited, and
structural adaptation costs are restricted.

Budai et al. (2010) address the rolling stock rebalancing problem. They suppose a
lack of units at certain stations at the end-of-day and a surplus at other stations, and try
to reduce these off-balances by rolling stock rescheduling. Adaptation costs correspond to
the classical nominal performance costs and the changes in shunting plans.

More recently, Borndörfer et al. (2017) introduce the re-optimization of rolling stock
rotation while considering a reference rotation. They use a hypergraph and define a tem-
plate as a set of trips in the reference rotation such that they are covered by the same rolling
stock units. They try to keep these templates unchanged in the adapted rotations. The
objective function introduces the notion of deviation from the reference rotation. Our defi-
nition of adaptation costs is quite similar but is based on a simpler model with an adaptive
version that is easier to solve. The authors use different scenarios corresponding to infras-
tructure constructions where timetables slightly change, which implies to reschedule the
rolling stock rotations. In this paper, we focus on demand changes and do not suppose any
modification of the timetables.

Adjustable Robustness and Recoverable Robustness
The concept of adaptive solutions is closely related to the concepts of adjustable and recov-
erable robustness.

The concept of adjustable optimization was originally introduced by Ben-Tal et al.
(2004). Following the context of bi-level stochastic optimization, they consider uncertainty
set for some parameters, and solve a mathematical program with two types of variables:
• here-and-now variables x must be fixed at the early stage of the optimization process;
• wait-and-see variables y must be fixed once a scenario is revealed.

The problem is to assign values to the x variables such there exists y values with (x, y)
feasible for any realization of the uncertainty set. For this purpose, the authors introduce
variables y(ξ) for each ξ in the uncertainty set, and show that this problem is untractable in
the general case.

If we consider wait-and-see variables y corresponding to a recourse of the here-and-
now variables x, we obtain the concept of recoverable robustness, originally introduced by
Liebchen et al. (2009). The authors consider an uncertainty set with finite support such
that it corresponds to a finite set of scenarios S. They describe the recourse variables y
as a recourse algorithm A. If we consider the generic mathematical program minimizing
f(x) subject to a feasibility set for vector x, the associated recoverable robust problem aims
to find a solution x and an algorithm A such that y = A(x, s) is feasible for each scenario
s ∈ S. AlgorithmAmust be chosen in a class of algorithms and can have a certain recovery
cost to be added to the objective function. Cicerone et al. (2009) describe such class for A.
For example, A has to run within a maximal time limit. Our model presented Section 5 is a
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recoverable robust model where algorithm A is a MILP, with recourse costs corresponding
to the differencies between solutions x and y.

Recoverable robustness was originally applied in railway scheduling. Recoverable ro-
bust timetabling was introduced by Liebchen et al. (2009) and Cicerone et al. (2009), where
the uncertainty concerns minimal required time between several pairs of arrival and de-
parture times of a train. The authors compute nominal recoverable robust schedules and
propose different classes of algorithms to reschedule trains. These authors also consider
applications to platforming and shunting yard problems.

A recoverable robust rolling stock scheduling problem is addressed by Cacchiani et al.
(2012) with uncertainties corresponding to infrastructure blockade. The authors propose a
large MILP based of the model of Fioole et al. (2006). They duplicate the nominal vari-
ables for each scenario, and minimize both the performance of the nominal solution and
the maximal recovery costs among the scenarios. The recovery costs for a given scenario
are described with the cancelled trips, the off-balanced units at end-of-days, and the new
shunting operations. The authors use Benders decomposition to compute optimal solutions
for the relaxed problem, and develop a dedicated Benders heuristic to compute integer so-
lutions to the recoverable robust problem. Our model is based on a different formulation
and does not suppose operational disruptions, focusing on demand changes in the adapta-
tion phase. Moreover, our adaptation costs allow to maximize the similarities between the
nominal and adapted rolling stock schedules. Another difference is that we minimize the
expected adaptation cost instead of the worse one among the scenarios.

3 The Adaptation Costs

In this section, we describe in more details the adaptation phase in railway scheduling. We
identify different performance criteria to evaluate the quality of an adaptation, and propose
a simple way to evaluate the performance of a rolling stock schedule adaptation.

3.1 Adaptation Costs in General Railway Scheduling

We identify three types of “costs” in the adaptation phase for any railway resource.
1. Performance cost

An adapted schedule has to be assessed with regards to the classical performance
criteria. For example, if there is a change in the timetable, the adapted timetable
must maximize the passenger satisfaction. However, finding an optimal solution is
not crucial in a rescheduling process: we generally look for an acceptable schedule.
These performance costs only depend on the adapted schedule, and we can compute
them without any information about the nominal one.

2. Direct costs during the adaptation phase
During the adaptation phase, each request of change may impact several departments.
They have to look for a new acceptable schedule compatible with the new require-
ments. It can be difficult and impact different resources, and it implies communica-
tion between the departments, which can be interpreted as a direct adaptation cost.

3. Indirect operational costs
Each schedule is generally repeated with a specific horizon (an hour, a day or a week).
An adaptation concerns some periods where the schedules are quite different. Thus,
an adaptation can have operational consequences. The more different the adapted
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schedule from the nominal one, the higher the risk of human error at operational
time, which would lead to bad performance, or an increased risks of incidents. We
can interpret this as an indirect operational cost of an adaptation.

Let us observe that reducing the first type of cost can lead to an increasing of the two
others. Indeed, if we want to have a good performance cost for the adapted schedule, we
have to consider the rescheduling of a higher number of resources. It implies a lot of com-
munication between the departments and is responsible for a higher direct cost during the
adaptation phase. Moreover, the adapted schedule will probably be very different from the
nominal one, implying a higher risk of operational errors at operational time and an increase
in the indirect operational costs.

Furthermore, if we force the adapted schedule to be similar to the nominal one, we find
that it reduces indirect operational costs, but it has also a strong positive impact on the direct
cost during the adaptation phase. Indeed, if we want the adapted schedule to be similar to the
nominal one, we have to look for an adapted schedule in a smaller solution search space, and
it reduces both the number of implied departments and the communication between them.
Thus, this notion of similarity between the schedules is the relevant criterion to maximize,
or in other words, minimizing the changes between the schedules captures both the direct
costs in the adaptation phase and the indirect operational costs. Consequently, we define
two complementary types of cost in the adaptation phase:
• the performance adaptation costs to evaluate the quality of the adapted schedule with

regards to classical nominal performance criteria;
• the structural adaptation costs to evaluate the similarities and the differences between

the adapted schedule and the nominal one.

3.2 Adaptation of a Rolling Stock Schedule

Performance Adaptation Costs
As previously mentioned, the non-optimality of an adapted rolling stock schedule for the
classical nominal performance criteria is a first type of adaptation costs. Concerning the
rolling stock resource, one generally has to minimize the following criteria:
• The total lack of rolling stock units: it is sometimes impossible to propose a schedule

with a sufficient number of units for all trains, and we try to minimize the number of
missing units;

• The number of engaged rolling stock units;
• The number of kilometers of dead-head trips for each unit, which correspond to trips

between two stations without any passenger (empty moves);
• The number of kilometers of over-compositions for each unit, which correspond to

trips with higher number of units than required.

Structural Adaptation Costs
In the literature structural adaptation costs are generally defined as the modifications in the
shunting plans: if two additional trains have to be combined in the adapted shunting plan, it
has indeed a certain operational cost.

We introduce a new definition of structural adaptation costs via the notion of successions
between trains. Suppose there is a rolling stock unit of type m that covers Train 1, and then
covers Train 2 without any train between 1 and 2. In particular, it implies that the arrival
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Station g

Station g′

Station g′′

1 2

1′ 2′

(a) Nominal schedule

Station g

Station g′

Station g′′

1 2

1′ 2′

(b) Adapted schedule

Figure 2: An example of changes in the successors. In the nominal schedule Figure 2a,
Train 2 is the successor of Train 1 and Train 2’ is the successor of Train 1’. In the adapted
schedule Figure 2b, Train 2 is now the successor of Train 1’ and Train 2’ the successor of
Train 1.

station of Train 1 is the same as the departure station of Train 2. Then, Train 2 is a successor
of Train 1 for type m, and the succession 1-2 exists for this unit type.

More precisely, for each couple of trains i and j and for each unit type m, we define the
binary value

Succession(i, j,m) =





1 if at least one unit of type m is affected to
i and j without any train between i and j

0 otherwise
. (1)

Let us consider the example of Figure 2 with four trains: 1, 2, 1’ and 2’. Suppose
Train 2 is the unique successor of Train 1 and Train 2’ is the unique successor of Train 1’
in the nominal schedule, as shown in Figure 2a. If Train 2 is not anymore a successor of
Train 1 in the adapted schedule but a successor of Train 1’, as shown in Figure 2b, it will
change the structure of the rolling stock schedule, and it implies several adaptations.

First, it may change the track-occupation diagram for Trains 1, 2, 1’ and/or Train 2’.
Trains 1 and 2’ (resp. 1’ and 2) must now be scheduled on the same track if there is not
enough time to make a shunting movement. Thus, it impacts the passenger information in
stations, and is a potential source of bad operational performance. Moreover, it could be dif-
ficult to find a new track-occupation diagram with associated paths compatible with the new
successions, as shown in Figure 3. It implies more rescheduling effort and is responsible for
an increase in adaptation costs.

Second, it possibly modifies the driver schedules in the crew scheduling problem, be-
cause they strongly depend on the successors in the rolling stock schedule. If Train 2 is the
successor of Train 1, it is convenient that the same driver is assigned to these two trains.
Otherwise, the solution is less robust. Indeed, the example of Figure 4 shows that having
different successions for the rolling stock and the drivers can lead to a higher number of
impacted trains in case of a primary delay, and thus an increase in indirect operational adap-
tation costs. It is possible to avoid this by changing the drivers schedule, but it increases
direct adaptation costs because the rescheduling effort is more important.

And third, a change in successors may involve changes in the shunting plan, as shown
Figure 5. Indeed, if a train has n ≥ 1 different successors (resp. predecessors), it is neces-
sary to make n− 1 combinations (resp. splits) after it arrives (resp. before it leaves). Thus,
a change in the successors can impact the number of splits and combinations.
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Platform

Track A
1’ arrives
2’ leaves

Track B
1 arrives
2 leaves

2
1

1’
2’

12

1’2’

(a) Nominal track-occupation diagram with as-
sociated conflict-free paths

Platform

Track A
1’ arrives
2 leaves

Track B
1 arrives
2’ leaves

2
1

1’
2’

12’

1’2

2’
2 •Conflict

(b) A simple adapted track-occupation diagram
with a path-conflict

Figure 3: An example of conflict in the track-occupation diagram in station g′ after the
change in the successors in Figure 2. Trains 1 and 2’ (resp. Trains 1’ and 2) have to be
scheduled on the same track in the adapted case 3b. If Trains 2 and 2’ leave g′ at the same
time, it is impossible to adapt the track-occupation diagram, because the paths for Trains 2
and 2’ are incompatible.

Legend
Rolling Stock schedule

Drivers schedule

Station g

Station g′

Station g′′

1 2

1′ 2′

1

1′

(a) Nominal rolling stock schedule
and drivers schedule

Station g

Station g′

Station g′′

1 2

1′ 2′

1

1′

(b) Adapted rolling stock schedule
and unchanged drivers schedule

Figure 4: An example of 4 trains with different successions for the rolling stock and the
drivers schedules. In Figure 4b, a primary delay of Train 1 may imply a delay propagation
to Train 2 because the two trains have the same rolling stock unit. In the adapted sched-
ule Figure 4b, a primary delay of Train 1 may imply both a delay propagation to Train 2
(because they have the same driver) and to Train 2’(because they have the same unit). It
is possible to avoid this by changing the driver schedule, which is a source of additional
adaptation costs.

Following these observations, we define structural adaptation costs to move from one
rolling stock schedule to another as the differences in the successions between them:

StructuralAdaptationCosts =
∑∑∑

(i,j,m)

∣∣Successionadapted(i, j,m)− Successionnominal(i, j,m)
∣∣ (2)
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Station g

Station g′

Station g′′

1 2

1′ 2′

(a) Nominal schedule

Station g

Station g′

Station g′′

1 2

1′ 2′

(b) An adapted schedule

Figure 5: In the nominal schedule Figure 5a, there is not any split or combination. In the
adapted schedule Figure 5b, there is a split after the arrival of Train 1’ and a combination
before the departure of Train 2. These new shunting operations correspond to the new
succession 1’-2.

4 The Rolling Stock Adaptation Problem with respect to a Given Sce-
nario

In this section, we introduce the Rolling Stock Adaptation Problem more precisely, with a
detailed description in the case of demand changes, and propose a mathematical formulation
to solve it with a MILP.

4.1 Problem Description

In this paper, we focus on one of the main causes for which the rolling stock schedules
have to be adapted: the demand changes. Whether it is passenger or freight transportation,
there is always an uncertainty about the minimal demand of the trains. Thus, the number of
required units for a given train can change during the adaptation phase.

In passenger railway transportation, a forecasted passenger demand is computed in the
conception phase for each train. However, if the number of reserved seats is closely moni-
tored, it is possible to update this forecast some weeks or months before the departure of the
train and adjust the number of units depending on the evolution of the forecast. In freight
railway transportation, the quantity of goods that need to be transported varies slightly from
week to week, because of a more or less favourable economical context. Thus, freight
transportation is also concerned by the need to adapt the rolling stock schedules because of
demand changes.

Let us introduce some notations. The input of the Rolling Stock Adaptation Problem
with respect to a given scenario is:
• a set G of stations where combinations and splits may be allowed: for each station g ∈
G, we define the parameter CS(g) ∈ {0; 1} with value 1 if splits and combinations
are allowed in station g, and 0 otherwise;

• a setM of unit types and, for eachm ∈M, Km ∈ N is the number of available units
of type m;

• a set of trains T train. A train i ∈ T train is defined by:
– fixed departure and arrival times;
– fixed departure and arrival stations in G;
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– D̃i > 0, the nominal demand in terms of rolling stock units, i.e. the desired
number of rolling stock units for the train i;

– Dmax
i ≥ D̃i, the maximal number of rolling stock units for the train i;

– Mi, the list of unit types compatible with train i.
• a time horizon H expressed in days, numbered 0, 1, . . . H − 1;
• a nominal rolling stock schedule R̃;
• a scenario s, corresponding to a set of updated demands Ds

i ∈ JD̃i ;Dmax
i K in terms

of rolling stock units for each train i.
The Rolling Stock Adaptation Problem is described in Figure 1a. Considering an input

instance as described above, find a feasible rolling stock schedule Rs which minimizes
both the performance and structural adaptation costs defined in Section 3. A rolling stock
schedule is said to be feasible if it respects some particular constraints we will describe
below.

4.2 Mathematical Formulation

The Rolling Stock Adaptation Problem with respect to a given scenario is formulated as
a multicommodity flow problem in a graph G similar to the one used by Cacchiani et al.
(2010), where each unit type m has a corresponding flow in the multiflow.

Description of the Graph
We define G = (T,A) as a directed graph in which the nodes correspond to tasks that can
be performed (see example in Figure 6), which is directly inspired by the graph of Löbel
(1998) in vehicle scheduling. The tasks can be decomposed as follows:

T = T train ∪ T depots ∪ {α, ω} , (3)

where:
• a node i ∈ T train corresponds to a train, as defined above;
• a node i ∈ T depot corresponds to a depot task, which is characterized by a station and

two consecutive days. Performing this task means to put some units into the depot
during the corresponding night. Consequently, if there is a physical depot at a given
station g, we define H + 1 nodes for it, with labels g0, g1 . . . gH . They respectively
correspond to the depot in station g in the morning of day 0, during the night between
day 0 and day 1, . . . and finally in the evening of day H − 1;

• node α is the source node, and node ω is the sink node.

The introduction of the set T depot allows to reduce the number of arcs in the graph and
thus the complexity of our formulation.

The arc set A contains several types of arcs:
• arcs Asucc are the most important arcs, corresponding to successions between two

trains as defined in Section 3.2.
• arcs Adead between two depot nodes g0 and g′0 for two different stations g and g′,

corresponding to dead-head trips between g and g′ during the night. Note that it is
impossible to make dead-head trips during a day, or equivalently between two trains
operating on the same day;

• arcs between the source node α and a depot node g0 for a given station g. The value
of these arcs in the flow of unit type m corresponds to the number of units of type m
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Station g

Station g′

Station g′′

Beginning day 1 Night between
days 1 and 2

End day 2

1 2

1′ 2′

3 4

3′ 4′

(a) The input timetable

(b) Subgraph with arcs from Asucc and Adead

(c) Subgraph with the other arcs, except the fictive sink-source arc (ω, α)

Figure 6: Graph construction for an example with 8 trains and 3 stations over a scheduling
horizon of 2 days

starting from the associated depot at the beginning of the horizon. We also define arcs
between a depot node gH for a given station g and the sink node ω, corresponding to
units at this physical depot at the end of the horizon;
• arcs between a depot node gd for a given station g and a train leaving g on day d. The

flow value for type m corresponds to the number of units starting with this train on
day d. We also define arcs between a train leaving a station g on day d and the depot
node gd+1, corresponding to units going into the depot after covering the train;
• passive arcs between two depot nodes of the same station g with consecutive days

(gd,gd+1). They correspond to units staying at the depot during a whole day, without
covering any train during this day;

• a fictive arc (ω, α), which is not represented in Figure 6.

In the rest of this paper, we extend the previous definition ofMi initially defined for all
i ∈ T train to all the nodes i ∈ T , and denote byMi the set of unit types compatible with
the node i ∈ T . Moreover, for each arc (i, j) ∈ A, we define the setMij asMi ∩Mj .
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Variables Defining a Rolling Stock Schedule
A rolling stock schedule R can be described with the only integer decision variables xijm
representing flow value of type m for each arc (i, j) ∈ A, and for each unit type m ∈Mij .

We introduce the following auxiliary variables in order to get a linear formulation:
• li which counts the lack of units for train i if its demand is Di. More formally,

li = max (0, Di −
∑

j∈T
(i,j)∈A

∑

m∈M
xijm); (4)

• δijm, a binary variable equal to 1 if and only if xijm ≥ 1, and 0 otherwise
• δ′ij , a binary variable equal to 1 if and only if at least one variable δijm is equal to 1

for all the unit types m.
Let us remark that from variables (x, l, δ, δ′) one can complete the description of a

rolling stock schedule through path decomposition. However, this partial description is
sufficient to describe performance and structural adaptation costs.

Basic Feasibility for a Rolling Stock Schedule
A rolling stock schedule R = (x, l, δ, δ′) is said to be basic-feasible for the demand vector
D if it is feasible with respect to the common strong constraints defined by the following
set of inequalities FD:

∑

i∈T
(i,h)∈A:m∈Mi

xihm =
∑

j∈T
(h,j)∈A:m∈Mj

xhjm h ∈ T, m ∈Mh (5)

∑

j∈T
(i,j)∈A

∑

m∈Mij

xijm ≥ Di − li i ∈ T train (6)

∑

j∈T
(i,j)∈A

∑

m∈Mij

xijm ≤ Dmax
i i ∈ T train (7)

xωαm ≤ Km m ∈M (8)
∑

j∈T
(i,j)∈A

δ′ij ≤ 1 i ∈ T train|CS(Garr(i)) = 0 (9)

∑

j∈T
(j,i)∈A

δ′ji ≤ 1 i ∈ T train|CS(Gdep(i)) = 0 (10)

xijm ≥ δijm (i, j) ∈ Asucc, m ∈Mij (11)

xijm ≤M · δijm (i, j) ∈ Asucc, m ∈Mij (12)
∑

m∈Mij

δijm ≥ δ′ij (i, j) ∈ Asucc (13)

∑

m∈Mij

δijm ≤M · δ′ij (i, j) ∈ Asucc (14)

xijm ∈ N (i, j) ∈ A, m ∈Mij (15)

δijm ∈ {0; 1} (i, j) ∈ Asucc, m ∈Mij (16)

δ′ij ∈ {0; 1} (i, j) ∈ Asucc (17)

li ∈ R+ i ∈ T train (18)
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Constraints (5) are conservative flow constraints for all nodes and all unit types. Con-
straints (6) force each train to be covered by a sufficient number of rolling stock units or
ensure that the variable li has the correct value. Constraints (7) prevent a train from being
covered by a number of units exceeding the capacity of the train. Constraints (8) check that
the number of available rolling stock units for each unit type is respected. If CS(g) = 0,
Constraints (9) ensure that there is no split at station g. For each train i arriving at g, i
must have a unique successor train, with the possibility to have successors of different unit
types. For example, a train i can be covered by two units of different unit types but will
have a unique successor j, covered by the same units. Constraints (10) ensure that there
is no combination after a train j leaves a station g with CS(g) = 0 in a similar manner.
Constraints (11) – (14) ensure the correct value for the variables δijm and δ′ij , where the
big-M constant M is arbitrary large. Finally, constraints (15) – (18) restrict the definition
set of the variables.

Nominal Feasibility
The input nominal rolling stock schedule R̃ can be described with the variables (x̃, l̃, δ̃, δ̃′)
and is basic-feasible for the set FD̃. Moreover, a nominal feasible schedule has to respect
the nominal cyclicity constraints:

x̃αg0m = x̃gHωm g ∈ G, m ∈M, (19)

to ensure that such a schedule can be followed or preceded by itself. Thus, if there is x̃gHωm
units of a type m at depot node gH in the schedule, the same number of units is required at
depot node g0.

Feasibility of an Adapted Schedule for Scenario s
A feasible solution for the Rolling Stock Adaptation Problem with respect to a given sce-
nario s is a basic-feasible rolling stock schedule Rs = (xs, ls, δs, δ′s) for the demand Ds

such that:

• Rs ∈ FDs

• Rs respects the following constraints:

lsi ≤ max(0, Ds
i − (D̃i − l̃i)) i ∈ T train (20)

xsαg0m ≥ x̃gHωm g ∈ G, m ∈M (21)

xsgHωm ≥ x̃αg0m g ∈ G, m ∈M (22)

Constraints (20) deal with the quality of service. It bounds the variables lsi : if 2 units
were affected to a train i in the nominal rolling stock schedule and if the demand is 3 in
scenario s, the variable lsi cannot exceed the value 1=3-2, because it is unreasonable to
reduce the number of units when the demand increases.

Constraints (21) and (22) are side constraints very similar to cyclicity, which are less
restrictive. In practice, an adapted schedule is never followed or preceded by itself, because
such adaptations are usually limited in time. Thus, it must be preceded or followed by
a nominal schedule. If there is x̃gHωm units of a type m at a depot gH in the nominal
schedule R̃, there must be at least as many units at depot g0 in the adapted schedule. This
is the purpose of Constraints (21). Constraints (22) are similar and deal with the number of
rolling stock units at the end of the horizon in the adapted schedule.
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Objective Function
The objective of the Rolling Stock Adaptation Problem represents adaptation costs to move
from R̃ to the adapted rolling stock schedule Rs. As seen in Section 3, it corresponds to
the performance and structural adaptation costs.

Performance adaptation costs of a basic-feasible rolling stock scheduleR = (x, l, δ, δ′)
can be described with the following expressions:

• the total lack of rolling stock:

Lack(R) ,
∑

i∈T train

li; (23)

• the total number of engaged units:

Units(R) ,
∑

m∈M
xωαm; (24)

• the number of dead-head trips:

Dead(R) ,


 ∑

(i,j)∈Adead

∑

m∈M
xijm


 ; (25)

• the number of over-compositions:

Over(R) ,
∑

i∈T train






∑

j∈T
(i,j)∈A

∑

m∈Mij

xijm


−Di


 . (26)

Let us remark that the objectives Dead(R) and Over(R) in Equations (25) and (26)
can be easily weighted with the travelled distance in kilometers.

Structural adaptation costs to move from a feasible nominal rolling stock R̃ to a feasible
adapted rolling stock scheduleRs are defined with the following equation:

Struct(R̃,Rs) ,
∑∑

(i,j)∈Asucc

i,j∈Ttrain

(
(1− 2δ̃ijm) · δsijm + δ̃ijm

)
, (27)

where the expression inside the sum corresponds to a rewriting of
∣∣∣δsijm − δ̃ijm

∣∣∣, which is
true because δ are binary variables.

The objective of the Rolling Stock Adaptation Problem can be written as a sum of the
different previous objectives with relevant coefficients (β,Γ,∆, ζ, η):

min
Rs

β · Lack(Rs) + Γ · Units(Rs) + ∆ ·Dead(Rs)

+ ζ ·Over(Rs) + η · Struct(R̃,Rs). (28)
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5 The Adaptive Rolling Stock Problem with respect to a Given Set of
Scenarios

5.1 Problem Description

As described in Figure 1b, the Adaptive Rolling Stock Scheduling Problem is a recoverable
robust problem for rolling stock scheduling.

A solution is said to be adaptive for a set of scenarios S if its expected adaptation costs
are low for that set of scenarios. In the following, we suppose without lost of generality that
the scenarios have the same probability of occurrence.

5.2 Mathematical Formulation

Our mathematical formulation for the Adaptive Rolling Stock Scheduling Problem is based
on that of the Rolling Stock Adaptation Problem in Section 4. Following Cacchiani et al.
(2012) in a different setting, we duplicate the nominal variables (x̃, l̃, δ̃, δ̃′) for every sce-
nario s ∈ S and obtain a MILP with a higher dimension.

Feasible Solution
A feasible solution for the adaptive Rolling Stock Scheduling Problem is composed of:

• a nominal feasible rolling stock schedule R̃ = (x̃, l̃, δ̃, δ̃′) ∈ FD̃ that satisfies Equa-
tions (19);

• a collection of adapted feasible schedules (Rs)s∈S = (xs, ls, δs, δ′s)s∈S , where each
Rs is in FDs and satisfies Constraints (20) – (22) for scenario s.

Thus, the corresponding MILP contains variables (x̃, l̃, δ̃, δ̃′) for the nominal rolling
stock schedule R̃ and variables (Rs)s∈S = (xs, ls, δs, δ′s)s∈S for each adapted schedule
Rs to scenario s.

Objective Function
The main objective of the adaptive Rolling Stock Scheduling Problem is to minimize ex-
pected adaptation costs of the adapted solution Rs, which corresponds to the following
objective function:

min
R̃,Rs s∈S

β ·
∑

s∈S
Lack(Rs) + Γ ·

∑

s∈S
Units(Rs) + ∆ ·

∑

s∈S
Dead(Rs)

+ ζ ·
∑

s∈S
Over(Rs) + η ·

∑

s∈S
Struct(R̃,Rs), (29)

where the objective Struct is now quadratic and can be rewritten with a simple linearization.

Controlling the Nominal Performance
We have to ensure a good performance for the rolling stock schedule R̃. For this purpose,
one may minimize the following additional objective, which corresponds to the performance
criterion for the nominal rolling stock schedule:

min β̃ · Lack(R̃) + Γ̃ · Units(R̃) + ∆̃ ·Dead(R̃) + ζ̃ ·Over(R̃). (30)
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In practice, we have no information about the rate of time periodsH without any demand
changes. We just know these demand changes are quite rare. In other words, although
we know the occurrence probability of a scenario s, we have no information about the
probability p̃ of a fictive scenario without any demand changes. Thus, we prefer to introduce
the nominal performance criteria in the constraints of our MILP:

Lack(R̃) ≤ (1 + εLack) · Lack∗ (31)

Units(R̃) ≤ (1 + εUnits) · Units∗ (32)

Dead(R̃) ≤ (1 + εDead) ·Dead∗ (33)

Over(R̃) ≤ (1 + εOver) ·Over∗. (34)

Parameters Lack∗, Units∗, Dead∗ and Over∗ correspond to the optimal associated
performance cost for a (non adaptive) nominal schedule without any scenario. They can be
computed by solving a MILP, looking for a schedule R̃ ∈ FD̃ respecting Constraints (19)
while minimizing the objective (30).

Parameters εLack, εUnits, εDead and εOver are non-negative and control the optimality
gap between the adaptive nominal rolling stock R̃ and an optimal non adaptive rolling stock
schedule. The larger ε is, the more the adaptive nominal schedule is allowed to degrade
the performance criteria. However, a larger value for any ε implies a larger solution space
for the rolling stock schedules R̃ and (Rs)s∈S , and thus to reduce adaptation costs of the
objective function (29).

6 Computational Experiments

Description of the instances
We illustrate the relevance and efficiency of the adaptive model by computational experi-
ments on two realistic nominal instances inspired by SNCF instances.

Table 1: Characteristics of the two instances
Instance 1 Instance 2

Context Passengers Freight
Horizon 7 days 7 days
Trains 819 339
Stations 9 29
Number of unit types 1 3
Total number of units 23 35
Nominal demands 1 between 1 and 2
Maximal demands 2 between 1 and 4
Split/combination restrictions no yes

Table 1 shows the main characteristics of the two instances. The first one is derived
from a set of regional trains, while the second one represents a pool of freight trains. The
first instance has a lot of trains but has a simple structure, with few stations, only one unit
type, homogeneous demands and no split and combinations restrictions. On the other hand,
the second instance has less trains but is more complex, with a lot of stations and three unit
types.

We complete each of these 2 instances with a set of 3 arbitrarily generated scenarios
S = {s1, s2, s3} with equal probabilities. Each s ∈ S has an updated demandDs

i = D̃i+1
for about 10% of randomly chosen trains i. The demand of the other trains is unchanged.
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Parameters (β,Γ,∆, ζ, η) for the objective function
From an industrial point of view, the lack of rolling stock units is the main objective to
minimize. The second one is the number of engaged units, the third one concerns the dead-
head trips and the fourth one the over-compositions. Thus, we can use our formulation with
β � Γ� ∆� η, which corresponds to a lexicographical order.

With regard to structural adaptation costs, we assume that they are more important
than those of over-compositions, but less important than those of dead-head trips. Indeed,
scheduling additional dead-head trips often has an impact on drivers schedules. Thus, it
is not reasonable to schedule unnecessary dead-head trips to reduce the adaptation costs.
Moreover, a surplus in over-compositions has no impact on drivers schedules and it seems
reasonable to increase them to reduce structural adaptation costs.

The MILP formulation with these 5 parameters is not suitable for an optimization tool
as typical values of the objective function are too large which may lead to floating errors.
Thus, the MILPs are solved for the first objective, after which a constraint is added so that
this objective does not exceed its obtained value, and the second criterion is minimized. We
proceed in the same way for each of the objectives. This process also enables to understand
which of the objectives are the most difficult.

Comparison with the traditional approach
We want to compare the efficiency of the traditional approach used at SNCF and an adaptive
process based on the problem that we described in Section 5. The traditional approach is
simulated using the two following steps:

1. We solve the MILP (5)–(19) with objective (30) and we obtain the nominal rolling
stock schedule R̃tr = (x̃tr, l̃tr, δ̃tr, δ̃′tr) ∈ FD̃;

2. For each scenario s ∈ S, we solve a Rolling Stock Adaptation Problem and obtain
mean adaptation costs to move from R̃tr to R̃tr,s.

We test three different adaptive processes with different values for parameters εLack,
εUnits, εDead and εOver. We set εLack and εUnits to 0 to prevent any deterioration of these
objectives and test three different values ε ∈ {0, 0.1, 0.25} for εDead = εOver.

In the following, we use the notation

Lack(RS) , 1

card(S)
·
∑

s∈S
Lack(Rs) (35)

to represent the mean expected adaptation costs for objective (23) with regard to S, and
we proceed in the same way for the other objectives. The objectives Dead and Over are
expressed in kilometers.

First instance
The performance of the nominal rolling stock schedule is summarized in Table 2. As ex-
pected, when ε = 0, the nominal adaptive solution has exactly the same (optimal) perfor-
mance as the solution in the traditional approach. The same applies when ε = 0.1, but when
ε = 0.25 the numbers of dead-head trips kilometers and over-compositions kilometers are
no more optimal.

This nominal near-optimality allows to reduce the mean expected adaptation costs as
represented in Table 3, especially when it comes to the structural adaptation costs, passing
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Table 2: Performance costs of R̃ for Instance 1
Lack(R̃) Units(R̃) Dead(R̃) Over(R̃)

Traditional approach 0 22 228 678
Adaptive process with:

ε = 0 0 22 228 678
ε = 0.1 0 22 228 678
ε = 0.25 0 22 265 833

Table 3: Mean adaptation costs to move from R̃ to an adapted schedule for Instance 1
Lack(RS) Units(RS) Dead(RS) Struct(R̃,RS) Over(RS)

Traditional approach 1.6 23 69.3 30 1985.6
Adaptive process with:

ε = 0 1.6 23 69.3 5.3 4490.3
ε = 0.1 1.6 23 69.3 5.3 4490.3
ε = 0.25 1.6 23 69.3 4.6 5021

from 30 in the traditional approach to about 5 in the adaptive processes, even if ε = 0. This
means that the nominal solution of the traditional approach has a very high mean expected
structural adaptation costs which can be reduced without any deterioration of the perfor-
mances. However, the mean expected number of kilometers for the over-compositions is
increased by a factor of 2.5 which represents a big price to pay in term of energy consump-
tion.

All the MILPs are solved to optimality within a few minutes, except those concerning the
objectives Struct and Over during the adaptive processes. After an hour of computations,
MILPs with objective Struct have an optimality gap between 7% (for ε = 0) and 44% (for
ε = 0.25), while those for Over have an optimality gap of about 60%. These large gaps
could explain why the objective Over has very high values compared to the optimal values
of the traditional approach.

Second instance
Table 4 summarizes the performance costs of the nominal rolling stock schedule. The ob-
jectives Dead and Over are not optimal for ε = 0.1 or ε = 0.25. They have significantly
higher values than in Instance 1 as there are significantly more stations which makes it
more difficult to respect the cyclicity constraints without doing dead-head trips and over-
compositions. The objective Over is better with ε = 0.25 than with ε = 0.1, since the
objective Dead is optimized before and has a larger value with ε = 0.25.

Table 5 summarizes the mean expected adaptation costs for the 3 scenarios. Resolution
times are similar to those of Instance 1, and the optimality gaps after an hour of computa-

Table 4: Performance costs of R̃ for Instance 2
Lack(R̃) Units(R̃) Dead(R̃) Over(R̃)

Traditional approach 0 34 1529 15226
Adaptive process with:

ε = 0 0 34 1529 15226
ε = 0.1 0 34 1653 16616
ε = 0.25 0 34 1851 16383
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Table 5: Mean adaptation costs to move from R̃ to an adapted schedule for Instance 2
Lack(RS) Units(RS) Dead(RS) Struct(R̃,RS) Over(RS)

Traditional approach 1.3 35 2359.3 25.6 11913.3
Adaptive process with:

ε = 0 1.3 35 2067.6 11 11843.3
ε = 0.1 1.3 35 2017 5.3 11791
ε = 0.25 1.3 35 2017 5 12036

tion reach about 70% for the objective Struct and 10% for Over in the adaptive processes.
However, except the objective Over for ε = 0.25 with a small increase of about 100 kilo-
meters, all the objectives have a better value in the adaptive processes. These results can
be explained by the fact that Instance 2 is much more complicated than Instance 1. As a
consequence, any demand change is hard to satisfy if it has not been properly anticipated
which is precisely the main interest of an adaptive process.

7 Conclusion and Perspectives

In this paper, we developed a new way to model the adaptation costs in rolling stock railway
scheduling. We introduced the concept of adaptive solution to reduce the adaptation costs of
a rolling stock schedule. Two MILPs were proposed, the first one is solved in the adaptation
phase while the second one is designed to compute adaptive solution in the conception
phase. Our first results on realistic instances are promising. They show that the adaptation
costs can be significantly reduced with an adaptive process while keeping good performance
criteria for the nominal solution, especially for instances with complex structures.

In future research, we want to address this issue with a more sophisticated multi-objective
optimization. We want to find adaptive solutions with balanced structural and performance
costs. In addition, we want to improve the resolution of the MILPs with decomposition
techniques.
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