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Abstract 

MTR (Mass Transit Railway) is contracted by Stockholm Public Transport (SLL) to operate 

the Stockholm commuter trains. The number of passengers is increasing and traffic is 

expected to increase by 50 % in ten years. This will therefore require further investigations 

to enable investments in additional infrastructure and rolling stock.  

A generic model has been developed in order to screen future timetable situations and 

find resource efficient timetable alternatives and investments needed to enable the expected 

traffic increase.  

Short turning traffic lines is one way to reach high efficiency for a commuter system. 

However, the sequence of short turning and full route lines will affect congestion heavily.  

Consequently different permutations of a termination pattern results in different passenger 

distributions on the traffic lines. The core idea of the timetabling model is to combine 

congestion efficient permutations for the four branches into network timetables.  

A number of important features of the timetable are influenced by the choice of 

termination patterns, permutations of these patterns, the time rotation of the entire timetable 

and the requisite of symmetry. The latter is required in order to enable long distance traffic 

on shared line sections. Examples of important features are: the termination times, the 

number of train set needed, the need for additional termination tracks and the recovery and 

punctuality that can be reached.   

A brief description of the commuter rail network, the demand and the prerequisites for 

the timetable are presented and discussed. Similarly the main ideas of the generic model are 

outlined. The method is elucidated by an illustration of a future traffic increase by 25 %.  
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1 Introduction 

From December 2016 MTR, Mass Transit Railway, is contracted by Stockholm Public 

Transport (SLL) to operate the commuter trains in Stockholm. The political ambition is to 

increase peak hour traffic by 50 % until 2030 (Tillväxt- och regionplaneförvaltningen 

(2017)). The railway network, owned and administrated by the National Transport 

Administration (Trafikverket), is however already heavily utilized, resulting into lower 

punctuality and higher passenger congestion on the services than desirable. 

Feasibility studies addressing infrastructure measures are initiated. MTR, as key 

operator holds extensive knowledge and insights within the operational sector, is actively 

engaged and involved in these studies. One of MTR´s contributions is a timetable 
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generating model that screens the possibilities to find resource efficient timetable solutions 

for the future. 

This screening approach is useful since parts of the network are shared with long 

distance and regional traffic, which requires a coordination where the timetable for the 

commuter trains cannot be optimized independently.  

 

1.1 Network and demand 

The network is presented in Figure 1 and consists of four branches. All line sections are 

double or quadruple lines, except for the southern part of Nynäs line (Hemfosa – 

Nynäshamn) that is still single line with crossing loops. The commuter traffic is well 

separated from other rail traffic with quadruple lines on most sections shared by long 

distance and regional traffic. Two important exceptions are the end section of Mälar line 

(Kallhäll – Bålsta) and East Coast line (Upplands Väsby – Märsta/Uppsala) where a 

thorough timetable coordination is required to manage the traffic mix. 

The mid-section consists of the new commuter train tunnel, City line, launched in 2017, 

that separates commuter traffic through central Stockholm. This line however, has a limited 

capacity (Lindfeldt (2017)).  

 

 
 

Figure 1 Network. Colour scheme for the branches shown in the small figure. The Gnesta 

line (48) is not included in the study.  

City line

Bålsta
Märsta

Uppsala

NynäshamnSödertälje
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All services on the branches operate City line and the capacity limitation in this line is a 

major condition for the timetable generation. The color scheme used for the branches in 

Figure 1 will be used throughout the article in order to increase readability.   

The distribution of demand is shown in Figure 2. The average load per timetable cycle 

(30 minutes) in morning peak period, 07:20 – 08:50, is shown for all four branches. A train 

set has 750 seats and the diagram gives a first idea of the traffic needed to meet the demand. 

One important indication is that the demand corresponds to a system where not all traffic 

lines are full route lines. Hence, a major planning task will be to find feasible solutions for 

short turning lines.  

 

 

Figure 2 Demand during the morning peak.  

 

1.2 Definitions 

In the following section definitions for five concepts that will be frequently used throughout 

the article are discussed.   

Branch:  the infrastructure stretch from the separation junction to the farthest located 

termination station in the actual direction. The East Coast line is divided into two sub 

branches in Upplands Väsby, but modelled and referred to as one.   

City line: is the common line section under Stockholm city. It imposes dependency 

between traffic lines to the four branches. This calls for a timetable coordination that is a 

natural starting point in timetable generation.   

Timetable period: refers to a period, in minutes, with which the periodic timetable is 

repeated. The current timetable period is 30 minutes and during peak hour traffic the 

timetable cycle is repeated six times.  

Line: a traffic relation between two termination stations that is operated by a service 

once per timetable period. Frequency of service between the two stations may be increased 

by adding more lines and coordinating them in time to get the desired frequency.  

Termination pattern: a vector that is defined for each branch and shows the number 

of terminating lines per station, for example Södertälje C: 4 and Tumba: 2 implying that 4 

out of 6 lines terminate in Södertälje C and 2 out of 6 lines in Tumba. The termination 

pattern gives rise to permutations of line sequences that are of great importance for 

congestion management.   
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1.3 Important timetable features  

Four operational features of importance have been identified: punctuality, congestion 

management, timetable symmetry and resource efficiency (high utilisation of vehicles, 

infrastructure and train staff). It is worth noting that political priorities may also be 

implemented regarding the distribution of traffic resources in the network, stopping 

patterns, network extension etc.   

Punctuality is highly commended by commuters. A high punctuality can be ensured 

through a thorough scheduling using balanced and optimized time supplements, buffer 

times and termination times. Consequently the termination times are in focus in this article, 

since they also impact the need for additional train sets and infrastructure.  

Congestion management might be the most important factor in scheduling of commuter 

traffic since it has a direct impact on demand, overall customer satisfaction, resource 

efficiency and even punctuality. Congestion management is closely interconnected to short 

turning patterns and these two factors form the core when it comes to scheduling of 

commuter traffic in urban areas.  

Symmetry is widely used throughout Europe as a way of achieving coordination 

between rail services (Liebchen (2004)). In a symmetric timetable the inbound direction is 

a reflection of the outbound as shown in Figure 3. Each traffic line is represented by a colour 

and line style (dashed for services on Nynäs line and solid for services on Western Main 

line). It can be seen that each line crosses itself on the so called symmetry times, i.e. minute 

0, 15, 30, etc.  

Since almost all other regular rail traffic in Sweden, such as long distance and regional 

traffic, is scheduled symmetrically it becomes a technical requirement also for the 

Stockholm commuter traffic in order to manage coordination of traffic on shared line 

sections. However, the symmetry has at least two major drawbacks for the commuter traffic:  

 

Figure 3 Timetable example showing symmetry. Southern half of the network shown.  
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 The termination pattern for in- and outbound directions cannot be chosen 

independently. This have rather severe, limiting effects on congestion management 

since the demand is different for the in- and outbound direction.   

 The termination time, which is important for punctuality as well as resource 

efficiency, can be chosen less freely since a specific departure time requires a 

specific arrival time if the timetable is to be symmetric.  

This  implies that the coordination with other traffic impose a less efficient commuter 

operation as regards number of train sets and termination tracks (infrastructure) as well as 

congestion management and punctuality. This is previously shown by (Liebchen (2004)). 

However, this efficiency decrease might be less costly than a complete separation through 

additional quadruple line sections.  

2 Finding feasible timetable solutions 

A feasible timetable might be defined as a timetable that, for a given demand distribution 

in the network, has a low spread in passengers’ loads on the traffic lines, allows enough 

termination times to reach a reasonable level of punctuality and efficient use of train sets 

and termination tracks. 

As the evaluated system is limited and closed, a generic approach might be applied to 

find these timetable solutions. The method can be described by the following steps:  

1. Establish a slot system with traffic lines in City line, the common link, to define 

available capacity.   

2. Distribute available lines on the four branches, using demand data in Figure 2, 

and construct alternative branch patterns. These are referred to as line 

sequences. See Table 1 for two examples.  

3. Create a nominal timetable between end stations of the branches according to 

the defined sequence. This step includes definition of stopping patterns, 

location of time supplements, buffer times etc.  

4. Define termination patterns that are expected to be of interest. Existing as well 

as investigated termination stations might be listed for evaluation. Table 2 

shows two alternative termination patterns for the two sequences.  

5. For each branch:  

a. Permute the termination pattern in order to cover all permutations.  

b. For each permutation: adjust the nominal timetable by cutting off 

short turning lines according to the permuted termination patterns and 

distribute demand on the lines. Ortúzar and Willumsen (2011) share 

useful ideas of demand modelling.  

c. Compare load distribution on the traffic lines and select permutations 

with even passengers’ load. One example, based on pattern 1 in 

sequence 1, is shown in Figure 4.  

6. For each branch and selected permutation: calculate termination times and 

track usage in each termination station. Perform this for all rotation steps within 

a timetable cycle. The principle of rotation is shown in Figure 5. For a timetable 

period of 30 minutes the rotation gives 30 timetable variants for each 

permutation. Data for termination times and track usage are compiled for each 

permutation and rotation step.  

7. Create complete network timetables through combinations of permutations on 

the four branches including rotation variants. The number of train sets needed, 
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additional termination tracks needed, expected termination punctuality and 

data for passenger load distribution is compiled for each timetable variant.  

  

The number of timetables found depends heavily on the complexity in termination patterns 

and whether only symmetric solutions are accepted. For symmetric solutions a chosen 

permutation for a branch in one traffic direction defines the permutation also in the opposing 

direction for the same branch, since they are each other’s reflections.  

The following tables and figures illustrate the method used. Table 1 shows the slot 

system on City line with one train path every three minutes. This is followed by two 

alternative line sequences that divide traffic on the northern branches slightly differently.  

Table 2 shows two examples of termination patterns for sequence 1 and two for sequence 

2. The pattern on Western Main line  is simple, with either 4 or 3 out of six lines terminating 

in Södertälje (Söc), resulting in 15 and 20 permutations respectively for this branch.  

Figure 4 shows the unique permutations for the two southern branches. The passengers’ 

load on each line is affected by the line extension and the time distance to the preceding 

service, shown in the text box in upper left corner. Please note the difference between the 

most balanced permutation (leftmost) and the least balanced one (rightmost). A train set has 

750 seats and a traffic line might be regarded as overloaded from a comfort perspective 

when the load reaches 1 000 passengers.   

Figure 5 shows the principle of symmetry, meaning that a clockwise time shift in 

departure time imposes an equal counterclockwise shift in arrival time.  

Table 1: Line sequences, two examples. ML: Mälar line, NL: Nynäs line,  

ECL: East Coast line, WML: Western Main line. * Indicates express lines.  

Line 1 2 3 4 5 6 7 8 9 10 

Dep time           

S bound 00 03 06 09 12 15 18 21 24 27 

Seq 1           

North  ML ECL ML ML ECL ML ECL ECL ML ECL 

South NL* WML WML NL WML NL* WML WML NL WML 

Seq 2           

North  ML ECL ECL ML ECL ML ECL ECL ML ECL 

South NL* WML WML NL WML NL* WML WML NL WML 

 

Table 2: Termination patterns. Two examples per sequence, 10 lines per timetable period.  

  Southern lines Northern lines 

  Western 

Main line  

Nynäs line Mälar line East Coast line 

Seq Pattern Söc Tu Nyh Vhe Hnd Khä Kän Bål Upv Mr U 

1 1 4 2 1 2 1 2 1 2 1 2 2 

1 2 3 3 1 3 - 2 2 1 - 3 2 

2 1 4 2 1 2 1 2 0 2 2 2 2 

2 2 3 3 1 3 - 1 2 1 1 3 2 

 

 

The procedure discussed above might be applied to screen for feasible timetable solutions. 

One example is presented in the following section. The procedure has several similarities 

with the TVEM model that is described in Lindfeldt (2010). Major differences are that 

demand, congestion, terminations and vehicle rotations are included in the current model.   
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Figure 4 Line permutations and corresponding passenger distributions on lines. Sorted 

according to ascending standard deviation in passengers’ load. Only unique permutations 

are shown for space reasons.  

 

 

Figure 5 Principle of rotation with symmetry.  

 

3 Application supported by an example 

The first pattern in sequence 1 in Table 1 is assumed to meet demand efficiently and serves 

as a good example. This pattern corresponds to a 25% traffic increase, compared to the 

operated traffic in 2019. As most permutations have a high variance in passengers’ load, 

(Figure 4) it is feasible to choose only permutations with a load standard deviation lower 

than 200 passengers. After that selection, only 36 000 timetables remain. All of these 

constitutes a reasonable passengers’ load on all traffic lines. 

Despite the fact that the total operated time and distance is exactly the same in all these 

timetables, termination times differ. This results in different number of train sets needed. 

Moreover, the existing number of termination tracks might not be sufficient, implying a 

lack of infrastructure in some locations. Distributions for these resources are shown in 

Figure 6. The diagrams indicate that a minimum number of 62 train sets is needed for the 

traffic and at least two additional termination tracks have to be constructed.  

Termination punctuality values can be estimated through combination of scheduled 

termination time, minimum (technical) termination time and historic delay distributions for 
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arrivals at the different stations.  

 

 

Figure 6 Distribution for number of train sets and additional termination tracks needed.  

 

Figure 7 Estimated termination punctuality for different number of train sets and additional 

termination tracks. Blue: mean for all 20 terminations and red: termination with lowest 

punctuality.  

 

Figure 7 shows punctuality statistics. All 36 000 timetables are represented by a blue and a 

red marker, indicating mean termination punctuality and lowest termination punctuality 

respectively. 

As the diagram indicates, additional train sets and/or termination tracks provide a better 

recovery and higher punctuality through longer termination times. This is a rather unprecise 

way to estimate punctuality, as the real arrival delays are influenced by the timetable 

solution and other factors such as recovery in the other end of the line. However, it may be 

a suitable way to sort out timetable solutions with a distribution of termination time that 

will ensure an acceptable level of termination recovery.  

Further analysis calls for additional filtration, since it is unreasonable to invest in 

extensive number of train sets and/or termination tracks. Therefore, in the final evaluation 

only timetables that requires 62-64 train sets are analyzed. These numbers of train sets 

correspond to 2-5 additional termination tracks. 

It is not enough to know the number of lacking termination tracks. It is also important 

that their locations are specified as well, if the infrastructure is going to be completed in 
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order to meet the analyzed traffic increase. 

If the remaining feasible timetables are compiled according to need of additional 

termination capacity a diagram like the one in Figure 8 can be drawn. As demonstrated in 

the diagram one additional termination track ought to be constructed in Bålsta and Uppsala 

respectively. Such an extension would be enough to manage about 15% of the feasible 

timetables. A further analysis of the corresponding timetables has to be performed in order 

to assess whether this portion is enough to manage future changes in operation. 

Complementary flexibility in the choice of timetable requires more termination tracks.  

 

 

 

Figure 8 Alternative combinations of additional termination tracks needed to enable the 

evaluated traffic and the proportion of feasible timetables that they enable. A double dot 

indicates need for two additional tracks.   

4 Conclusions  

A generic method for timetable screening of a four branch commuter rail system has been 

discussed. The method is based on congestion management and combinatorics of short 

turning traffic lines (termination patterns). The overreaching objective is to explore 

timetable solutions that are efficient, namely, congestion balanced, that require a limited 

number of train sets and additional termination tracks, but still have termination times that 

are long enough and well distributed to reach a reasonable recovery level and punctuality.  

The number of available timetable solutions is limited by the common line section, City 

line, where a slot system has to be applied in order to manage capacity. As in most other 

public transport systems, short turning is an efficient way to adjust traffic supply to demand. 

The short turning lines constitute termination patterns and permutations of these.  

The permutations influence passenger distribution and congestion and has to be selected 

with care. A network timetable can be constructed through a combination of permutations 

for the four branches. Each combination can be rotated through the timetable period, in this 
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case 30 minutes. The choice of permutations and degree of rotation determine the 

termination times, which in turn define important features such as: recovery/punctuality, 

number of train sets needed and number of termination tracks needed.  

Special attention ought to be paid to the mode of rotation. Coordination with other rail 

traffic on shared line sections requires the timetable to be symmetric. The symmetry implies 

that the permutation can only be chosen freely in one direction per branch, since the 

permutation for the opposing direction has to be a reflection of the first one. This fact 

strongly limits the number of available timetable solutions, the possibility to reach an 

efficient congestion management in both traffic directions and to limit the number of train 

sets and/or termination tracks needed. As such the coordination with other traffic impose a 

less efficient commuter operation. Nevertheless, it might be less costly than a complete 

separation through supplementary quadruple line sections.  

Further evaluation studies are planned to be carried out to analyse the benefits of 

asymmetric timetables. It would also be interesting to delve into available capacity for long 

distance and regional services. The current model can easily be updated to cover timetable 

solutions for asymmetric timetables as well as other traffic.  
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