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Abstract 

With the booming travel demands in megacities, the limited transportation capacity hasn’t 

satisfied them in urban rail transit. Passenger congestion problem become increasingly 

serious, which causes the potential accident risks on platforms. To further efficiently 

improve the conditions, this paper proposes an effective collaborative optimization method 

for the accurate passenger flow control strategies on an oversaturated urban rail transit line 

by simultaneously adjusting the number of inbound passengers entering multiple stations 

on the line. Through considering the space-time dynamic characteristics of passenger flow, 

a multi-objective integer linear programming model is formulated to minimize the number 

of passengers who are limited to enter stations, minimize the total passenger waiting time 

on platforms at all of involved stations where the optimal passenger flow control is imposed  

and maximize the passenger person-kilometres. And it is solved by CPLEX solver 

efficiently. Moreover, the passenger flow demands are time-variant, so it’s very necessary 

for the accurate and easy-to-implement passenger flow control strategies to determinate the 

control time intervals. Hence, this paper develops a method based on Fisher optimal division 

to get an optimal determination of the control time intervals before solving the model. 

Finally, two sets of numerical experiments, including a small-scale case and a real-world 

instance with operation data of Chengdu metro system, are implemented to demonstrate the 

performance and effectiveness of the proposed approach. 

Keywords 

Urban rail transport, Passenger flow control, Multi-station coordination, Fisher optimal 
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1 Introduction 

1.1 Background 

 

With the acceleration of urbanization process and the drastic increase of urban population 

in China, urban rail transit (URT) transportation capacity has been unable to satisfy the 

booming travel demands in some cities (i.e. Beijing, Shanghai, etc.), especially in peak 

hours. Passenger congestion problem is becoming more and more serious, and it gradually 

affects the operation safety and reliability of URT. At the same time, due to the limitation 

of infrastructures, transportation capacity cannot be improved in the short term. Therefore, 

under the condition of the limited transportation capacity, it is urgent to develop a 

management strategy to relieve congestion and further improve the operation efficiency. 

So passenger flow control becomes a better choice with the limited transportation 
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capacity at present. In fact, the measures for passenger flow control have been taken widely 

in some cities (i.e. Beijing, Shanghai, et al.) in China. For example, passenger flow controls 

will be imposed when the ratio of the number of the passengers entering certain station to 

the maximum number that the station holds gets to 70% (Xu et al., 2016). In the daily 

operation, passenger flow control works by setting railings outside metro station, reducing 

the number of the used gates and slowing down the speed of the escalators to limit the 

number of passengers entering the platforms and relieve pressure on platforms. However, 

the control strategies are implemented at each station without coordination, respectively, 

and mainly depend on the staffs’ subjective work experience currently, which is lack of 

mathematical programming and scientific method (Jiang et al., 2018). 

 

1.2 Literature Review 

 

On the level of passenger flow control, many researches have ever investigated it from 

different perspectives in recent years, including pedestrian boarding/alighting management, 

station capacity and station pedestrian management.  

In pedestrian boarding/alighting management, Baee et al. (2012) proposed different 

boarding/alighting strategies for Tehran subway system to increase satisfaction level and 

service success rate while reducing travel time by simulation; Fernández et al. (2015) 

demonstrated the existence of pedestrian saturation flows in public transport doors and 

showed various capacities of train doors under different conditions by real-scale 

experiments.  

In station capacity, Chen et al. (2012) proposed a M/G/c/c-based capacity model of 

staircases and corridors for passenger evacuation in consideration of space facility in metro 

stations through analysis of passenger movements; Xu et al. (2014) developed a SSC 

optimization model of station capacity according to the gathering and scattering process and 

the analytical queuing network to identify bottleneck facilities to improve capacity; Xu et 

al. (2016) proposed an approach to measure a transfer metro station capacity for different 

ratio of inbound, outbound and transfer passenger volumes to the total passenger volume, 

according to the passenger routes in the station.  

In  station pedestrian management, Hoogendoorn and Bovy (2004) put forward a new 

theory of pedestrian behaviors under uncertainty based on the concept of utility 

maximization to simultaneously optimize route choice, activity area choice, and activity 

scheduling using dynamic programming for different traffic conditions and uncertainty 

levels based on this normative theory; Davidich et al. (2013) evaluated the impact of waiting 

pedestrians and proposed a cellular automata model for waiting pedestrians to analysis and 

prediction waiting zone capacity in critical situations. 

The above studies are in-depth in theory, and provide a theoretical basis and reference 

on the practical application. However, they focus on passenger flow control at a single 

station or several stations, the complex characteristics of passenger flow Origin and 

Destination (OD) and the passenger flow at other stations in the network aren’t taken into 

consideration, which tends to result in the section capacity not being fully utilized and is 

bad to improve the service quality and economic benefits in the entire network.  

In view of the above deficiencies, some researchers turn their attentions to the passenger 

flow control with multi-station coordination on an oversaturated line (Wang et al., 2015; Li 

et al., 2017; Shi et al., 2018; Jiang el at., 2018). For example, Wang et al. (2015) took 

average passenger delay as the objective to develop an integer programming model based 

on the analysis of passenger delay and the processes by which passengers alight and board, 

which aims to disperse the pressure of oversaturated stations into others and achieve the 
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optimal state for the entire line, and model is verified by a case study; Jiang et al. (2018) 

proposed a method based on reinforcement learning to optimize the inflow volume during 

a certain period of time at each station with the aim of minimizing the safety risks imposed 

on passengers at the metro stations, and the performance of the approach was tested by the 

simulation experiment carried out on a real-world metro line in Shanghai.  

In addition, some studies mainly proposed the stop-skipping strategy to enhance the 

operation efficiency and indirectly relieve the pressure caused by the huge passenger 

volume (Wang et al., 2014; Niu et al., 2015). Nevertheless, trains always run with relatively 

fixed all-stop patterns from the start station to the terminal station in URT. 

To our knowledge, the majority of existing studies focus on passenger flow control at a 

single station or several stations while the researches on the passenger flow control at multi-

station coordination on the line is relatively few. Also, there are still deficiencies in the 

existing studies on the passenger flow collaborative control. For example, there is no 

scientific method to determine the control time intervals while the proposed approach in 

this paper addresses precisely these gaps. 

. 

1.3 Contributions 

 

The proposed approach contributes to the state-of-the-art related passenger flow control 

research in three ways. 

(1) In order to obtain accurate and easy-to-implement passenger flow control strategies, 

the method , Fisher optimal division ,to determine the control time intervals is proposed 

according to the historical passenger flow data. 

(2)To take the interests of both passengers and operators into consideration 

simultaneously, based on characteristic of passenger flow OD and dynamic passenger 

demands, a multi-objective integer linear programming model is proposed to minimize the 

number of passengers limited to enter stations, minimize the total passenger waiting time 

on platforms at all of involved stations and maximize the passenger person-kilometres. 

(3) Train dwelling time has an important influence on the boarding/alighting behaviors 

at stations, so it is taken into consideration and is taken as an important constraint in the 

proposed model. 

The rest of the paper is structured as follows. Section 2 provides the concrete definition 

of passenger inflow control with multi-station coordination problem. Section 3 describes 

the integer linear programming models taking the characters of passenger flow into account. 

In Section 4, solution approaches, including the methods to determinate the control time 

intervals and solve the model, are described. Two sets of numerical experiments, including 

a small-scale case and a real-world instance with operation data of Chengdu metro system, 

are carried out to verify the effectiveness of these models in Section 5. Finally, conclusions 

and further studies are presented in Section 6. 

2 Problem Description 

2.1 Descriptions of the Passenger Flow Control System 

 

This study considers a single-direction oversaturated urban rail transit line with 𝑛 stations,  
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Figure 1: The illustration of urban rail transit line 

 

 

high-frequency services and lack of train capacity in peak hours. The illustration of the line 

is shown in Figure 1. The line consists of stations and sections between these adjacent 

stations. Along certain operational direction (such as up direction.), the stations are 

numbered as 1, 2, ..., 𝑛 consecutively, in which stations 1 and 𝑛 represent the start and 

terminal stations respectively of in-service trains. For clarity, we use a set 𝑁 = {1,2, … , 𝑛} 

to identify stations in this direction. And trains run along the direction on the line according 

to fixed schedules. 

Passenger flow collaborative control is related to the remaining loading capacity, which 

is dependent on the boarding and alighting passengers at upstream stations. As shown in 

Figure 1, it is assumed that there is large passenger flow at station j in peak hours. In order 

to rapidly evacuate passengers at this station, and guarantee operational safety and high 

service quality, the enough remaining loading capacity is necessary for this station. 

Therefore, the upstream stations, besides this station, start to limit the number of the 

inbound passengers according to the passenger demands at station j and other stations. For 

each station where passenger flow control is imposed, the inbound passengers are limited 

to queue at station entrances or gates, which reduce the congestion on platforms. 

It is worth pointing out that the decrease of total demands will not be obvious after 

passenger flow control strategy is implemented. The ultimate objective for passenger flow 

control is to balance or reassign the limited transportation capacity among different stations 

(or sections) on the line, to achieve greater operation efficiency. 

 

2.2 Definition of the Passenger Flow Control Problem 

 

From the perspective of supply and demands, the participants are mainly operators and 

passengers in URT. When the passenger flow control strategies are formulated, the interests 

of both operators and passengers should be considered. For the passengers, they expect to 

quickly get to the destination from the departure, which can be reflected indirectly by the 

service quality of the operators. For the operators, increasing their revenues is an important 

goal. Since the revenues of URT are correlated with the travel distance and volumes of 

passengers, the passenger person-kilometres is the best indicator to measure their economic 

benefits. 

As mentioned above, the passenger flow coordinated control is defined as a control  
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1

2

...

j

...

n

Time horizon

1 2 3 ... t

S
ta

ti
o

n
s

Control time intervals  
Figure 2: The illustration of the determination of control time intervals 

 

 

congestion problem on the URT line to minimize the number of the passengers limited to 

enter the stations, minimize the total waiting time of stranded passengers and maximize the 

passenger person-kilometres in this paper. Note that the stranded passengers refer to 

passengers who cannot board the previous trains due to the limited train loading capacity 

and stay on platforms to wait the following trains. 

Meanwhile, in order to guarantee the feasibility of the coordinative control strategies, 

some systematic constraints should be formulated, such as train capacity, train dwelling 

time, station design passing capacity, platform capacity and passenger demands, etc. 

 

2.3 Descriptions of Determination of the Control Time Intervals 

 

Since the passenger demands are time-variant, in order to obtain the accurate and easy-to-

implement passenger flow control strategies, it is necessary to discretize the considered time 

horizon into several control time intervals, so that the control time intervals and the time-

variant characteristics of the passenger demands are as close as possible. Hence, we disperse 

the continues time horizon into a finite number of control time intervals. And these intervals 

will be denoted by a set 𝑇 = {1,2, … , 𝑡}. The illustration of the determination of control 

time intervals is shown in Figure 2. 

For the determination of control time intervals, it is a great ideal to take the train 

departure interval as control time intervals. However, in the daily operation, it is more 

difficult to formulate and implement the passenger flow control strategies in such a short 

interval, in which there is also no statistical laws for passenger flow. In addition, if each 

control time interval is too long, the passenger flow control strategy cannot be flexibly 

adjusted as the passenger demands change, which leads to losing the meaning of passenger 

flow control. Therefore, it is necessary to develop a scientific method to scientifically 

determine the number of control time intervals and the length of each interval. And the 

specific method to determinate the control time intervals is described in Section 4. 

In summary, the problem of the passenger flow coordinative control on an urban rail 

transit line can be summarized as: 

On an over-saturated urban rail transit line, according to the space-time distribution 

dynamic characteristics of passenger flow, all stations on the line are associated in the space 

and time dimensions; meanwhile, according to the historical data of passenger flow, the 
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considered time horizon is dispersed into several control time intervals; Under the 

constraints of train capacity, train dwelling time, station design passing capacity, platform 

capacity and passenger demands, each station adjusts the number of the inbound passengers 

by the collaborative control strategies in each control time interval on the line, to make 

urban rail transit systems achieve greater transportation efficiency. 

 

Table 1: Sets, subscripts, input parameters and decision variables 

Symbols Descriptions 

Sets and subscripts 

𝑁  Set of stations. 

𝑇  Set of control time intervals. 

𝑖, 𝑗, 𝑘  Index of stations, ∀𝑖, 𝑗, 𝑘 ∈ 𝑁. 

𝑡  Index of control time intervals, ∀𝑡 ∈ 𝑇. 

Input parameters 

𝛼𝑖,𝑡 
The ratio of the passenger volumes choosing certain operating direction to 

the total passenger volumes entering station 𝑖 in interval 𝑡. 

𝑄𝑖,𝑡 
The maximum number of passengers loaded by trains at station  𝑖  in 

interval 𝑡. 

𝐿 The maximum loading capacity per train. 

𝑍 The maximum number of passengers who can enter stations within an hour. 

𝛽𝑖,𝑗,𝑡 
The ratio of the number of passengers from station 𝑖 to 𝑗 to the number of 

boarding passengers at station 𝑖 in interval 𝑡. 

𝑃 The maximum number of passengers that the platform can hold. 

𝐴𝑖,𝑡 
The maximum number of passengers who can be accumulated on the 

platform at station 𝑖 in interval 𝑡. 

𝑡s The time spent boarding the trains per person. 

𝑡x The time spent alighting from the trains per person. 

𝑡𝑖,𝑡
dwell The average dwelling time of train at station 𝑖 in interval 𝑡. 

 𝑡o The time it takes for the trains to open and close the doors. 

𝐵 The number of carriages per train. 

𝑚 The number of doors of each train carriage. 

𝑛𝑖,𝑡 The number of trains passed station 𝑖 in interval 𝑡. 

𝐶𝑖,𝑡 The maximum number of passengers allowed to enter station 𝑖 in interval 𝑡. 

𝐷𝑖,𝑡 The passenger demands at station 𝑖 in interval 𝑡. 

𝑑𝑖 The length of section 𝑖. 

𝜃 
The minimum ratio of the number of the inbound passengers to the total 

passenger demands at each station in any interval. 

∆𝑇𝑡 The length of control time interval 𝑡. 

Decision variables 

𝑥𝑖,𝑡 
The total number of passengers entering station 𝑖 in interval 𝑡, including up 

and down direction. 

𝑥𝑖,𝑡
s  The number of boarding passengers at station 𝑖 in interval 𝑡. 

𝑥𝑖,𝑡
x  The number of passengers alighting from trains at station 𝑖 in interval 𝑡. 

𝑆𝑖,𝑡 The number of passengers stranded on the platform at station 𝑖 in interval 𝑡. 

𝑙𝑖,𝑡 The number of passengers in trains when leaving the station 𝑖 in interval 𝑡. 

𝜔𝑖,𝑡 The rate of passenger flow control at station 𝑖 in interval 𝑡. 
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3 Mathematic Model 

3.1 Assumptions and Notations 

 

The following assumptions are made in this paper and notations of the model and their 

descriptions are shown in Table 1.  

(1) Trains run well on the line with fixed schedules. 

(2) Travel demands and the characteristics of passenger flow OD are known in each 

control time interval, and passenger flow OD can be obtained from historical data. 

(3) Passengers follow the principle of “alighting first, boarding later” in the whole 

boarding/alighting activities. 

(4) There is no passengers stranded on platforms at all stations before the first control 

time interval. 

(5) All passengers board trains without the passengers stranded on the platform when 

the remaining train capacity is more than the number of passengers accumulated on the 

platform at each station in each control time interval during train operation. 

(6) This paper studies the passenger flow control on an urban rail transit line rather than 

a single station, so the influences of the capacity of station gates, staircases, escalators and 

elevators are weakened. And the indicator, the maximum number of passengers who can 

enter the station within an hour, is adopted to replace them.  

(7)The process from the entrance facilities to the platform will not be considered. That 

is, passengers allowed to enter the station can arrival at the platform immediately. This 

similar assumption can also be found in by Shi et al. (2018). 

(8)The passengers are evenly distributed on platforms with the staffs’ guidance before 

trains arrive at stations in peak hours. 

 

3.2 Decision Variables and the Related Expressions 

 

The decision variables in this paper are defined in Table 1, and the related expressions are 

shown in formula (1)-(5). Note that all the decisions variables are non-negative integers. 

(1) The number of passengers alighting from trains 

The number of alighting passengers at the station 𝑖 equals to the sum of the products of 

the number of boarding passengers at each upstream station and the alighting rate from it 

to 𝑖 during interval 𝑡. And it can be expressed as: 

 

𝑥𝑖,𝑡
x = ∑ 𝑥𝑘,𝑡

s ∙𝑖−1
𝑘=1 𝛽𝑘,𝑖,𝑡.                                         (1) 

 

Where 𝛽𝑖,𝑗,𝑡 is known and given according to the historical data from Automatic Fare 

Collection (AFC). 

(2) The number of passengers stranded on platforms 

According to the principle of flow conservation, the number of passengers stranded on 

the platform at station 𝑖 during interval 𝑡 can be expressed as: 

 

𝑆𝑖,𝑡 = {
𝑥𝑖,𝑡 ∙ 𝛼𝑖,𝑡 − 𝑥𝑖,𝑡

s ,                𝑡 = 1

𝑆𝑖,𝑡−1 + 𝑥𝑖,𝑡 ∙ 𝛼𝑖,𝑡 − 𝑥𝑖,𝑡
s , 𝑡 > 1

.                          (2) 

 

Where 𝛼𝑖,𝑡 is known and given according to the historical data from AFC. 

(3) The number of passengers in trains 
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According to the principle of flow conservation, the number of passengers in trains when 

leaving station 𝑖 during interval 𝑡 can be expressed as: 

 

𝑙𝑖,𝑡 = {
𝑥𝑖,𝑡

s ,                          𝑖 = 1

𝑙𝑖−1,𝑡 + 𝑥𝑖,𝑡
s − 𝑥𝑖,𝑡

x , 𝑖 > 1
.                                    (3) 

 

(4) The number of boarding passengers 

The number of boarding passengers is the minimum of both the remaining loading 

capacity and the number of passengers accumulated on the platform at station 𝑖 during 

interval 𝑡. For the start station, there is no alighting passengers. And there is no passengers 

in trains before trains arrival at the start station. So it can be given as: 

 

𝑥𝑖,𝑡
s = min{𝑄𝑡 − 𝑙𝑖−1,𝑡 + 𝑥𝑖,𝑡

x , 𝑆𝑖,𝑡−1 + 𝑥𝑖,𝑡 ∙ 𝛼𝑖,𝑡}.                     (4) 

 

(5) The rate of passenger flow control at stations 

During the control time interval 𝑡, the rate of passenger flow control at station 𝑖  is 

defined as the ratio of the number of passengers limited to enter this station to total 

passenger demands at this station during this control time interval. 

 

𝜔𝑖,𝑡 =
𝐷𝑖,𝑡−𝑥𝑖,𝑡

𝐷𝑖,𝑡
, 𝑖 ≠ 𝑛.                                                 (5) 

 

Where 𝐷𝑖,𝑡 is known and given according to the historical data from AFC. 

 

3.3 Constraints 

 

The descriptions and the specific expressions the systematic constraints, including train 

capacity, platform capacity, train dwelling time, station design passing capacity, passenger 

demands, etc., are given in this subsection. 

(1) Train capacity constraint 

The number of passengers in trains should not exceed their maximum capacity in any 

control time interval. Note that the maximum capacity in any control time interval equals 

to the product of the number of trains passing station 𝑖 in the interval and the maximum 

loading capacity of each train. 

 

{
𝑙𝑖,𝑡 ≤ 𝑄𝑖,𝑡       

𝑄𝑖,𝑡 = 𝑛𝑖,𝑡 ∙ 𝐿
.                                                              (6) 

 

(2) Platform capacity constraint 

The number of passengers stranded on the platform should not exceed the platform 

capacity under the safe level at the end of the interval  𝑡 . Meanwhile, the number of 

passengers accumulated on the platform will reach the maximum after passengers alight 

from trains. To ensure the safety, all the number of the inbound passengers, the stranded 

passengers and the alighting passengers combined should not exceed the maximum number 

of passengers who can be accumulated on the platform at station 𝑖 in interval 𝑡.  
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{

𝑆𝑖,𝑡 ≤ 𝑃                                       

𝑥𝑖,𝑡 ∙ 𝛼𝑖,𝑡 + 𝑆𝑖,𝑡−1 + 𝑥𝑖,𝑡
x ≤ 𝐴𝑖,𝑡

𝐴𝑖,𝑡 = 𝑛𝑖,𝑡 ∙ 𝑃                              
 .                                 (7) 

 

(3) Train dwelling time constraint 

When studying the influence of the large passenger flow on stations in peak hours, the 

passengers' boarding/alighting activities cannot be ignored. The trains will stay at each 

station for a period of time in order to complete the passengers’ boarding/alighting service 

during their operation. According to the actual operation, passengers' boarding and alighting 

service is completed from the time when the doors are fully open to the time when the doors 

start to be closed after the train arrives at the station.  

 
𝑥𝑖,𝑡

s ∙𝑡s+𝑥𝑖,𝑡
x ∙𝑡x

𝑛𝑖,𝑡∙𝑚∙𝐵
≤ 𝑡𝑖,𝑡

dwell −  𝑡o.                                    (8) 

 

Where 𝑡s = 0.76s/p, 𝑡x = 0.55s/p, according to Cao (2009); Li (2011) pointed out 

that at the stations with screen doors, it takes  𝑡o = 15𝑠 for the trains to open and close the 

doors; 𝑡𝑖,𝑡
dwell can be determined according to the fixed schedules. 

(4) Station design passing capacity constraint 

The number of passengers entering the station at station 𝑖 during interval 𝑡 should not 

exceed the maximum number of passengers allowed to enter this station during this interval. 

 

𝑥𝑖,𝑡 ≤ 𝐶𝑖,𝑡 .                                                        (9) 

 

(5) Passenger demands constraint 

The number of inbound passengers at station 𝑖 during interval 𝑡 should not be more than 

the realistic passenger demands in this interval. At the same time, there is still certain service 

ability at each station. 

 

{
𝑥𝑖,𝑡 ≥ 𝜃 ∙ 𝐷𝑖,𝑡

𝑥𝑖,𝑡 ≤ 𝐷𝑖,𝑡        
 .                                                (10) 

 

(6) Additional constraint 

In order to reduce the waiting time of the passengers stranded on platforms as much as 

possible, it is necessary to ensure that the passengers stranded on platforms during interval 

𝑡 are served during interval 𝑡 + 1. 

 

𝑆𝑖,𝑡 ≤ 𝑥𝑖,𝑡+1
s , 𝑡 < 𝑇.                                          (11) 

 

3.4 Objective function 

 

In this paper, the objective functions for the problem of the passenger flow collaborative 

control on an urban rail transit line are as follows: 

 

{

min 𝑧1 = ∑ ∑ (𝐷𝑖,𝑡 − 𝑥𝑖,𝑡)𝑇
𝑡=1

𝑛
𝑖=1

min 𝑧2 = ∑ ∑ 𝑆𝑖,𝑡 ∙ ∆𝑇𝑡
𝑇
𝑡=1

𝑛
𝑖=1       

max 𝑧3 = ∑ ∑ 𝑙𝑖,𝑡 ∙ 𝑑𝑖
𝑇
𝑡=1

𝑛
𝑖=1         

.                             (12) 
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Where 𝑧1 is defined to minimize the number of passengers limited to enter the stations; 

𝑧2  is defined to minimize the waiting time of the passengers stranded on the platform 

involved all stations; 𝑧3 is defined to maximize the passenger person-kilometres. 

The multi-objective integer linear programming model of the passenger flow 

collaborative control with multi-station on an URT line in this paper is formulated by 

combining (1)-(12). 

4 Solution Approaches 

Note that the control time intervals must be determinated before solving the model to obtain 

all the input parameters of the model. Therefore, the method to determinate the control time 

intervals is described firstly,and finally the method to solve the model is depicted. 

 

4.1 Algorithm for Determining Control Time Intervals 

 

In the determination of the control time intervals, the existing studies disperse the time 

horizon into equal intervals (10min or 15min) as the control time intervals, without giving 

a scientific method. Therefore, in order to determine the control time intervals that is 

consistent with the time-variant characteristics of passenger demands and develop the 

accurate and easy-to-implement passenger flow control strategies, based on Fisher optimal 

division method (Xiao et al., 2014), the optimal control time intervals can be obtained by 

cluster analysis on the historical inbound passenger flow time series during the time horizon 

in this paper. The specific steps are as follows. 

Step 1 Constructing inbound passenger flow time series and matrix. 

Firstly, the historical data of passenger flow during time horizon is counted at intervals 

of ∆𝑡, then the inbound passenger flow time series is obtained. Let 𝑯𝑡  be the inbound 

passenger flow matrix for the interval 𝑡, then the time series of the inbound passenger flow  

during the time horizon can be expressed as: 

 

 𝑯 = {𝑯1, 𝑯2, … , 𝑯𝑇}.                                              (13) 

 

Where 𝑯𝑡 is given as:  

 

𝑯𝑡 = (𝑝1
𝑡     𝑝2

𝑡   …   𝑝𝑛
𝑡 )T.                                          (14) 

 

Where 𝑝𝑖
𝑡 is defined as the number of the inbound passengers at station 𝑖 in control time 

interval 𝑡. 

Step 2 Calculating class diameter. 

Let the class G  contain samples {𝑯(𝑖), 𝑯(𝑖+1), … , 𝑯(𝑗) }, denoted as G =

{𝑯(𝑖), 𝑯(𝑖+1), … , 𝑯(𝑗)}, where 𝑗 > 𝑖, and the mean vector of the class is given as: 

 

𝑯G =
1

𝑗−𝑖+1
∑ 𝑯(𝑡)

𝑗
𝑡=𝑖  .                                            (15) 

 

Then the diameter of the class G is: 

 

𝐷(𝑖, 𝑗) = ∑ (𝑯(𝑡) − 𝑯G)
T

(𝑯(𝑡) − 𝑯G)
𝑗
𝑡=𝑖 .                           (16) 
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The 𝐷(𝑖, 𝑗) is obtained by Step 2. 

Step 3 Calculating the classification loss function. 

The classification loss function is calculated by the following recursive formula. When 

n  and k  are fixed, the smaller 𝐿[𝑏(𝑛, 𝑘)] is, the smaller sum of deviation square of all 

classes is, and the more reasonable the classification is. Therefore, it is necessary to find a 

classification method to minimize 𝐿[𝑏(𝑛, 𝑘)] .  𝑃(𝑛, 𝑘)  is denoted as the classification 

method that 𝐿[𝑏(𝑛, 𝑘)] takes the minimum value. 

 

{
𝐿[𝑏(𝑛, 2)] = min{𝐷(1, 𝑗 − 1) + 𝐷(𝑗, 𝑛)} , 2 ≤ 𝑗 ≤ 𝑛              

𝐿[𝑏(𝑛, 𝑘)] = min{𝐿[𝑃(𝑗 − 1, 𝑘 − 1)] + 𝐷(𝑗, 𝑛)} , 𝑘 ≤ 𝑗 ≤ 𝑛
.              (17) 

 

The calculation steps are as follows: 

 Calculate the optimal two-partition for 𝑯 = {𝑯1, 𝑯2, … , 𝑯𝑇} according to (17); 

 Calculate the optimal 𝑘-partition for 𝑯 = {𝑯1, 𝑯2, … , 𝑯𝑇} according to (17). 

 The 𝐿[𝑏(𝑛, 𝑘)] is obtained by the above steps. 

Step 4 Determine the number of classifications-𝑘 . 

Since the number of classifications- 𝑘 cannot be predetermined, generally speaking, the 

inflection points in the 𝑘 -changing trend diagram of 𝐿[𝑏(𝑛, 𝑘)], can be used as the basis 

for determining the number of classifications- 𝑘. However, the inflection points maybe not 

unique. Therefore, In order to further determinate the number of classifications- 𝑘, this 

paper also uses an indicator, slope difference, to help find better 𝑘. 

This paper calculates the slope difference between adjacent line segments in the graph 

according to the following formula. Note that 𝛾(𝑘) is the slope difference between adjacent 

line segments at 𝑘. 
 

𝛾(𝑘) = |
𝐿[𝑏(𝑛,𝑘−1)]−𝐿[𝑏(𝑛,𝑘)]

(𝑘−1)−𝑘
| − |

𝐿[𝑏(𝑛,𝑘)]−𝐿[𝑏(𝑛,𝑘+1)]

𝑘−(𝑘+1)
| ,3 ≤ 𝑘 ≤ 𝑛 − 1.         (18) 

 

From the geometric sense, when 𝛾(𝑘) reaches its maximum, point corresponding to 

𝑘 in the graph of 𝐿[𝑏(𝑛, 𝑘)]~𝑘 divides the line in the graph into two parts. It is steep before 

this point and it is relatively flat after this point in the graph of 𝐿[𝑏(𝑛, 𝑘)]~𝑘, which means 

there are few differences among classifications after this point and it is meaningless if it 

continues to be divided. That is, 𝑘 is the better number of classifications at this moment. 

And the better 𝑘 is obtained. In addition, when 𝛾(𝑘) is close to 0, it no longer continues 

to be divided. 

 
4.2 Model Solution 

 

This model is a multi-objective integer linear programming model, which can be effectively 

handled through linear weighted methods in this paper. 

5 Numerical Experiments 

In this section, a series of numeric experiments, involving a small-scale case study and a 

real-world case study in Chengdu Metro System, are implemented to illustrate the 

applications of the proposed model. And the model is solved by CPLEX solver. 
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5.1 A Small-scale Case Study 

 

In this part, we consider a single-direction line with 3 stations and 4 control time intervals, 

to test the performance of the model.  

(1)Experiment descriptions and Parameter settings 

For the convenience of description, we particularly name the stations A, B, C, and name 

the control time intervals T1, T2, T3, T4. In the experiments, the data is shown in Table 2. 

The train capacity is 80 persons, the length of each section is 3 km and the platform capacity 

is 140 persons. 

Table 2: The data of the small-scale case 

Origin 
Interval 

number(Length) 
Destination 𝜷𝒊,𝒋,𝒕  𝜶𝒊,𝒕  Demands 

A 

T1（6） 
B 0.3 

1 300 
C 0.7 

T2（3） 
B 0.4 

1 200 
C 0.6 

T3（6） 
B 0.5 

1 200 
C 0.5 

T4（6） 
B 0.6 

1 100 
C 0.4 

B 

T1（6） C 1 0.8 200 

T2（3） C 1 0.8 100 

T3（6） C 1 0.8 100 

T4（6） C 1 0.8 50 

(2)Computational results analysis 

The experiment is solved by CPLEX solver, and the optimal solution is obtained: 𝑧1 =
304 persons, 𝑧2 = 2004min, 𝑧3 = 3345person-kilometres. The number of the boarding 

passengers, the alighting passengers, the passengers stranded on platforms and the 

passengers limited to enter the stations from the case is shown in Table 3. 

 

Table 3: The results of the numerical example 

Stations Intervals 𝒙𝒊,𝒕
𝐬   𝒙𝒊,𝒕

𝐱   
The number of the stranded 

passengers 𝝎𝒊,𝒕 (%) 

Platforms Out of stations 

1 

T1 155 0 0 145 48.3 

T2 80 0 60 60 30.0 

T3 160 0 100 0 0 

T4 160 0 40 0 0 

2 

T1 52 47 30 97 48.5 

T2 32 32 76 2 2.0 

T3 80 80 76 0 0 

T4 96 96 20 0 0 

3 

T1 0 160 0 0 0 

T2 0 80 0 0 0 

T3 0 160 0 0 0 

T4 0 160 0 0 0 
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The optimal solution is shown in Table 3. As seen in Table 3, the time intervals to 

implement the flow control measures at stations 1 and 2 is mainly in the first two control 

time intervals, and passengers entering the stations aren’t limited in the last two intervals. 

During the first two control time intervals, passenger demands are large, and some 

passengers cannot enter the stations due to the limited train capacity and platform capacity. 

In the following intervals, passenger demands are decreased at each station, and these 

passengers can be gradually satisfied by the platform capacity. And the passenger flow 

control measures are gradually removed. Meanwhile, train capacity gradually satisfies the 

demands of the stranded passengers on the platform at each station, and the number of the 

stranded passengers are gradually decreased. During the last interval, there are still the 

passengers stranded on the platform at stations 1 and 2, and these passengers can be loaded 

by the following available trains. The experimental results shows that the model can 

accurately describes the behaviors of the passenger flow control for the problem of 

passenger flow coordination control on an urban rail transit line. 

 

5.2 Numerical Experiments on Chengdu Metro Line 2 

 

To further demonstrate the performance of the proposed model for large-scale problems, 

we next consider a real-world case study on the Chengdu metro line 2 with 32 stations. And 

we only consider the up direction. In the implementations, all the dynamic input parameters 

are obtained from AFC. In the following, we shall first give the detailed experimental 

descriptions and parameters. 

(1)Experiment descriptions and parameter settings 

In the experiments, the considered time horizon is set as 7:30-9:00, which is the morning 

peak-hours. And the stations are numbered as 1, 2, ..., 32 consecutively along up direction 

on the line, in which stations 1 and 32 represent the start and terminal stations respectively 

of in-service trains. Note that the transfer passenger flow is converted into the inbound 

passenger flow or the outbound passenger flow at the transfer station on the line. The 

parameters settings are as follows. 
 The determination of control time intervals 

The considered time horizon (7:30-9:00) is dispersed into 18 statistical intervals at 

intervals of ∆𝑡 = 5𝑚𝑖𝑛 , to construct an inbound passenger flow time series  𝑯 =
{𝑯1, 𝑯2, … , 𝑯18} . Calculate it according to the steps in Subsection 4.1, and the 

𝐿[𝑏(𝑛, 𝑘)]~𝑘 trend diagram is obtained by using C#, as shown in Figure 3. 

According to Fisher optimal division method, the optimal number of classifications is 

obtained at the inflection point of the curve. However, the inflection points are not unique 

(such as 4,5,6), as seen in Figure 3. So the slope difference between adjacent line segments 

is calculated according to the formula (18). And the 𝛾(𝑘)~𝑘 trend diagram is plotted and 

shown in Figure 4. 

As seen Figure 4, when 𝑘 = 5,  𝛾(𝑘) reaches the maximum. According to step 4 in 

subsection 4.1, the inbound passenger flow time series is divided into 5 clusters, and the 

results of classification are shown in Table 4. 

According to the divided control time intervals, combing the historical AFC data and 

the schedules, 𝛽𝑖,𝑗,𝑡, 𝛼𝑖,𝑡, 𝐷𝑖,𝑡 and 𝑛𝑖,𝑡 can be obtained. 
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Figure 3: 𝐿[𝑏(𝑛, 𝑘)]~𝑘 trend diagram 

 

 

 
Figure 4: 𝛾(𝑘)~𝑘 trend diagram 

 

 

Table 4: The determination of the control time intervals  

Classification number Statistical time interval Control time interval 

1 T1-T4 7:30-7:50 

2 T5-T7 7:50-8:05 

3 T8-T11 8:05-8:25 

4 T12-T15 8:25-8:45 

5 T16-T18 8:45-9:00 

 

 Model other parameters 

The values of model other parameters are shown in Table 5. 

 

Table 5: Model parameters 

Parameters Values 

𝐿 1888 
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 (2) Computational results analysis between collaborative and non- collaborative control 

The input parameters are obtained in (1), and the model is solved by CPLEX solver 

efficiently. The objective function values, the mean crowding degree on the platform at 

each station and the average number of passengers limited to enter stations at each station 

are selected as three indicators to make a comparative analysis between the passenger flow 

non-collaborative and collaborative control strategies. 

The optimal solution, passenger flow collaborative control strategy, is shown in Table 

6, and the objective function values are shown in Table 7.  

Note that the passenger flow collaborative control strategy is obtained by solving the 

proposed model while the passenger flow non-collaborative control strategy is based on the 

idea that passengers at upstream stations board the trains with the priority and obtained by 

successive recursion method after giving the upstream stations greater weights under the 

constraints of train transportation capacity, train dwelling time and station design passing 

capacity constraints. And the objective function values of the passenger flow non-

collaborative control strategy are shown in Table 7. 

 

Table 6: Time-dependent and average inflow control rate of stations 

Control time 

intervals 

Stations                                                （%） 

8 9 10 11 12 13 15 16 

7:30-7:50 49.9 — 34.9 47.6 — — 20.5 — 

7:50-8:05 49.9 48.8 49.3 49.3 7.6 1.2 10.3 — 

8:05-8:25 49.9 48.2 48.6 50.0 36.1 0.7 24.1 — 

8:25-8:45 — — 50.0 — 33.7 — 37.6 9.4 

8:45-9:00 — — — — 18.0 — 30.5 28.9 

The average 

control rate 
29.9 19.4 36.6 29.4 19.1 0.4 24.6 7.7 

 

As seen in Table 6, during the time horizon, the stations with the limited passenger flow 

are mainly from station 8 to 16, which is consistent with the practical situation. From the 

perspective of time, the control time interval is mainly 7:50-8:25. In the first four intervals, 

passenger flow control is imposed at the upstream stations, to ensure the rapid evacuation 

of the large passenger flow at stations 12, 15 and 16. In the last interval, passenger flow 

control is mainly implemented at stations 12, 15 and 16, to guarantee the rapid evacuation 

of the passengers stranded on platforms at the upstream stations. As time goes by, passenger 

demands are decreased. Some stations can remove passenger flow control measures or 

reduce passenger flow control intensity. During the last interval, some passengers at stations 

12, 15 and 16 are still limited to enter the stations, and these passengers can be served by 

the following available trains. From the average rate of passenger flow control at the stations, 

passenger flow control intensity is large at stations 8, 10 and 11, which shows that these 

stations suffered from greater passenger flow organization pressure. 

 

Table 7: The objective under the uncoordinated and coordinated conditions 

Objective 

function 

Passenger flow non-collaborative 

control 

Passenger flow collaborative 

control 

z1 25587 23190 

z2 88650 0 

z3 908175 909861 
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Figure 5: Mean crowding on the platform of stations 

 

 

As seen in Table 7, the number of passengers limited to enter stations under the 

collaborative control is reduced by about 9.4% than that under the non-collaborative control. 

There are no passengers stranded on platforms under the collaborative control. And the 

passenger person-kilometres is increased by roughly 0.2% than that under the non-

collaborative control. Overall, for the operation enterprises, the service quality can be 

intensely improved and effectively alleviate the contradiction between the limited 

transportation capacity and passenger demands under the collaborative control. Meanwhile, 

there is a small increase on the passenger person-kilometres. That is, the economic 

performance is also enhanced. 

Mean crowding degree on the platform under passenger flow non-collaborative and 

collaborative control is shown in Figure 5. The mean crowding degree on the platform is 

defined as the ratio of the average number of the passengers stranded on the platform at 

each station in the five control time intervals to the capacity of the platform at each station 

in this paper, and this indicator can well reflect the passenger flow on the platform at each 

station in the whole time horizon. 

As shown in Figure 5，the passengers are accumulated with an unbalanced situation at 

several stations under the non-collaborative strategies. For example, the mean crowding 

degree of platform at the station 12 is highest, which shows that the congestion situation is 

very serious on the platform. And stations 10 and 11 are less crowded, which represents 

that passenger flow pressure is relatively small on the platform at these stations; 

nevertheless, the mean crowding degree of platform at each station is 0 under passenger 

flow collaborative control, which shows that the proposed model can effectively reduce the 

number of the passengers stranded on the platform at each station and avoid potential 

accident risks caused by it. 

The average number of the passengers limited to enter stations at each station under the 

passenger flow non-collaborative and collaborative control is shown in Figure 6. As seen 

in Figure 6, under the passenger flow non-collaborative control, the limited inbound 

passengers are mainly at stations 12, 15 and 16, and there is huge passenger volume at these 

stations, which shows these stations undertake the huge pressure caused by the large 

passenger flow. However, under the passenger flow collaborative control, the limited 

inbound passengers are mainly at stations from 8 to 16. And the number of the limited 

inbound passengers is reduced at stations 12 and 15 than that under the non-collaborative 

control, which shows that the proposed model can effectively balance the passenger flow 

pressure among all the stations and accelerate the evacuation of the passenger flow at the s- 
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Figure 6: The average number of the passengers limited to enter stations 

 

 

tations where there is the large passenger flow. 

For the transfer passenger flow, since the cross-line passenger flow is converted into the 

passenger flow of the line in this paper, the transfer passenger flow and the inbound 

passenger flow are not distinguished at the transfer station during the calculation. Therefore, 

when the passenger flow control strategies are formulated, appropriate adjustments should 

be made based on the results according to the practical operation. 

 

(3) Computational results analysis of different type of control time intervals 

The control time interval is mainly classified two types, including the control time 

intervals obtained by Fisher optimal division method and equal control time intervals. This 

section mainly analyses the influences on the computational results of different type of 

control time intervals. For the former, the results are presented by (2); for the latter, the 

length of each control time interval is set as 15min, and the number of the intervals is 6, the 

determination of the latter is shown in Table 8. And the computational results of different 

type of control time intervals are as shown in Table 9. 

 

Table 8: The determination of the equal control time intervals  

Classification number Statistical time interval Control time interval 

1 T1-T3 7:30-7:45 

2 T4-T6 7:45-8:00 

3 T7-T9 8:00-8:15 

4 T10-T12 8:15-8:30 

5 T13-T15 8:35-8:45 

6 T16-T18 8:45-9:00 

 

Table 9: The influences on the results of different type of control time intervals 

Objective 

function 

The control time intervals obtained 

by Fisher optimal division 

The equal control time 

intervals (15min) 

z1 23190 22967 

z2 0 0 

z3 909861 880818 
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In the following analysis, note that the former refers to the result of the model using 

control time intervals obtained by Fisher optimal division method; the latter refers to the 

result the model using equal control time intervals. 

As seen in Table 9, the number of passengers limited to enter stations for the latter is 

reduced by about 1% than that of the former while the passenger person-kilometres for the 

former is increased by about 3.3% than that of the latter. And there are no passengers 

stranded on platforms for both the former and latter. Combining the Table 7, the number of 

passengers limited to enter stations for the latter is reduced by about 10.4% than that under 

the non-collaborative control while its passenger person-kilometres is reduced by roughly 

3% than that under the non-collaborative control. 

From the above analysis, it is concluded that the former is better than the latter in the 

trade-off between the service quality and the profits of management enterprise. That is, the 

results of the model using the control time intervals obtained by Fisher optimal division is 

better than that using equal control time intervals, which verifies the performance of the 

proposed approach. 

6 Conclusions 

In this paper, the problem of the passenger flow cooperative control on an urban rail transit 

line in peak hours is studied under the condition of limited transportation capacity. The 

mixed integer linear programming model of the passenger flow cooperative control on the 

line is developed. Through analysis of the instance, the objective function value, the mean 

crowding degree on platforms at all of involved stations and the average number of the 

passengers limited to enter stations are compared under the strategy obtained by solving the 

model and the non-collaborative control strategy. The results show that the former is better 

than the latter in the above three aspects, which tests the performance of the proposed 

approach and provides a theoretical basis and reference on the practical application.  

This paper assumes that the trains run well on the line with the fixed schedules. However, 

a disturbance or disruption always happens inevitably in the daily operation. For example. 

There is an extension of dwelling time at a station with large passenger flow on the platform, 

which will impose influence on the train operation, such as delays. Under the circumstance 

in which a disturbance or disruption happens, train regulation is typically necessary. 

Therefore, further considering the disturbance or disruption in the train operation process, 

extending our work to jointly optimize train regulation and passenger flow control can be 

our future research directions. 
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