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Abstract 

Primary delays (PDs) are the driving force of delay propagation. Hence, accurate 

predictions of the number of affected trains (NATs) and the total time of affected trains 

(TTATs) due to PDs can provide a theoretical background for the dispatch of trains in real 

time. Train operation data were obtained from Wuhan-Guangzhou High-Speed Railway 

(HSR) station from 2015 to 2016, and the NAT and TTAT influence factors were 

determined after analyzing the PD propagation mechanism. The NAT predictive model was 

established using eXtreme Gradient Boosting (XGBOOST) algorithm which was more 

efficient than other machine learning methods after comparison. Furthermore, the TTAT 

predictive model was established based on the NAT model using the support vector 

regression (SVR) algorithm. The results indicate that the XGBOOST algorithm has good 

performance on the NAT predictive model, whereas SVR is the best method for the TTAT 

model using Lessthan5 variable, which is the ratio of the difference between the sample size 

of actual and the predicted values in less than 5 min and the total sample size. In addition, 

2018 data were used to evaluate the application of NAT and TTAT models over time. The 

results indicate that NAT and TTAT models have a good application over time. 
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1. INTRODUCTION 

High-speed railway (HSR) transportation is becoming more popular than other modes of 

transportation worldwide owing to their high speed, safety, and density. In China, HSR 

trains have become one of the major means of transportation. High punctuality of these 

trains is an important factor considered by railway companies in attracting passengers 

(Yuan et al., 2002). However, they are influenced by bad weather, mechanical failure of the 

systems, and organization strategies during operation, which could lead to delays. These 

delays disrupt railway operation and transportation, increase travel time of passengers, and 

reduce the passenger travel experience, thereby making HSR trains less reliable. 
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Delays are categorized as primary delays (PDs) and secondary (knock-on) delays. PDs 

are the driving force of delay propagation. They occur when some uncertain events directly 

disrupt the train operations. However, secondary delays are attributed to the delay 

propagation caused by PDs. When a PD occurs, the operation adjustment mainly depends 

on the experience of train dispatchers. However, there are no scientific theories and methods 

that support the strategies used. Meanwhile, the number of affected trains (NATs) and the 

total time of affected trains (TTATs) due to a PD can be used to estimate the influence of 

PD and accurately determine the severity of the delay. Therefore, NAT and TTAT 

predictive models can assist the train dispatcher in estimating the train operation state, 

provide the theoretical basis for the rescheduling strategy, facilitate more scientific and 

reliable rescheduling decisions and adjustment based on the station work plan (Wen et al., 

2018). Furthermore, NAT and TTAT predictive models are vital in the automatic operation 

of trains and the intelligent dispatch of HSRs. 

The impact of the NAT and TTAT predictive models on PD propagation is determined 

in this study. The models were built based on the data obtained from Wuhan-Guangzhou 

HSR station (Guangzhou Railway Bureau, China) from March 2015 to November 2016, 

and evaluated using common machine learning classification and regression algorithms. 

The results indicated that eXtreme Gradient Boosting (XGBOOST) and support vector 

regression (SVR) algorithms had the best predictive results for NAT and TTAT models, 

respectively. Furthermore, the models were evaluated using 2018 data in order to test their 

effectiveness over time. The results show that the models have good predictive abilities and 

can be used for a long time.  

This paper is structured as follows: Section 1 introduces the background and 

significance of the research. Section 2 reviews some studies conducted on delay propagation 

while Section 3 presents the problem to be solved and also describes the data used. The 

NAT and TTAT predictive models are established and tested in Section 4 while the 

conclusions are discussed in Section 5.  

2. LITERATURE REVIEW 

PDs may be caused by exogenous events such as irregularities in the natural environment 

or vehicle faults, accidents, facility failures, etc., in internal systems (Goverde, 2005). The 

severity of the delay is measured using a delay probability distribution model when the 

delay distribution corresponds to an exponential distribution and secondary delays are 

induced in different traffic scenarios (Huisman and Boucherie, 2001). (Meester and Muns, 

2007) obtained the knock-on delay distribution from PD distributions using a phase-type 

distribution. However, (Goverde et al., 2013) found that Weibull distributions can be fitted 

on the PD distribution using empirical data. Meanwhile, (Wen et al., 2017) indicated that 

PD distributions could be well approximated by log-normal distributions while line 

regression models can be used to approximate NAT distributions. However, studies on 

predictive models of delay propagations are mostly based on mathematical optimization 

methods. (Huisman et al., 2002) and (Milinković et al., 2013) estimated train delays using 

Queuing and Petri net models, respectively. Meanwhile, (Hansen et al., 2010) proposed an 

online model for the prediction of running time and arrival time using timed event graphs. 

In addition, (Kecman and Goverde, 2015) proposed a timed event graph approach for the 

accurate prediction of train event times using dynamic arc weights model. Furthermore, 

(Goverde, 2007) established a delay propagation model using the max-plus algebra theory.  

Data-driven studies are increasingly used in delay/disruption management. (Goverde, 
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2005) studied the systematic delay propagation in trains and employed a robust linear 

regression model to investigate the correlation among arrival delays using data obtained 

from Eindhoven Railway Station, Netherlands. Meanwhile, (Kecman et al., 2015) discussed 

the dynamics of train delays over time and space, and modeled the uncertainty of train 

delays based on a Markov stochastic process. (Şahin, 2017) also described the train 

operation process as a Markov chain and concluded that the train states at certain event 

timesteps could be determined by transition probability matrices. Furthermore, (Corman 

and Kecman, 2018) proposed an online Bayesian network to predict train delay over time 

using historical data in Sweden, while (Lessan et al., 2018) established a hybrid Bayesian 

network to estimate train arrival and departure delays based on real data in China. Artificial 

neural networks (ANNs) have been widely used to predict the delays in passenger trains 

(Chapuis, 2017; Pongnumkul et al., 2014; Yaghini et al., 2013). However, (Marković et al., 

2015) indicated that SVR is more accurate for predicting train arrival delays in comparison 

with ANN algorithms based on Serbian Railways data. Meanwhile, (Tang et al., 2018) 

discovered the relationship between the causes of PD and the duration based on NAT and 

TTAT models using SVR. However, the NAT is unknown when a PD occurs that will lead 

to the model cannot predict online. 

3. PROBLEM STATEMENT AND DATA DESCRIPTION 

3.1 Problem statement 

 

The headway between two trains in a station comprises the minimum interval time and the 

timetable supplement time. If a train is delayed before it arrives the station while the 

preceding train is not delayed, the delayed train is considered as a PD train. In other words, 

a delayed train is regarded as a PD train if a minimum threshold (e.g., 5 min in Wuhan-

Guangzhou HSR station) exists between the arrival time (or scheduled arrival time) of the 

delayed train and the actual arrival time of the preceding train. The PD train greatly 

influences the motion of the subsequent train, thereby leading to the secondary delay. This 

process occurs for all successive trains. However, the PD train has less influence on the 

subsequent trains when the delay duration is less than 5 min such that the rescheduling of 

the trains is not necessary. Hence, only PD durations of more than 5 min are considered in 

this paper. Meanwhile, the delays are reduced by timetable supplement time until they are 

eliminated. Hence, there is a sequence in the PD influence where the number of PD and 

knock-on trains is classified by NAT and TTAT, which is the sum of the PD and knock-on 

delay time. 

Figure 1 shows the process of PD propagation at two stations (Station A and Station B) 

in Wuhan-Guangzhou HSR station. The red and black lines are actual train lines and 

scheduled train lines, respectively. A minimum time interval exists between Train 1 and the 

preceding train, such that Train 1 is a PD train having a delay duration of 
1
t . Meanwhile, 

Train 2 is delayed as the interval between the actual arrival time of Train 1 and the scheduled 

arrival time of Train 2 is less than 5 min, thereby leading to a delay in Trains 3 and 4. The 

PD stops at Train 4 due to the supplement time i

sup
t  such that Train 5 returns to normal 

operation. The delayed trains (Trains 1–4) form a PD sequence where NAT is 4 and TTAT 

is 
4

1

i

i

t
=

 . 
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Figure 1: PD propagation process at two stations 

 

The trains overtake one another if the actual arrival sequence is different from the 

scheduled arrival sequence. This sequence is due to rescheduling. However, the propagation 

process is complicated as many influence factors need to be considered. Hence, these 

sequences are not considered in this paper. 

 

3.2 Data description 

 

The data used in this study were obtained from the station operation records of Wuhan-

Guangzhou HSR station (Guangzhou Railway Bureau, China) for Guangzhou North 

(GZN), Qingyuan (QY), Yingde West (YDW), Shaoguan (SG), Lechang East (LCE), 

Chenzhou West (CZW), Leiyang West (LYW), Hengyang East (HYE), Heangshan West 

(HSW), Zhuzhou West (ZZW), and Changsha South (CSS). Table 1 summarizes a portion 

of the data.  

 

Table 1: Raw data from Guangzhou Station 

Train NO Date Station 
Scheduled  

arrive time 

Scheduled  

departure time 

Actual 

arrive time 

Actual 

departure time 

G280 2015/3/24 GuangzhouNorth 7:00:00 7:00:00 7:01:00 7:01:00 

G636 2015/3/24 GuangzhouNorth 7:07:00 7:07:00 7:07:00 7:07:00 

G1102 2015/3/24 GuangzhouNorth 7:13:00 7:13:00 7:14:00 7:14:00 

G6102 2015/3/24 GuangzhouNorth 7:20:00 7:20:00 7:20:00 7:20:00 

 

The primary influence predictive model was established by preprocessing the data in a 

series of steps summarized as follows: 
➢ Step 1: Gather the data from the database and eliminate abnormal entries such as 

duplicate entries, errors and invalid entries. 

➢ Step 2: Sort the data by actual arrival time in the station.  

➢ Step 3: Select the PD train and obtain the train sequences which do not overtake 

based on PD influence.  
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➢ Step 4: Extract the features of the influence factors and calculate NAT and TTAT 

based on the PD influence sequences.  

Thus, the feature sets of the influence factors of NAT and TTAT were obtained by 

analyzing the mechanism of the PD propagation. These influence factors are described as 

follows: 

D: Primary delay duration of PD,  

I: Scheduled interval between the PD train and the subsequent adjacent train,  

B: 0-1 variable, which is 0 when the PD train does not stop at the station and 1 

otherwise, 

T: Period of a PD occurrence, and classify the period by hour  

N: The number of affected trains if supplement times are fully utilized. 

Table 2 summarizes a sample data after pre-processing： 

 
Table 2: A sample of modeling data 

D I B T N NAT TTAT 

5 6 0 8:00-9:00 2 2 9 

6 7 0 16:00-17:00 3 3 12 

5 8 1 8:00-9:00 3 2 7 

6 6 0 9:00-10:00 3 5 28 

6 7 0 17:00-18:00 2 2 11 

 

In this study, D presents the primary delay train delay duration; I record the scheduled 

headway between the PD train and the first train subsequently; B is a 0-1 variable, and it 

equals to 0 when the PD train does not stop at the station. Otherwise it equals to 1; Classify 

the period by hour and marked T as the period of PD occurs. N indicates the number of 

affected trains when the supplement times were fully utilized. All the factors above are 

obtained when PD occurs based on a real-time timetable. Hence, real-time rescheduling is 

possible if NAT and TTAT predictive models are investigated using these factors.  
The predictive models were established using the data obtained from March 2015 to 

November 2016. Seventy percent of the data was used as the training data while 30% was 

used as the validation data for the model in order to prevent overfitting. Finally, the models 

were evaluated by using data obtained in 2018 as the test data. 

 

4. PREDICTIVE MODEL OF NAT AND TTAT 

4.1 The predictive model of NAT 

 

Figure 2 shows the heatmap and 3D histogram of the intensity distribution of PD influence 

over time, which can assist train dispatchers in carrying out risk warnings. The PD duration 

and the period of PD occurrence for GZN station were plotted on the horizontal and vertical 

coordinates, respectively.  
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Figure 2: The NAT heatmap and 3D histogram of GZN station 

 

The influence factors of NAT (G) are D, B, I, T, and N. NAT is a discrete random 

variable whose prediction is a classification problem. The output of the model is set to S 

while the feature set of the influence factors is the input such that the relationship between 

S and G is 

 

 ( , , , , )S D B T I N=   (1) 

where  is the classification algorithm. When NAT > 5, the sample size corresponding 

to each value is small, and the distribution is discrete. Thus, the NAT values that were 

greater than 5 were classified as 6 and more. Finally, NAT was divided into six categories 

(1 / 2 / 3 / 4 / 5 / 6 and more). 

Meanwhile, XGBOOST was used as the classification algorithm. It is an improved 

algorithm based on gradient boosting decision tree which is highly efficient and flexible 
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and can be used for solving regression and classification problems. For a given dataset with 

n ensembles and m features, the result ˆ
i

y  is given by an ensemble represented by the model 

as follows: 

 

  1 2( , ) : , , ... , ,
m

i i i i
D x y i n x R y R= =     (2) 

 ( )
1

ˆ ( ),
K

i i k i k

k

y x f x f F
=

= =    (3) 

  ( ) :
( )

m TF f X w q R T w R
q x

 
= = ⎯⎯→  

 
，   (4) 

 

where 
k

f  is a regression tree (also known as CART), ( )
k i

f x represents the score given 

by the k-th tree to the i-th sample in the data, q represents the structure of each tree that 

maps an example to the corresponding leaf index, and T is the number of leaves in the tree. 

Each 
k

f corresponds to an independent tree structure q and leaf weight w. 

 Minimizing the regularized function to give the objective function： 

 

 ( ) ˆ( , ) ( )
i i k

i k

l y y f = +     (5) 

 

where l is the loss function and   is the penalty term to prevent overfitting and 

complexity of the model, given as: 

   

 ( )f T w  = +
21

2
  (6) 

   

where   and  control the penalty based on T and w, respectively. 

Furthermore, an iterative method was used to minimize the objective function. The 

objective function which is minimized at t-th iteration is 

 

 
( ) ( )ˆ( , ( )) ( )

n
t t

i i t i t

i

l y y f x f−

=

= + + 1

1

  (7) 

 

Using Taylor expansion, Eqn. (7) can be derived for loss reduction after the tree splits 

from the given node as 

 

 L R

L R

i ii I i I ii I

split

i i ii I i I i I

g g g

h h h


  

  

  

 
 = + − −

+ + + 
 

  
  

2 2 2
1

2

（ ） （ ） （ ）
  (8) 

 

where  

 

 

( ) ( )

( ) ( )

ˆ ˆ( , ) ( , )
,

ˆ ˆ

t t

i i i i

i it t

i i

L y y L y y
g h

y y

− −

− −

 
= =

 

1 2 1

1 1
  (9) 
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where I is a subset of the available observations in the current node, and 
R

I and 
L

I  are 

subsets of the available observations in the left and right node after the split, respectively. 

The best split can be found using Eqn. (8) at any given node, which is based on the 

regularization parameter (  ) and the loss function. 

The detailed derivation is presented by (Chen and Guestrin, 2016). 

To evaluate the predictive accuracy of the XGBOOST algorithm, other classification 

algorithms such as random forest (RF), support vector machine (SVM), Logistic Regression 

(LR) and K-nearest neighbor (K-NN) were used as the evaluation criteria. The optimal 

parameter value of each algorithm was calculated using hyperparametric search. Accuracy 

was then used as the standard measure to assess the predictive precision of the model, which 

is calculated as follows： 
 

c

a

N
ACCURACY

N
=  

 

where
c

N : Sample size of correct classification, and 

a
N : Total sample size.  

The accuracy of each classification algorithm using validation data at different stations 

is shown in Table 3 and Figure 3. 

Table 3: NAT predictive accuracy using different classification algorithms 

 RF XGBOOST SVM LR KNN 

GZN 0.7711 0.7766* 0.7520 0.6676 0.7084 

QY 0.7105 0.8005* 0.6972 0.5642 0.7864 

YDW 0.7200 0.7200* 0.7200 0.6400 0.6933 

SG 0.6453 0.6816* 0.6065 0.5375 0.6271 

LCE 0.7573 0.7908* 0.7414 0.6837 0.7774 

CZW 0.7239 0.7692* 0.6916 0.6099 0.7658 

LYW 0.7173 0.7589* 0.6922 0.6182 0.7543 

HYE 0.7544 0.7424* 0.6393 0.5773 0.7246 

HSW 0.7316 0.7677* 0.6677 0.6098 0.7231 

ZZW 0.6799 0.7266* 0.6173 0.6072 0.7165 

CSS 0.6805 0.7427* 0.6473 0.6017 0.6390 

* indicate the best predictive accuracy  
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Figure 3: NAT predictive accuracy using different classification algorithms 

 

The results show that (1) the XGBOOST algorithm has the highest accuracy at all 

stations in comparison with other algorithms; (2) the accuracy value of XGBOOST 

algorithm maintained high levels (up to 0.7) at all stations except at SG. This proves that 

the NAT predictive model based on the XGBOOST algorithm has good precision. 

The timetable and infrastructure of the Wuhan-Guangzhou HSR station from 2015 to 

2016 do not change significantly in comparison with 2018 data. Hence, the train operation 

data can be used as validation data to evaluate the precision of the model based on the data 

obtained from 2015 to 2016. Meanwhile, the data obtained from March to July 2018 were 

used as test data to evaluate the application of the model over time. The results of the 

predictive accuracy at different stations are shown in Figure 4. 
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Figure 4: XGBOOST algorithm predictive accuracy of NAT in 2018 

 

The model has a good precision and high accuracy (up to 0.7) in the stations at Wuhan-

Guangzhou HSR station except for LYW and HYE. When this is combined with the 

accuracy values of the validation data, the results indicate that the model based on 

XGBOOST algorithm can accurately predict the number of affected trains by PD at Wuhan-

Guangzhou HSR station.  

4.2 The predictive model of TTAT 

TTAT is another indicator that measures the severity of the PD influence. The overall scope 

of influence can be determined by combining TTAT and NAT results. The specific 

derivation process is described below: 

Given a PD influence sequence, the TTAT and NAT are given as 
td

T  and 
1

N  , 

respectively, while the delay duration of i-th train is i

at
T . The discriminant relationship is 

obtained as follows: 

IF i =1; THEN, the TTAT of the PD sequence is 
td

T , while NAT is 
1

N , 

IF  i N  11 ; THEN, the subsequent TTAT of the PD sequence is 
N

i

td at

i

T t
=

−
1

1

, while 

NAT is 
1

N i− .  

The heatmap and 3D histogram of the TTAT for GZN station are shown in Figure 5. 
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Figure 5: The TTAT heatmap and 3D histogram of GZN station 

 
Because TTAT strongly depends on NAT, the predictive model is established based on 

the NAT model. Thus, the prediction is set as S  and Y for NAT and TTAT, respectively. 

Hence, TTAT predictive model is expressed as 

  

 ( , , , , , )Y D B T I N S =   (10) 

  is a regression algorithm as TTAT is a continuous variable. The TTAT model was 

established using SVR, and compared with several algorithms such as RF, XGBOOST, 

Ridge regression (Ridge), and Lasso regression (LASSO) 

Given a data set  1 2( , ) : , , ... , ,
m

i i i i
D x y i n x R y R= =   , where i

x  denotes the i
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nput and i
y  the output of the sample. The goal of SVR is to find a function (x)f  t

hat has the most deviation (  ) from the actual and predicted values. (x)f is defined 

as 
T

(x) x+f w b= , where w  is a hyperplane direction and b is an offset scalar. 

 The objective function is expressed as follows： 

 

 

( )

( )

1

1 2

2

0 1 2

, , ,

*

x
s.t.

, , , , ...,

m

i i
iw b

i i

i i i i

i i

min C

f y

i m

 

 

   

 



 =



= + +

− −  −  +


 =

w

  (11) 

 

where C is a penalty factor which determines the trade-off between the flatness of f and 

the values to which deviations larger than   are tolerated. The  -insensitive loss function 


  is given as 

 

 
, ;

.

if

otherwise

 


 

 
= 

−

0
：

，
  (12) 

 

Using Lagrange multipliers, Eqn. (11) can be expressed as 

 

 

( )
1 1 1

1 1

1 2

2

*

* * * * *

*

( , , , , , , , )

( (x ) ) ( (x ) )
i

m m m

i i i i i i i i
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m m
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= =
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w

  (13) 

 

The optimal solution can be obtained by solving Eqn. (13) to yield 

 

 
1

1

* T

* T

(x)= ( )x x+

( )x x+

m

i i i

i

m

i i i i

i

f b

b y b

 

  

=

=

−

= + − −




  (14) 

 

The detailed derivation is presented by (Smola and Schölkopf, 2004). To evaluate the 

model, Lessthan5 variable was defined which is given as 

 

5 d

a

N
Lessthan

N
= .  

where d
N : The sample size of the absolute value of the difference between the actual 

and predicted values in less than 5 min. 

a
N : Total sample size. 

The optimal parameter value of each algorithm was calculated using hyperparametric 

search. The Lessthan5 value of each algorithm is shown in Table 4 and Figure 6.  
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 Table 4: TTAT Lessthan5 value using different algorithms  
RF XGBOOST SVR Ridge LASSO 

GZN 81.638 81.638 85.311* 79.096 80.508 

QY 77.526 77.526 78.739* 76.395 77.850 

YDW 70.000 70.000 74.286* 70.000 71.429 

SG 74.444 74.444 76.173* 73.827 74.321 

LCE 83.761 83.761 84.444* 78.291 79.915 

CZW 76.590 76.590 77.009* 72.676 72.467 

LYW 76.410 76.410 77.098* 72.765 73.040 

HYE 73.829 73.829 74.582* 72.324 71.739 

HSW 74.917 74.917 75.116* 69.927 69.661 

ZZW 76.362 76.362 76.510* 72.680 71.355 

CSS 80.090 80.090 81.900* 78.281 78.281 

* indicate the maximum Lessthan5 value in different regression algorithms 

 
 

Figure 6: Lessthan5 value of TTAT using different algorithms 

 

The results indicate that (1) the SVR algorithm has the highest Lessthan5 value at the 

stations in comparison with other algorithms. This proves that the SVR algorithm is the best 

algorithm for the TTAT predictive model. (2) The TTAT predictive accuracy of SVR 

algorithm at all stations was ~0.74, which proves that the SVR algorithm has good 

predictive accuracy. 

Furthermore, 2018 data were used as the validation data to evaluate the application of 

TTAT model over time. The Lessthan5 values of the validation data for Wuhan-Guangzhou 

HSR stations are shown in Figure 7. 
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Figure 7: SVR algorithm predictive accuracy of TTAT in 2018 

 

The TTAT predictive model has good predictive accuracy (~0.71) in most of the stations 

except LYW and HYE. The low precision of TTAT model for LYW and HYE is due to the 

low precision of NAT predictive model for these stations.  

5. CONCLUSION  

Prediction of the severity of PD influence in a station can assist the train dispatcher to 

develop rescheduling strategies and adjust the work plan of the station accordingly. The 

NAT and TTAT influence factors were determined by analyzing the mechanism of the PD 

propagation process. Moreover, the NAT and TAT predictive models were established and 

compared with several algorithms using the influence factors as model input. Data obtained 

from March 2015 to November 2016 were used to establish the models while the application 

of the models over time were evaluated using 2018 data. The main conclusions are as 

follows: 

(1) NAT predictive model has a good predictive accuracy at Wuhan-Guangzhou HSR 

station based on the XGBOOST algorithm. When 2018 data were used as the test 
data, the results showed the NAT predictive model had a good application over 

time. 

(2) NAT prediction results were used as the input values of the TTAT predictive model. 

The TTAT model was established using the SVR algorithm and compared with 

other regression algorithms. Furthermore, 2018 data were used as test data to test 

the application of TTAT model over time. The results indicate that the TTAT 

predictive model also has a good predictive accuracy over time. 

(3) When a PD occurs, the influence scope can be obtained accurately using the NAT 
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and TTAT predictive models at each station. This provides a theoretical background 

needed by the dispatcher to develop rescheduling strategies and adjust the station 

work plan accordingly. 
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