

A Mixed Integer Linear Programming Approach to
a Rolling Stock Rostering Problem

with Splitting and Combining

Satoshi Kato a, Naoto Fukumura b, Susumu Morito c

Koichi Goto b, Narumi Nakamura b
a Transport Operation Systems Laboratory

Signalling and Transport Information Technology Division
Railway Technical Research Institute

2-8-38 Hikari-cho, Kokubunji-shi, Tokyo 185-8540, Japan
E-mail: kato.satoshi.58@rtri.or.jp, Phone: +81 (0) 42 573 7311

b JR Souken Information Systems
c Department of Industrial and Management Systems Engineering, Waseda University

Abstract
Railway operators must schedule resources such as rolling stock and crew in order to
operate trains as defined by a timetable. This paper considers scheduling of rolling stock,
which is usually done by creating a roster. A roster is a series of trains to be performed by
the particular rolling stock. The number of train-sets required to operate a given group of
trains is essentially determined by the roster and generation of an efficient roster is
essential. Important considerations of the roster generation include maintenance such as
pre-departure inspection. On some lines in Japan, splitting and combining are often used
to adjust transportation capacity flexibly. Under this type of operation, splitting and
combining become necessary. These shunting operations require time and manpower, so it
is necessary to reduce the amount of splitting and combining. This paper presents a mixed
integer linear programming model so that the amount of splitting and combining is
reduced together with the roster length and the distance of empty runs. Results of
computational studies will be presented based on real instances of several lines in Japan,
indicating the computational effectiveness of the methodology and with respect to the
reasonableness of the resultant rosters.

Keywords
Rolling stock rostering, Splitting and combining, Maintenance, Mixed integer linear
programming, Travelling salesman problem

1 Introduction

Railway operators must schedule resources such as rolling stock and crew in order to
operate trains as defined by a timetable. This paper considers scheduling of rolling stock,
which is usually done by creating a roster. A roster is a series of trains to be performed by
particular rolling stock, and cyclic execution of the roster theoretically determines which
train-sets are assigned to which train. The number of train-sets required to operate a given
group of trains is essentially determined by the roster and generation of an efficient roster
is essential. Important considerations of the roster generation include maintenance such as
pre-departure inspections.

On some lines in Japan, splitting and combining are often used to adjust transportation

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 548

capacity flexibly. For example, two train-sets are combined together (say, two 3-car train-
sets are combined together, thus effectively forming a 6-car train-set) during morning and
evening rush hours, but during the day time, only one train-set is assigned to each train.
Under this type of operation, shunting operations of splitting and combining would
become necessary. These shunting operations require time and manpower, so it is
necessary to reduce the amount of splitting and combining.

Many studies exist on efficient planning and management of rolling stock and a
variety of models and algorithms for optimization have been developed. Abbink et al.
(2004) give an integer programming model to allocate train types so that shortage of
capacity during rush hours is minimized. One fundamental study in the field is Alfieri et al.
(2006), presenting a multi-commodity flow model of rolling stock circulation for
determining the appropriate number of train units of different types together with their
efficient circulation on a single Dutch line. These studies, however, do not consider
maintenance.

Giacco et al. (2014) formulate a rolling stock rostering problem with maintenance
considerations as a generalized travelling salesman problem (TSP) where a roster is
represented as a tour of the associated network. Borndörfer et al. (2016) and Reuther and
Schlechte (2018) dealing with the same problem give a mixed integer programming model
based on a hypergraph. Morooka et al. (2017) present computational experiences with the
Giacco’s model and its variants using real instances of several lines in Japan. Nishi et al.
(2017) propose a column generation and Lagrangian heuristics for rostering with
maintenance considerations.

Regarding research with explicit considerations for splitting and combining, Fioole et
al. (2006) present an integer programming model of rolling stock circulation with
objective criteria such as operational costs, service quality, and reliability including
reduction of shunting movements. Peeters and Kroon (2008) develop a branch-and-price
algorithm for a similar problem. These studies, however, do not consider maintenance.
Tsunoda et al. (2015) give a multi-commodity network flow model to estimate the
required number of train units to meet future traffic demands under a splitting and
combining policy, but do not consider maintenance or reduction of shunting operations.

This paper presents an optimization-based methodology to construct a roster with
maintenance considerations under the existence of splitting and combining. More
specifically, a mixed integer linear programming (MILP) model is proposed based on a
travelling salesman problem with multiple arcs between nodes so that the amount of
splitting and combining is reduced together with the roster length and the distance of
empty runs. Results of computational studies will be presented based on real instances of
several lines in Japan with roughly 100 to 200 trains, indicating the effectiveness of the
methodology computationally and with respect to the reasonableness of the resultant
rosters.

2 Problem Definition

2.1 Rolling Stock Rostering Problem

A rolling stock schedule is produced by covering all trains shown on a train timetable.
Since the number of rolling stock required to meet the train timetable requirements is
determined by a rolling stock schedule, it is necessary to produce an efficient schedule. A
rolling stock schedule must satisfy the minimum time interval between the arrival of a
train and its subsequent departure, together with maintenance requirements as described

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 549

shortly.
A rolling stock schedule is achieved as a cyclic schedule called a roster. A roster is a

finite series of daily schedules performed by a train-set, called duties, which are
performed by a particular train-set in a cyclic fashion. The number of train-sets needed to
implement a given roster coincides with the number of duties in the roster, which is
sometimes called the roster length. Naturally, generating a roster with the shortest roster
length is desirable. Rosters are normally created for each type of train-set.

Important considerations of the roster generation are a type of maintenance that must
be performed within a specified interval. Four types of maintenance occur in Japan;
namely, pre-departure inspection, regular inspection, bogie inspection, and general
inspection. This paper focuses on pre-departure inspections, whose intervals are the
shortest. This is because other inspection types often take at least one day, while pre-
departure inspections only need a few hours and a train-set that has been inspected or is to
be inspected is often assigned to trains within the same calendar day; thus, when to
perform inspections must be determined. Throughout the rest of this paper, pre-departure
inspections are simply called “inspections”.

The scenario considered in this paper often occurs in non-metropolitan cities, and
deals with the case where only k-car train-sets are available, where typical values of k are
2 to 4. During morning and evening rush hours, some trains are operated by combining
two k-car train-sets, thus effectively yielding a 2×k-car train-set. In contrast, except for
these rush hours, services are operated by single k-car train-sets. This type of operation
gives an effective way to utilize the limited number of rolling stock, and is particularly
suited for lines in which rush hour demands differ substantially from those of other time
periods.

In order to achieve the above types of operations, splitting and combining of train-sets
would become necessary. Here, splitting means to split a combined train-set into two
separate train-sets, and combining means to combine two separate train-sets together.
Splitting and combining allow flexible adjustments of traffic capacity, but additional time
and work of operators will be required, so reducing the amount of splitting and combining
is desirable.

Figure 1 shows an example of a rolling stock schedule. In this example, there are four
stations, Stations A through D, and nine trains (in service), Trains 1 through 9. Station C
is adjacent to a rolling stock depot, where the inspection of a train-set can be performed. A
circle means the start of a duty and a triangle means its end. The double lines such as
Trains 2, 6, and 9 indicate what we call “double-unit trains” that are operated by two train-
sets combined together. On the other hand, single lines such as Trains 1, 3, 4, 5, 7, and 8
indicate what we call “single-unit trains” that are operated by a single train-set.

For those double-unit trains shown by double lines, the left lines indicate the front side
of the train-sets, and the right lines indicate the rear side of the train-sets. The two train-
sets operating Train 2 are assigned to two distinct trains, Trains 5 and 7, upon arrival at
Station A, thus indicating the existence of splitting at Station A. In contrast, combining at
Station D would be performed before the departure of Train 6. For this rolling stock
schedule, one splitting as well as one combining would be required. Maintenance is
performed at the depot next to Station C upon the arrival of Train 4, after which the train-
set is deadheaded to Station D.

Figure 2 shows a roster associated with the rolling stock schedule given in Figure 1.
There are six duties, Duties 1 through 6, which are assigned to train-sets in this order.
After performing Duty 6, a train-set is assigned to Duty 1 again, and this cycle will be
repeated. Note that the ending station of a duty coincides with the starting station of the

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 550

subsequent duty so that the train-set can continue the schedule cyclically. The number of
duties, namely, the roster length, corresponds to the minimum number of train-sets
required to achieve the schedule. Duty 3 includes an inspection and this roster contains
one inspection every six days, making the schedule feasible if the upper limit of the
inspection cycle is six days. The letters F and B shown next to Trains 2, 6, and 9 indicate
Front and Back, meaning the front and back halves of the train-sets, respectively. For
example, Train 2 is operated by combining the train-sets of Duty 2 and Duty 5.

Figure 2. Sample rolling stock roster

Duty

1

2

<Inspection>

Train 1

3

D

D

D

4

5

6

Train 6(F) AA Train 9(B)

Train 2(B) A Train 7

Train 3

B

D

ATrain 8

D Train 2(F)

Train 4

Train 5 DA

Train 9(F) DTrain 6(B) A

D Deadhead
D

D

B

C

Figure 1. Sample rolling stock schedule

Station A

Station B

Station C
(Depot)

Station D

Time

<Inspection>

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 551

2.2 Splitting and Combining

This paper considers rolling stock rostering with splitting and combining, and seeks the
generation of practical rolling stock schedules. For this purpose, it is necessary to identify
where splitting and combining occur and to count the exact number of splittings and
combinings. Judging when splitting and combining occur, however, is complicated
because doing so depends not only on the required number of train-sets before and after
train connections, but also on their train positions.

Splitting will always be necessary to connect from a double-unit train to a single-unit
train. Similarly, combining will be necessary to connect from a single-unit train to a
double-unit train. The difficulties occur when a double-unit train is connected to another
double-unit train, where splitting and combining may or may not occur. When the order of
the two train-sets of a double-unit train is the same for the subsequent double-unit train,
splitting or combining are not required. On the other hand, there may be a case requiring
splitting and combining because the order of the two train-sets of a double-unit train is
reversed for the subsequent double-unit train. It is also possible that two train-sets of a
double-unit train are connected to two distinct double-unit trains, which require splitting
and combining. Therefore, it is necessary to look at train positions, since the existence or
non-existence of splitting and combining depends on the train positions.

Figure 3 shows several types of train connections indicating complexities due to
splitting and combining. In Figure 3a, Train 2 connects to Train 1 after changing the
direction of movement, thus requiring no splitting or combining. In Figure 3b, though,
train positions are reversed between the two trains, thus requiring one splitting and one
combining. Considering connections between two incoming trains and two outgoing trains,
Figure 3c shows a case where Train 2 connects to Train 1 and Train 4 to Train 3 keeping
the same train positions, thus requiring no splitting or combining. However, connections
as in Figure 3d are possible where splitting will be required after the arrivals of Trains 2
and 4, and also combining before the departures of Trains 1 and 3. Avoiding such
connections as in Figure 3d which require many splittings and combinings is desirable.

Figure 3. Complication of splitting and combining

(b)(a)

(c) (d)

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 552

We now state our rostering optimization problem with splitting and combining.
1. Given a number of an identical type of train-sets, a single roster would be constructed.
2. Given a set of trains in a given timetable to which train-sets are assigned, the number

of train-sets to be assigned to each train is specified as either 1 or 2 in advance. No
train requires three or more train-sets. We call those trains operated by a single train-
set “single-unit trains”, while those trains operated by two train-sets, are called
“double-unit trains”.

3. Maintenance requirements call for a single type of pre-departure inspection to be
performed within minimum and maximum intervals measured in days.

4. The locations and time period during which inspections could be performed are known
in advance. Generally, there are multiple locations for maintenance.

5. Empty runs could be inserted as needed.
6. Performance measures include the roster length, the total distance of empty runs, and

the amount of splitting and combining, and their weighted sum is to be minimized.

3 Mixed Integer Linear Programming Model for a Rolling Stock
Rostering Problem with Splitting and Combining

3.1 Network Model

Our MILP model is based on the roster optimization model of Giacco et al. (2014), where
a network is considered in which a node corresponds to each train, and an arc to the
connection between trains. We now describe how arcs are drawn in the network. For each
connection from node 𝑖𝑖 (its associated train) to node 𝑗𝑗 (its associated train), we check if an
arc can be drawn by grouping them into four different types, as follows.

(i) No empty run and no inspection

(ii) Inspection and no empty run

(iii) Empty run and no inspection

(iv) Empty run and inspection

In the following, the details of arc settings for each type will be described. Notations
used for the network model are defined in Table 1.

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 553

Table 1: Notations for the network model
Notation Definition
𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 Arrival time at the destination of the train corresponding to node 𝑖𝑖
𝑑𝑑𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 Departure time at the origin of the train corresponding to node 𝑖𝑖
𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 Destination station of the train corresponding to node 𝑖𝑖
𝑑𝑑𝑡𝑡𝑑𝑑_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 Origin station of the train corresponding to node 𝑖𝑖
𝑡𝑡𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 Time of empty run from destination station of the train corresponding

to node 𝑖𝑖 to origin station of the train corresponding to node 𝑗𝑗
𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑖𝑖_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 Earliest possible start time of inspection
𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑎𝑎𝑚𝑚_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 Latest possible completion time of inspection
𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 Time required for inspection

𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 Minimum time interval between two trains

Type 1: No Empty Run and No Inspection
An arc is drawn if 𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 is equal to 𝑑𝑑𝑡𝑡𝑑𝑑_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 . If 𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 + 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 ≤
𝑑𝑑𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 , the arc is set as a same-day arc. That is, the date remains the same after
passing through the arc. If 𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 + 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 > 𝑑𝑑𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖, the arc is set as a
next-day arc. That is, the date changes by one after passing through the arc.

Type 2: Inspection and No Empty Run
An arc is drawn if 𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 is equal to 𝑑𝑑𝑡𝑡𝑑𝑑_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 , and also if 𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 is a station capable
of performing an inspection.
1. Case where an inspection is performed the same day

An arc is drawn as a same-day arc if the following condition is satisfied:

max{𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 , 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑖𝑖_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡} + 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 ≤ min{𝑑𝑑𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 , 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑎𝑎𝑚𝑚_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡} (1)

Judge if an inspection is possible within the same day.
2. Case where an inspection is performed the next day

An arc is drawn as a next-day arc if the following condition is satisfied:

max{𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 , 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑖𝑖_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡} + 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 > min{𝑑𝑑𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 , 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑎𝑎𝑚𝑚_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡}
∧ 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑖𝑖_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 + 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 ≤ 𝑑𝑑𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖

(2)

Here an inspection can be started at 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑖𝑖_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 the next day.

Type 3: Empty Run and No Inspection
An arc is drawn when 𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 is different from 𝑑𝑑𝑡𝑡𝑑𝑑_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 . The arc is set as a same-day
arc if the following condition is satisfied. Otherwise, the arc is set as a next-day arc.

𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 + 2 ∗ 𝑖𝑖𝑖𝑖𝑡𝑡𝑡𝑡𝑎𝑎𝑖𝑖𝑎𝑎𝑖𝑖_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 + 𝑡𝑡𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 ≤ 𝑑𝑑𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 (3)

Type 4: Empty Run and Inspection
An arc is drawn when 𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 and 𝑑𝑑𝑡𝑡𝑑𝑑_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 are different, and also if either 𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 or
𝑑𝑑𝑡𝑡𝑑𝑑_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 is a station capable of performing an inspection (we assume that this station is
adjacent to the rolling stock depot).

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 554

1. Case where an inspection is performed at 𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 the same day
If the following condition is satisfied, the arc is set as a same-day arc.

max{𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 , 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑖𝑖_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡} + 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡
≤ min{𝑑𝑑𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑎𝑎𝑚𝑚_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡}

(4)

Judge if an inspection is possible within the same day.

2. Case where an inspection is performed at 𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 the next day

If the following condition is satisfied, the arc is set as a next-day arc.
max{𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 , 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑖𝑖_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡} + 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡

> min{𝑑𝑑𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑎𝑎𝑚𝑚_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡}
∧ 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡_𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 ≤ 𝑑𝑑𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 − 𝑡𝑡𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖

(5)

Here an inspection can be started at 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡_𝑡𝑡𝑖𝑖𝑖𝑖 the next day.

3. Case where an inspection is performed at 𝑑𝑑𝑡𝑡𝑑𝑑_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 the same day

If the following condition is satisfied, the arc is set as a same-day arc.

max{𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 + 𝑡𝑡𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑖𝑖_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡} + 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡
≤ min{𝑑𝑑𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖, 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑎𝑎𝑚𝑚_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡}

(6)

Judge if an inspection is possible within the same day.

4. Case where an inspection is performed at 𝑑𝑑𝑡𝑡𝑑𝑑_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 the next day

If the following condition is satisfied, the arc is set as a next-day arc.
max{𝑎𝑎𝑎𝑎𝑎𝑎_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖 + 𝑡𝑡𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖𝑖𝑖 , 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑖𝑖_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡} + 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡

> min{𝑑𝑑𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖, 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑎𝑎𝑚𝑚_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡}
∧ 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡_𝑡𝑡𝑖𝑖𝑖𝑖 + 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡 ≤ 𝑑𝑑𝑡𝑡𝑑𝑑_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡𝑖𝑖

(7)

Here empty run is inserted on the same day the train arrives at 𝑎𝑎𝑎𝑎𝑎𝑎_𝑠𝑠𝑡𝑡𝑎𝑎𝑖𝑖 and then an
inspection can be started at 𝑖𝑖𝑖𝑖𝑠𝑠_𝑡𝑡𝑖𝑖𝑡𝑡𝑡𝑡_𝑡𝑡𝑖𝑖𝑖𝑖 the next day.

3.2 Modelling as a Travelling Salesman Problem

Since several arcs in type 1 to 4 are set between nodes, the network generally includes
multiple arcs between nodes. The model of Giacco et al. tries to find an optimal
Hamiltonian path on the network in such a way that maintenance requirements are
satisfied. Note that the problem becomes a generalized TSP on the (directed) network with
multiple arcs. With regard to performance measures, the roster length could be measured
by assigning a weight of 1 to the arc when the transition between nodes corresponds to
date change; 0, otherwise. Similarly, the empty distance could be measured by assigning
an empty distance to the arc when the transition between nodes includes an empty run.

Figure 4 shows a network for the services of five trains and the nodes correspond to
these trains. Four possible types of arcs exist between a pair of nodes, and only feasible
arcs are drawn.

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 555

3.3 Model Extensions for Splitting and Combining

Basic Idea
In our problem, there are two different types of trains, namely, single-unit trains and
double-unit trains. This is modeled within the framework of the Giacco model by
“dualizing” nodes for the double-unit trains. That is, two distinct nodes are prepared for
those double-unit trains.

Whether splitting and/or combining operations are needed is partially judged by
examining two consecutive nodes on the selected tour. If two adjacent nodes on the tour
are both single-unit trains, then there is no shunting operation between them, but if the
adjacent nodes call for a different number of train-sets, at least one shunting operation will
definitely be needed between them. However, when the transition goes from one double-
unit train to another double-unit train, it is possible that splitting and combing operations
would be needed despite the fact that the same composition of two train-sets of the
previous train may remain the same for the next train without shunting operations.

Train Position
In order to consider splitting and combining, we now define what we call “train position”,
which is sometimes simply called “position”. The train position of a single-unit train is
defined to be 0, with the train position of a double-unit train being 1 and 2. Here, the train
position of a double-unit train represents an absolute geographic position. For example,
the east side represents 1, and the west side 2, if the line extends in the east-west direction.
Then, the train position of east-bound double-unit train 1M will be 1 for the front half of
the train-sets, and 2 for the rear half. On the other hand, the train position of west-bound
double-unit train 2M will be 2 for the front half of the train-sets, and 1 for the rear half.
Assigning train positions allows us to judge the existence of splitting and combining
during connections of double-unit trains. In the above example, if train 1M connects to

Figure 4: An example of the network model

Sta. A → Sta. C
7:00 → 10:00

Sta. A → Sta. C
17:00 → 21:00

Type 1

Type 2

Type 3

Type 4

Sta. C → Sta. B
12:00 → 14:00

Sta. B → Sta. C
16:00 → 18:00

Sta. C → Sta. A
9:00 → 13:00

1

2

3 4

5

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 556

train 2M with the same train positions, no splitting and combining would occur as the
connection keeps the same train composition. However, if train positions change after the
connection from 1M to 2M in such a way that the positions are reversed (i.e., 1→2, 2→1),
splitting is required first, then reversing the order of two train-sets, and finally combining
the two train-sets together, thus requiring one splitting and one combining.

In our modification of the original Giacco model to consider splitting and combining,
the network model is revised in such a way that each double-unit train is represented by
two nodes, as mentioned above. In particular, for each double-unit train, we prepare one
node with train position 1, and another node with train position 2. On the other hand, each
single-unit train is represented by a single node with train position 0, just like the original
Giacco model.

3.4 Counting the Amount of Splitting and Combining Based on Train Positions of

Connection

Following the basic approach described above, we explicitly count in our model the
amount of splitting and combining by judging the existence or non-existence of splitting
and combining based on the information of train positions of trains before and after
connections.

To do so, we separate the case of splitting from the case of combining. From a network
viewpoint, this corresponds to separating considerations of the predecessor node of an arc
from considerations of the successor node of the arc.

Splitting
(A) Connection from train position 0

This corresponds to a connection from a single-unit train, and therefore there is no
splitting.

(B) Connection from train position 1
Here situations differ depending on the train positions after the connection.
(B1) Connection to train position 0

This case corresponds to a connection from a double-unit train to a single-unit
train, so splitting occurs. We thus increment the number of splittings by one.

(B2) Connection to train position 1
This is the connection from position 1 to position 1, so there is no splitting,
provided that the train-set of position 2 (before connection) connects to the
same train as the train of position 1 (after connection). However, if the train-set
of position 2 connects to a different train from the train of position 1 (after
connection), splitting will be required. Therefore, the number of splittings will
be either 0 or 1 depending on the status of position 2.

(B3) Connection to train position 2
The trains before and after connection are both double-unit trains in this case.
As described in Section 3.3, whenever a train position changes, splitting is
always required, so we increment the number of splittings by one.

(C) Connection from train position 2
For each train with position 2, there is always the same train with position 1. When
splitting occurs, it will be counted in case B, above, for position 1. To avoid double
counting, we assume that no splitting occurs for a connection from train position 2.

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 557

Combining
(D) Connection to train position 0

This corresponds to a connection to a single-unit train, so there is no combining.
(E) Connection to train position 1

Here situations differ depending on the train positions before the connection.
(E1) Connection from train position 0

This case corresponds to a connection from a single-unit train to a double-unit
train, so combining occurs. We increment the number of combinings by one.

(E2) Connection from train position 1
This is the connection from position 1 to position 1, so there is no combining,
provided that the train-set of train position 2 (after connection) connects from
the same train as the train of position 1 (before connection). However, if the
train-set of position 2 connects from a different train from the train of position 1
(before connection), combining will be required. Therefore, the number of
combinings will be either 0 or 1 depending on the status of position 2.

(E3) Connection from train position 2
The trains before and after connection are both double-unit trains in this case.
As described in Section 3.3, whenever a train position changes, combining is
always required, so we increment the number of combinings by one.

(F) Connection to train position 2
For each train with position 2, there is always the same train with position 1. When
combining occurs, it will be counted in case E above for position 1. To avoid double
counting, we assume that no combining occurs for a connection from train position 2.

Application to Our Model
What is described above will be combined with the network model of Section 3.1 to
derive the modified model, as will be described in detail below:
1. The case of B1, B3, E1, and E3

Add cost to the corresponding arc.
2. The case of B2 and E2

Existence or non-existence of splitting and combining depends on position 2, so the
amount of splitting and combining is counted based on the position 2 after the
connection. In order to count splitting and combining, we adopt several logical
conditions. The details of this method will be described in the next section.

Following the basic approach described above, we explicitly count in our model the
amount of splitting and combining by judging the existence or non-existence of splitting
and combining based on the information of positions of trains before and after
connections.

3.5 MILP Formulation

We now formulate the MILP problem. Notations for the MILP formulation are described
in Table 2. Constraints can be classified into the four categories: assignment constraints,
subtour elimination constraints, inspection constraints, forcing constraints for splitting and
combining, and other constraints.

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 558

Table 2. Notation for MILP formulation
Notation Definition

𝑉𝑉 Set of nodes (Set of trains 𝑖𝑖, Index ranges over 0,1, … , |𝑉𝑉| − 1)
𝑉𝑉1 Set of nodes with train position 1
𝐴𝐴 Set of arcs
𝐴𝐴1 Set of arcs with no empty run and no inspection
𝐴𝐴2 Set of arcs with inspection and no empty run
𝐴𝐴3 Set of arcs with empty run and no inspection
𝐴𝐴4 Set of arcs with empty run and inspection
𝐾𝐾 Set of arc types
𝑐𝑐𝑖𝑖𝑖𝑖𝑘𝑘 1 if the date changes when the arc from node 𝑖𝑖 to node 𝑗𝑗 of type 𝑘𝑘 is

selected, and 0 otherwise
𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘 Distance of an empty run between nodes 𝑖𝑖, 𝑗𝑗 of type 𝑘𝑘 (will be positive

when 𝑘𝑘 is 3 or 4, and 0 when 𝑘𝑘 is 1 or 2)
𝑡𝑡𝑖𝑖𝑖𝑖𝑘𝑘 Additional cost for splitting and combining between nodes 𝑖𝑖, 𝑗𝑗 of type 𝑘𝑘
𝑖𝑖 Lower limit of the inspection interval (in days)
𝑡𝑡 Upper limit of the inspection interval (in days)
𝑑𝑑𝑖𝑖 Node with train position 2 which shares the same train as node 𝑖𝑖 with

train position 1
𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘 1 if the arc between nodes 𝑖𝑖, 𝑗𝑗 of type 𝑘𝑘 is selected, and 0 otherwise
𝑦𝑦𝑖𝑖𝑖𝑖 Order of the arc between nodes 𝑖𝑖, 𝑗𝑗 on the selected tour
𝑧𝑧𝑖𝑖𝑖𝑖𝑘𝑘 Number of days since previous inspection of the arc between nodes

𝑖𝑖, 𝑗𝑗 of type 𝑘𝑘 on the selected tour
𝑎𝑎𝑖𝑖 1 if connection from node 𝑖𝑖 with train position 1 requires splitting,

0 otherwise
𝑠𝑠𝑖𝑖 1 if connection to node 𝑖𝑖 with train position 1 requires combining,

0 otherwise

Assignment Constraints

� � 𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖:(𝑖𝑖,𝑖𝑖,𝑘𝑘)∈𝐴𝐴𝑘𝑘∈𝐾𝐾

= 1, ∀𝑖𝑖 ∈ 𝑉𝑉 (8)

� � 𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖:(𝑖𝑖,𝑖𝑖,𝑘𝑘)∈𝐴𝐴𝑘𝑘∈𝐾𝐾

= 1, ∀𝑗𝑗 ∈ 𝑉𝑉 (9)

Equation (8) ensures that only one arc which emanates from node 𝑖𝑖 is selected, and
equation (9) ensures that only one arc which enters node 𝑗𝑗 is selected.

Subtour Elimination Constraints

�𝑦𝑦𝑖𝑖𝑖𝑖
𝑖𝑖∈𝑉𝑉

= �𝑦𝑦ℎ𝑖𝑖
ℎ∈𝑉𝑉

+ 1, ∀𝑖𝑖 ∈ 𝑉𝑉/{0} (10)

𝑦𝑦𝑖𝑖𝑖𝑖 ≤ |𝑉𝑉|�𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘

𝑘𝑘∈𝐾𝐾

, ∀𝑖𝑖 ∈ 𝑉𝑉,∀𝑗𝑗 ∈ 𝑉𝑉 (11)

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 559

�𝑦𝑦0𝑖𝑖
𝑖𝑖∈𝑉𝑉

= 1 (12)

Subtours of the TSP would be eliminated by equations (10) to (12).

Inspection Constraints

� � 𝑧𝑧𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖:(𝑖𝑖,𝑖𝑖,𝑘𝑘)∈𝐴𝐴𝑘𝑘∈𝐾𝐾

= � � �𝑐𝑐𝑖𝑖𝑖𝑖𝑘𝑘 𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘 + 𝑧𝑧𝑖𝑖𝑖𝑖𝑘𝑘 �
𝑖𝑖:(𝑖𝑖,𝑖𝑖,𝑘𝑘)∈𝐴𝐴1∪𝐴𝐴3𝑘𝑘∈𝐾𝐾

+ � � 𝑐𝑐𝑖𝑖𝑖𝑖𝑘𝑘𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘

𝑖𝑖:(𝑖𝑖,𝑖𝑖,𝑘𝑘)∈𝐴𝐴2∪𝐴𝐴4𝑘𝑘∈𝐾𝐾

,∀𝑖𝑖 ∈ 𝑉𝑉 (13)

𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘 ≤ 𝑧𝑧𝑖𝑖𝑖𝑖𝑘𝑘 , ∀(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) ∈ 𝐴𝐴2 ∪ 𝐴𝐴4 (14)

𝑡𝑡𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘 ≥ 𝑧𝑧𝑖𝑖𝑖𝑖𝑘𝑘 , ∀(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) ∈ 𝐴𝐴 (15)
The number of days since a previous inspection on a tour is calculated by equation (13).

The first term corresponds to the case without inspection, and the second term the case
with inspection. Lower and upper limits of the inspection interval are ensured by
equations (14) and (15), respectively. With equations (13) to (15), inspections will be
performed within the specified inspection intervals.

Forcing Constraints for Splitting and Combining
We now create logical conditions which say that a splitting would occur if for each
double-unit train, position 1 is connected, and also if position 2 is not connected to the
identical train, splitting will occur.

�𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘

𝑘𝑘∈𝐾𝐾

= 1 ∧ �𝑚𝑚𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗
𝑘𝑘

𝑘𝑘∈𝐾𝐾

= 0 ⟶ 𝑎𝑎𝑖𝑖 = 1, ∀𝑖𝑖 ∈ 𝑉𝑉1,∀𝑗𝑗 ∈ 𝑉𝑉1 (16)

The above logical conditions will be transformed into the following linear constraints:

�𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘

𝑘𝑘∈𝐾𝐾

−�𝑚𝑚𝑝𝑝𝑖𝑖𝑝𝑝𝑗𝑗
𝑘𝑘

𝑘𝑘∈𝐾𝐾

≤ 𝑎𝑎𝑖𝑖 , ∀𝑖𝑖 ∈ 𝑉𝑉1,∀𝑗𝑗 ∈ 𝑉𝑉1 (17)

The case of combining would be similar to that of splitting. Logical conditions which
say that combining would occur if for each double-unit train, position 1 is connected, and
also if position 2 is not connected to the identical train, combining will occur.

�𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘

𝑘𝑘∈𝐾𝐾

= 1 ∧ �𝑚𝑚𝑝𝑝𝑗𝑗𝑝𝑝𝑖𝑖
𝑘𝑘

𝑘𝑘∈𝐾𝐾

= 0 ⟶ 𝑠𝑠𝑖𝑖 = 1, ∀𝑖𝑖 ∈ 𝑉𝑉1,∀𝑗𝑗 ∈ 𝑉𝑉1 (18)

The above logical conditions will be transformed into the following linear constraints:

�𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘

𝑘𝑘∈𝐾𝐾

−�𝑚𝑚𝑝𝑝𝑗𝑗𝑝𝑝𝑖𝑖
𝑘𝑘

𝑘𝑘∈𝐾𝐾

≤ 𝑠𝑠𝑖𝑖 , ∀𝑖𝑖 ∈ 𝑉𝑉1,∀𝑗𝑗 ∈ 𝑉𝑉1 (19)

Other Constraints
Other constrains are as follows.

𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘 ∈ {0,1}, ∀(𝑖𝑖, 𝑗𝑗, 𝑘𝑘) ∈ 𝐴𝐴 (20)

𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 0, integer, ∀𝑖𝑖 ∈ 𝑉𝑉,∀𝑗𝑗 ∈ 𝑉𝑉 (21)

𝑧𝑧𝑖𝑖𝑖𝑖𝑘𝑘 ≥ 0, ∀(𝑖𝑖, 𝑗𝑗,𝑘𝑘) ∈ 𝐴𝐴 (22)

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 560

Objective Function
Under constraints (8) to (15), (17), and (19) to (22), the following objective function is
minimized:

𝛼𝛼 � 𝑐𝑐𝑖𝑖𝑖𝑖𝑘𝑘 𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘

(𝑖𝑖,𝑖𝑖,𝑘𝑘)∈𝐴𝐴

+ 𝛽𝛽 � 𝑑𝑑𝑖𝑖𝑖𝑖𝑘𝑘 𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘

(𝑖𝑖,𝑖𝑖,𝑘𝑘)∈𝐴𝐴

+ 𝛾𝛾 � � 𝑡𝑡𝑖𝑖𝑖𝑖𝑘𝑘𝑚𝑚𝑖𝑖𝑖𝑖𝑘𝑘

(𝑖𝑖,𝑖𝑖,𝑘𝑘)∈𝐴𝐴

+ � 𝑎𝑎𝑖𝑖 + 𝑠𝑠𝑖𝑖
𝑖𝑖∈𝑉𝑉1

� (23)

The first term in equation (23) indicates the roster length (the number of days required
to complete the roster, which is equivalent to the number of train-sets required to perform
the roster), and the second term shows the total distance of empty runs. The third and
fourth terms mean the amount of splitting and combining. The third one indicates the sum
of additional costs for splitting and combining in the case of B1, B3, E1, and E3 described
in Section 3.4. The fourth one is the sum of splitting and combining, which is calculated
by the logical conditions (16) and (18) in the cases of B2 and E2 described in Section 3.4.
Here, 𝛼𝛼, 𝛽𝛽, and 𝛾𝛾 are weight parameters.

4 Case Study

4.1 Lines and Settings

The proposed methodology is evaluated based on real instances of several lines in Japan
with roughly 100 to 200 train services. Table 3 shows the details of each railway line,
namely, the number of trains (sum of the single-unit trains and the double-unit trains), the
number of the double-unit trains, the numbers of nodes and arcs in the network, together
with the line length. The four lines are designated as A, B, C, D and for Lines B and C,
problem instances with the reduced numbers of nodes by fixing some more or less
obvious connections are added, namely Instances B-133 and B-147 for the original
Instance B-161, and Instance C-177 for the original Instance C-256. In total, seven
instances are tested. The numbers of trains range roughly from 100 to 200 which are
typical in Japanese railways, and splitting and combining are performed in all these lines.
Even though Line D involves fewer trains than Line C, the number of nodes of Instance
D-258 is slightly more than those of Instance C-256 because Line D has more double-unit
trains.

In our experiments, the proposed approach was evaluated based on the roster length,
the total distance of empty runs, the amount of splitting and combining, and the
computational time. We also analysed how solutions change when parameter weights are
adjusted. The proposed algorithm was tested on a PC with Windows 10 Professional (64
bit), Core i7-8700K, and 64 GB RAM. In addition, Gurobi Optimizer 8.1.0 was used to
solve the MILP model.

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 561

Table 3: Details of actual railway lines

Instance No. of trains No. of double-
unit trains

No. of
nodes

No. of
arcs

Line length
(km)

A-121 89 32 121 20,173 148.6
B-133 114 19 133 24,743 112.8
B-147 128 19 147 30,025 112.8
B-161 142 19 161 35,021 112.8
C-187 153 34 187 49,622 206.1
C-256 217 39 256 88,370 206.1
D-258 178 80 258 83,434 197.5

4.2 Results of Computational Experiments

Table 4 summarizes results of our computational experiments. Weight parameters were
set at 𝛼𝛼 = 1 , 𝛽𝛽 = 0.001 , and 𝛾𝛾 = 0.01 in these experiments. Computations were
terminated after the maximum CPU time of 10,800 seconds, and the best results obtained
at termination were shown if the maximum CPU time was reached before optimality.

Table 4 indicates that the optimal solutions were obtained except for Instance D-258.
The total distances of the empty runs also appear to be reasonably small compared to line
lengths. The number of splittings and combinings were either 8 or 10, which are small if
we consider the numbers of the double-unit trains. Generally, good practical schedules
were judged to be obtained for all instances. Instance D-258, however, could not be
solved to optimality after the time limit of 10,800 seconds, even though the solution
quality seemed to be good enough. Considering the fact that Instance D-258 required
substantially more CPU time than Instance C-256 whose number of nodes and arcs are
comparable to those of Instance D-258, it appears that the more double-unit trains we
have, the more difficult is solving the instance, provided that the number of nodes is
approximately the same.

Tables 5 and 6 show the effects of changing weight parameters 𝛽𝛽 and 𝛾𝛾 (by fixing 𝛼𝛼 =
1) for bigger Instances C-256 and D-258, respectively. Since the roster length is constant
regardless of whether the parameter is 𝛽𝛽 or 𝛾𝛾 , the roster length is considered to be
minimized in each instance. Under the weight parameter 𝛾𝛾 = 0, the amount of splitting or
combining jumps up unreasonably high, which implies that in order to obtain practically
reasonable results, counting and reducing the amount of splitting and combining must be
included in the model mechanisms. We found that raising the value of 𝛾𝛾 even just a little
reduced the amount of splitting and combining, and making 𝛽𝛽 relatively larger is more
effective. It should also be noted that optimal solutions are obtained quickly when 𝛾𝛾 = 0,
but as 𝛾𝛾 is increased above zero, optimality could not be reached within the set CPU time
limit in many instances. This could be attributed to the fact that logical conditions were
introduced into the model to count the amount of splitting and combining, which makes
the problem difficult to solve. Considering the fact that practically good upper bounds are
obtained, CPU times could be reduced by improving the LP lower bounds with the
generation of effective cuts.

The results in Tables 5 and 6 indicate that reduction of splitting and combining would
be essential to obtain a reasonable roster. Otherwise, the resultant rosters would be
unrealistic and may not be practically acceptable due to too many splittings and
combinings. Computational feasibility is confirmed for the range of instances tested even

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 562

though CPU time increases when we consider reduction of splitting and combining
operations.

Table 4. Results of computational experiments

Instance Roster
length

Empty run
(km)

No. of splittings
and combinings CPU time (sec.)

A-121 17 39.5 8 67
B-133 13 4.8 8 49
B-147 13 4.8 8 102
B-161 13 4.8 8 94
C-187 22 75.4 10 1,845
C-256 22 75.4 10 3,254
D-258 29 131.6 8 *10,800

* indicates termination before optimality due to maximum time limit.

Table 5. Influence of change of the weight parameters (Instance C-256)

𝜷𝜷 𝜸𝜸 Roster
length

Empty run
(km)

No. of splittings
and combinings CPU time (sec.)

0 0 22 3257.2 76 819
0 0.01 22 1506.8 8 *10,800

0.001 0 22 75.4 68 804
0.001 0.00001 22 75.4 10 *10,800
0.001 0.0001 22 75.4 10 *10,800
0.001 0.01 22 75.4 10 3,254
0.001 0.1 22 252.4 6 *10,800

* indicates termination before optimality due to maximum time limit.

Table 6. Influence of change of weight parameter (Instance D-258)

𝜷𝜷 𝜸𝜸 Roster
length

Empty run
(km)

No. of splittings
and combinings CPU time (sec.)

0 0 29 5335.6 140 1,082
0 0.01 29 5368.8 2 *10,800

0.001 0 29 131.6 134 778
0.001 0.00001 29 131.6 10 10,675
0.001 0.0001 29 131.6 8 *10,800
0.001 0.01 29 131.6 8 *10,800
0.001 0.1 29 192.8 4 *10,800

* indicates termination before optimality due to maximum time limit.

5 Conclusions

In this paper, we focused on railway rolling stock rostering problems with maintenance
considerations. Splitting and combining are used to adjust transportation capacity flexibly
in Japanese railways. On the other hand, it is desirable that the amount of splitting and
combining be minimized because these shunting operations require time and manpower.
This paper proposes an MILP model based on a TSP with multiple arcs between nodes so
that the amount of splitting and combining is reduced. Numerical experiments based on
actual lines in Japan show that the proposed model incorporating the mechanisms to count

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 563

and reduce the number of shunting operations can generate practically good rosters with a
reduced number of splittings and combinings. Computational feasibility is confirmed for
the range of instances tested even though CPU time increases when we consider reduction
of splitting and combining.

Possible future work includes:
 reduction of CPU time
 extensions of the model to the cases where three or more train-sets are assigned to some

trains
Reduction of CPU time could be achieved by improving LP lower bounds with the
generation of effective cuts. Considerations of trains to which three or more train-sets are
assigned, may be included into the model by expanding the idea of train positions, but
logical conditions would be expected to become very complicated which may increase
CPU burden, so alternative approaches may also need to be considered.

References

Abbink, E., Van den Berg, B., Kroon, L., Salomon, M., 2004. “Allocation of railway
rolling stock for passenger trains”, Transportation Science, vol. 38, pp. 33-41.

Alfieri, A., Groot, R., Kroon, L., Schrijver, A., 2006. “Efficient circulation of railway
rolling stock”, Transportation Science, vol. 40, no. 3, pp. 378-391.

Borndörfer, R., Reuther, M., Schlechte, T., Waas, K., Weider, S., 2016. “Integrated
optimization of rolling stock rotations for intercity railways”, Transportation Science,
vol. 50, pp. 863-877.

Giacco, G, L., D’Ariano, A., Pacciarelli, D., 2014. “Rolling stock rostering optimization
under maintenance constraints”, Journal of Intelligent Transportation Systems:
Technology, Planning, and Operations, vol. 18, pp. 95-105.

Fioole, P.-J., Kroon, L., Maroti, G., Schrijver, A., 2006. “A rolling stock circulation
model for combining and splitting of passenger trains”, European Journal of
Operational Research, vol. 174, pp. 1281-1297.

Morooka, Y., Fukumura, N., Takayuki, S., Imaizumi, J., Morito, S., 2017. “Rolling stock
optimization based on the model of Giacco et al.: computational evaluation and model
extensions”, In: Proceedings of 7th International Conference on Railway Operations
Modelling and Analysis (RailLille2017), Lille, France.

Nishi, T., Ohno, A., Inuiguchi, M., Takahashi, S., Ueda, K., 2017. “A combined column
generation and heuristics for railway short-term rolling stock planning with regular
inspection constraints”, Computers and Operations Research, vol. 81, pp. 14–25.

Peeters, M., Kroon, L., 2008. “Circulation of railway rolling stock: a branch-and-price
approach”, Computers and Operations Research, vol. 35, pp. 538-556.

Reuther, M., Schlechte, T., 2018. “Optimization of rolling stock rotations”, In: Borndörfer,
R., et al. (eds), Handbook of Optimization in the Railway Industry, International Series
in Operations Research & Management Science 268, Springer, Switzerland.

Tsunoda, M., Imaizumi, J., Morito, S., 2015. “A model for estimating the required number
of train units under split-and-merge policy for decision making in railways –a
mathematical formulation by integer multi-commodity network flow-”, In: Proceedings
of 6th International Conference on Railway Operations Modelling and Analysis
(RailTokyo2015), Narashino, Japan.

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 564

	Satoshi Kato, Naoto Fukumura, Susumu Morito, Koichi Goto and Narumi Nakamura. A Mixed Integer Linear Programming Approach to a Rolling Stock Rostering Problem with Splitting and Combining

