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Abstract
In this paper, we developed an analytical model for strategic decision making, for selection
of the best solution of the junction layout according to the maximum theoretical infrastruc-
ture capacity, completely independent of the timetable. Model achieves triple effects as it
enables the selection of the most favorable route sequence, as well as the theoretical capac-
ity calculation. The model uses well known combinatorial problems on graphs, Weighted
Vertex Coloring Problem (WVCP) and Traveling Salesman Problem (TSP) to determine
the minimum time of the infrastructure occupancy. The model is tested on three different
junction layouts.
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1 Introduction

In the recent years, the capacity utilization on the main railway lines and corridors has been
increasing. Modern trends in strategic policy such as the opening of a railway market and
the appearances of new railway operators led to increase in the number of trains and the
capacity of the railway infrastructure has become a bottleneck for the entire railway system.
Consequently, there is a decline in the quality of transport service due to the occurrence of
train delays.

Railway infrastructure is the most expensive subsystem of the entire railway system.
However, the maximum utilization of railway infrastructure capacity should not be the ul-
timate aim. A high value of the infrastructure capacity utilization coefficient leads to train
delays, as well as an exponential increase in these delays (Yuan and Hansen (2004), Landex
(2008)). Furthermore, train delays cause a drastic reduction in the quality of transport ser-
vices. As a result, there is a demand for the construction of new railway lines, as well as for
the reconstruction and modification of existing ones.

The term ”railway infrastructure capacity”, in academic and especially in professional
publications, mainly refers to the capacity of railway lines. Existing methods, such as UIC
406 (Union International des Chemins de Fer - UIC (2013)), focus on the calculation of
railway track capacity, while capacity issues addressing railway nodes are considered as
specific cases. However, junctions and stations as nodes in railway networks are essential to
the entire railway line capacity evaluations. The capacity of junctions is a complex param-
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eter and its calculation is a difficult task primarily due to various train movements that are
allowed to be set through a switching area. In such situations, some train routes are compat-
ible and can be executed simultaneously, whereas other train movements are not compatible
and have to be separated by a time interval. The minimum time intervals between two suc-
cessive but incompatible train movements differ depending on the sequences of train route
realizations.

Permanent development in computer science and technologies put forwards simulation
methods as a reliable approach for evaluating railway capacity. Simulation methods enable
the representation of dynamic behavior of a rail traffic system duplicating its real-world
operations. Basically simulation models are categorized as macroscopic (e.g. Kecman
et al. (2013)) or microscopic (e.g. Nash and Huerlimann (2004) or Radtke and Hauptmann
(2004)) models. However, simulation methods have to be adapted to each specific applica-
tion environment requiring a large amount of preprocessing input data. It could be extremely
difficult to collect all required input data, especially for conception solutions characterized
with imprecisely defined infrastructure (either regarding track layout or interlocking com-
ponents) or timetable data. In contrast, analytical methods present a convenient approach
aimed to preliminary evaluate capacity of different conception solutions and to identify bot-
tlenecks. Analytical methods utilize mathematical expressions to obtain theoretical upper
bound on capacities. Main advantages of analytical methods are fast and simple calculations
that provide sufficiently accurate results.

Analytical methods that address capacity evaluations of railway nodes are presented in
Malavasi et al. (2014) referring to the mathematical expressions given by Potthoff (1980),
Corazza and Musso (1991) and guidelines provided by German railways from 1979. In ad-
dition to these simple analytical approaches, Huisman et al. (2002) proposed an analytical
approach for the analysis of railway nodes based on the queuing theory. Yuan and Hansen
(2007) proposed a stochastic model for train delay propagation that could be used to es-
timate capacity utilization. Lindner (2011) presented the application of UIC 406 method
for station capacity evaluations. The UIC approach was adopted by Landex and Jensen
(2013) to analyze capacity at stations with simple track layouts. Also, authors proposed
additional measures to analyze and describe track complexity and robustness of train op-
erations. The similar topic on understanding the relationships between capacity utilization
and performances of railway stations and junctions is analyzed by Armstrong and Preston
(2017). Finally, Jensen et al. (2017) expanded the UIC approach to calculate infrastructure
utilization in networks, considering different sequences of a train route realization and their
dependence on the infrastructure occupation. As authors stated, the approach is ideal for
strategic planning providing the evaluation of different infrastructure solutions.

In this paper, we developed an analytical model applicable for design and capacity anal-
ysis of railway junctions. The proposed method determines the sequence of train routes that
guarantees the lowest capacity utilization. Based on the proposed approach, it is possible to
compare different junction layouts determining the capacity utilization coefficient for each
of them. The model is developed as a reverse approach to the graphic Potthoff model. Its
main advantages are simplicity and the fact that the model does not require train schedules
(timetables). For input data, the model requires only conceptual solutions with defined sets
of feasible train routes characterized with the average duration of train routes and mean time
intervals between each of them.

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 492



2 Problem description and model formulation

The term capacity of the railway infrastructure includes the number of train movements
that can be realized in the considered time. The calculation process of the line capacity
between two stations involves determining the exact line occupation time by all trains. The
time obtained in this manner is used to calculate the utilization coefficient of the railway
infrastructure. However, during the calculation process of the capacity of junctions, this
procedure becomes significantly complicated, primarily because some train routes can be
realized simultaneously with some other routes.

The model proposed in this paper requires the construction of a route compatibility
matrix in the first step, as in most of the previously described models. In addition, the
model uses a graphical interpretation similar to the Potthoff model. After the construction
of the route compatibility matrix, the graph should be constructed such that every possible
train movement should be presented as a vertex. An example of junctions used for a detailed
description of the model is taken from (Pachl (2004)) as shown in Figures 1 and 2. In these
figures, the letters represent the start and end points of the considered routes.

Figure 1: ”Inferior” design of the example junction

Figure 2: ”Improved” design of the example junction

Based on the provided example junction, in the first step, the matrices of compatible
train routes should be constructed. The compatibility matrix is formed by assigning a ”+”
sign to the element of matrix ci,j if routes i and j are compatible with each other. Conversely,
the ”-” sign is assigned to the element of matrix ci,j if routes i and j are incompatible with
each other. At the same time, the matrix of minimum time intervals should be created, in
such a way that for each element in the compatibility matrix with sign ”-”, for each pair of
routes, one calculate and enter the value of the minimum time interval since previous route
releases the last joint infrastructure element, until the moment when a consecutive route can
start.
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Now, the model is developed on the basis of a simple variation in graphical interpretation
of the Potthoff method: each possible route is represented as a vertex of the graph, and the
edges link the vertices that represent mutually incompatible routes, i.e., those train move-
ments that cannot be executed simultaneously. Thus, the graph G = (V,E) is constructed,
where V represents a set of vertices, and with E a set of edges are marked. The graph
defined in this manner is complementary to that defined by the original Potthoff method
(Pachl (2004)). For the junctions presented in 1 and 2, the constructed graphs are shown in
Figures 3 and 4 for the ”inferior” and ”improved” layouts, respectively.

Figure 3: Graph of incompatible train routes for ”inferior” layout of the example junction

Figure 4: Graph of incompatible train routes for ”improved” layout of the example junction

Keeping in mind the rule that in one moment in time, one infrastructure segment can be
allocated to only one train movement, the next question can be asked: how to execute all
intended routes in such a way that each train movement must be performed at least once and
that there is no collision between any two train routes?

Let S denote the set of all infrastructure segments in the switching area and V the set of
all possible train routes through the considered switching area. For any train route x, Sx is a
set of infrastructure segments that will be occupied during the realization of route x, at least
in one moment. If y denotes another route, then we will call x and y incompatible routes if

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 494



they cannot be executed simultaneously, i.e., if they must be separated in time, if and only
if it is valid

Sx ∩ Sy 6= ∅ (1)

Nodes of graph G, which are linked by an edge, represent train routes that require at
least one ”common” element of the infrastructure.

2.1 Weighted Vertex coloring-based approach to junction design analysis

In graph theory, the coloring of a graph is a simple marking of the graph’s elements. Similar
to the coloring of edges, researches have dealt with the problem of vertex coloring, the
problem that we use in our model. The vertex coloring problem (VCP) assumes that each
vertex (node) is attributed by a certain marking (color), such that two neighboring vertices,
i.e., vertices connected by an edge, cannot have the same marking (color). Formally, if we
denote K=(1,...,m) as a set of markings (colors), the problem of the vertex coloring for graph
G, with m colors, is mapping C : V → K. The graph is correctly colored for

c(i) 6= c(j),∀ {i, j} ∈ E. (2)

The smallest number of colors that is sufficient for a graph to be correctly colored is
defined as a chromatic number of graphG and is marked as χ(G). GraphG is k−colored if
it is not (k−1)−colored. The graph coloring is optimal if all vertices are colored and if k is
a minimal number of colors that can be used to color the graph. Although, complexity of the
chromatic number computation is known to be NP-hard, for every k > 3, a k− coloring of
a graph exists by the so called ”four color theorem”, and it is possible to find such a coloring
in polynomial time.

VCP can be modeled by integer linear programming. First, we define two sets of binary
variables:

• xij - a variable that defines whether the marking (color) j is assigned to vertex i; the
variable has value 1 if and only if color j is assigned to vertex i,

• yj - a variable that defines whether the marking (color) j is used in the process of
mapping; the variable has a value 1 only if color j is assigned to at least one of the
vertices.

The goal is coloring all vertices of the graph using the minimal number of colors; that
is, to establish a chromatic number of the graph, the objective function is defined as

min
∑

j

yj (3)

with a set of constraints
∑

j

xij = 1, i ∈ V (4)

xij + xkj ≤ 1, ∀(i, k) ∈ E, j = 1, ..., n (5)

xij ∈ {0, 1}, i ∈ V, j = 1, ..., n (6)
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yj ∈ {0, 1}, j = 1, ..., n. (7)

If we apply a VCP on previously described graphs of incompatible routes, the chromatic
number of a graph, i.e., the number of used colors for an optimal coloring of incompatible
routes graph, will represent a minimal number of the groups of routes that should be formed
so that each route is performed exactly once. All vertices that are marked with the same
color belong to a set of routes that are mutually compatible and can be executed simultane-
ously. Colored graphs of ”inferior” and ”improved” designs of the switching area are shown
in Figures 5 and 6.

Figure 5: Colored graph of incompatible routes for ”inferior” design of switching area

Figure 6: Colored graph of incompatible routes for ”improved” design of switching area

For the realization of each set of mutually compatible routes, one after another, in several
iterations, each of the defined routes will be completed. Now, it can be confirmed that
through the analysis of ”inferior” and ”improved” designs of the switching area, all routes
for the ”improved” design can be executed in two iterations, while for the ”inferior” design,
for completing all routes, we need to form at least three sets of mutually compatible routes.

Based on such a simplified approach for presenting a problem, a model will allow a
creative analysis for the layout of the switching area, according to a possible number of
required sets for exactly one execution of each route.
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In the previously described model, graph coloring does not consider time for route exe-
cution, but only their mutual compatibility. A consequence of such model application leads
to the generation of the so-called ”unproductive” times. ”Unproductive” time represents a
time elapsed from the end of one route within one set of mutually compatible routes (within
vertices in one color) until the end of the longest route of the same set. In situations where
it is possible to color a graph in more than one way, the time difference between the mo-
ments of finished routes and that when the route that needs maximum time to finish is over
and belongs to the same set of compatible routes, it is considered as an unproductive time.
Even with a previously introduced constraint which imposes that all routes from the next
set start their execution simultaneously, after the competition of all defined routes, there is a
”lost” time. To fully understand unproductive and lost time, let us assume that we observe
some junction and it is possible to define five routes and that these routes can be grouped in
several ways – in Figure 7, there is a diagram of the time distribution.

Figure 7: Two alternatives of the Gantt diagram of train routes when graph coloring for
incompatible routes is possible in many ways

As presented in Figure 7, ”lost” time is the difference between ”unproductive” times
within different sets. Due to the constraint imposed by the simultaneous start of the routes
within the next set, ”unproductive” time cannot be eliminated and ”lost” time is generated
as an extension of total time of the switching area occupied by all routes.

To reduce the produced negative effects, in the process of coloring the incompatibility
graph, it is necessary to group the routes where the time difference between the longest route
and a previous route is the smallest within the same set. This can be achieved by assigning
each vertex j of graph G a nonnegative value wv

j . The value of wv
j is a weight of vertex j,

and in the model, it represents the execution time of a route j.
The weighted vertex coloring problem (WVCP) is an extension of the basic graph VCP,

where the basic principles of graph coloring are the same. Connected vertices of the graph
should be assigned different colors, by defining a minimization of the sum of the cost for
the used colors as an objective function. The cost of the used colors is the maximum value
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of the vertex weight coefficients that were assigned the same color (Malaguti et al. (2009);
Furini and Malaguti (2012)). WVCP is known to be NP-hard.

The model is based on the assumption that the graph vertex weight coefficients wv
j , ∀

j ∈ V , are nonnegative integer values. However, without lack of generalization, we can
consider them as real values, ordered by descending values. The model is then shaped as
mixed integer programming, as we define the following two sets of variables (Malaguti et al.
(2009); Malaguti (2009)):

• xij - a binary variable with a value of 1 if and only if the color j is assigned to vertex
i,

• zj - a real variable that has a value of the cost for color j.

Now, we can define a basic model with the objective function

min
∑

j

zj (8)

and constraints

zj ≥ wv
j · xij , i ∈ V, j = 1, ..., n (9)
∑

j

xij = 1, i ∈ V (10)

xij + xkj ≤ 1, (i, j) ∈ V, j = 1, ..., n (11)

xij ∈ {0, 1}, i ∈ V, j = 1, ..., n. (12)

In the defined model, relation (8) is an objective function, constraint (9) defines a cost
for each color, and (10) formulates a demand that all vertices must be assigned a color.
Constraint (11) represents a basic limitation of the graph VCP, i.e., the neighboring vertices
cannot be assigned the same color, while (12) defines a binary variable x (Malaguti (2009);
Malaguti et al. (2009)).

As opposed to the basic graph VCP, the solution for WVCP does not have to provide an
optimal graph coloring, according to a chromatic number of the graph, χ(G). Hence, it is
possible to group mutually compatible routes in a larger number of groups than it would be
minimum necessary, with an assumption that vertex weights are defined as a time to perform
certain routes represented by vertices. The model objective function gives the shortest occu-
pation time for the junction only by time for the completion of a routes. By each increase in
the number of different sets of compatible routes, the total occupation time of the junction is
increased by a necessary time interval between each newly added set and its predecessor set
of compatible routes. Therefore, through the application of the WVCP model, improvement
is evident only if the solution is optimal by the defined objective function (8) as well as by
the objective function (3). For this reason, the final number of groups is adopted from the
results of VCP. After that, in the case of a different manner of combining routes obtained
by VCP and WVCP, in order to improve the results we accept the WVCP solution.

An improvement that is imposed by the application of the WVCP model is a conse-
quence of the comparison of grouped compatible routes with the longest route within the
same set while ignoring the ”short” routes within a set. However, besides in extreme situa-
tions, this will not affect the result.
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2.2 Weighted Vertex coloring-based approach for capacity determination

To determine the capacity of a junction, it is necessary to define the time needed for the
realization of all routes assuming that each route is realized at least once. Furthermore, we
assume that the realization of all routes within a single group is simultaneous and that it
starts once all infrastructural and rail operational conditions are met. The assumption that
all routes within the same group of mutually compatible routes begin its realization simul-
taneously allows the formation of a simplified graph, D(V ′, E′). In this simplified graph,
vertices are groups of mutually compatible routes, defined by the solution of the WVCP
model (relations (8)-(12)). In such a graph, ”compatible groups” cannot exist because they
would be returned as a joined group by the WVCP model. Thus, the graph created is a
complete graph with edges between all pairs of vertices. Now the weight coefficient of the
edge is introduced as the maximum value of the required interval between the longest route
in group i and all routes within group j of mutually compatible routes, τi,j :

we
ij = max τij ,∀(i, j) ∈ V ′, i 6= j. (13)

However, as the minimum necessary time interval between incompatible routes does not
have to be equal and most often is not, there are two possibilities. First, a higher value is
chosen for the weight coefficient of the edge:

we
ij = max (we

ij , w
e
ji). (14)

The second possibility, which is used in this paper, imposes the formation of indepen-
dent edges for each of these two intervals. In this way, the model defines a graph of ”in-
compatible groups of routes” creating a complete digraph, i.e., a directed graph with a pair
of edges between all pairs of vertices.

Besides the weight coefficients of the edges, those of the vertices can be assigned to
graph D as the maximum realization time of the routes that are grouped together. Bearing
in mind the assumption that all routes within one group start simultaneously, the duration of
the realization of all routes within one group of mutually compatible routes will be equal to
that of the longest route within that group. If we assume that trj is the duration of a route j
in group r, the realization time of all routes from that group will be the same:

wr
j = max

j
trj . (15)

To determine the most favorable sequence in which the routes will be executed, it is
necessary to first determine the order of the groups of mutually compatible routes. In ad-
dition, to determine the capacity of the entire switching area, it is necessary to determine
the total time of occupation of the switching area through the realization of all routes when
each of them is realized exactly once. Given the characteristics of the defined graphD, both
problems can be solved by finding the shortest Hamilton cycle in graph D. The problem
of finding the shortest Hamilton cycle, if there is one, is known as the traveling salesman
problem (TSP), the famous combinatorial problem, from the NP-complete class. In order
to allow periodic repetition of the most favorable sequence throughout observation period,
we need to determine Hamiltonian cycle, i.e. Hamiltonian path would not be sufficient for
total occupation time determination.

The most favorable sequence in which the routes will be executed is gained by deter-
mining the order of realization of groups of mutually compatible routes, as a solution to the
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shortest allowed Hamilton cycle, while the total time of occupying the switching area, T s
g ,

will be equal to the sum of the solution of TSP problem and the sum of realization times of
the longest routes within each group. According to relation (8), the sum of the realization
times of the longest routes within each group equals

∑

c

wv
c = TWVCP = min

∑

j

zj . (16)

Thus, the total occupation time of the switching area T s
g by all routes and all necessary

time intervals between them equals

T s
g = TWVCP + TTSP . (17)

The coefficient of utilization is defined as the ratio of the total occupation time T s
g and

observation time U

η =
T s
g

U
. (18)

On the other hand, the total theoretical number of routes Nr that can be executed during
a certain period U is defined as

Nr =
U

T s
g

· ν (19)

where ν signifies the total number of defined routes in the switching area, i.e., the sum of
all routes from all groups.

In this way, the model can be used not only for the design analysis of switching areas but
also for determining the most favorable sequence of route realization and for approximate
capacity determination. The approximate capacity of the switching area, i.e., the maximum
number of routes in the observed switching area, can be determined exclusively with the
assumption that the traffic pattern, i.e., the specified order of route realization, is unchange-
able.

The formed direct graphs, after applying WVCP on the aforementioned examples for
”inferior” and ”improved” track layout designs, are shown in Figures 8 and 9, respectively.
The determination of vertex weight coefficients as the maximum duration of route realiza-
tion within each group is shown in red text, while the procedure of determining the weights
of the edges is shown next to each edge.

Considering the developed model, it is easy to compare the two junction layouts, both
in terms of the number of simultaneous routes and from the aspect of determining the most
favorable sequence of route realization and determining the total capacity.

2.3 Model expansion to achieve demanded route sequences and to deal with hetero-
geneity

In the case of a timetable with an unequal number of routes from and for different directions,
i.e., when some of the routes should be executed more often than other train movements,
these routes must be presented as distinct vertices in the graph. Moreover, they have to be
connected by edges with all vertices that their base routes are connected with, including
the additional edge to the base route. All such ”additional” routes entered into the graph
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Figure 8: Reduced direct graph coloring of incompatible rides for ”inferior” design of the
switching area

Figure 9: Reduced direct graph coloring of incompatible rides for ”improved” design of the
switching area

as distinct vertices and have all characteristics of their base routes. Moreover, they have to
respect the same compatibility rules with other routes, with which they are also in conflict.
A graph for a case with an unequal number of routes for/from different directions (a and c
represent base routes that should be realized twice as often as the rest) and for the ”inferior”
design of the switching area is shown in Figure 10. Since the execution of all routes, in-
cluding additional routes a′ and c′ represents a cycle, the order of routes in the cycle can be
changed, i.e., in the vertex coloring process, additional routes are equal to their base routes,
so it is possible to change the execution sequence, as shown in Figure 11.

On the other hand, a case may arise where, with the change in the frequency of certain
route realizations, certain limitations concerning the order of their execution are required.
Namely, when a certain base route has a higher realization frequency than others, e.g.,
route a in Figures 10 and 11, there is no logic to allowing successive realization of two, or
even more, same routes, especially in case of passenger trains. Actually, it is necessary to
introduce additional restrictions in TSP, preventing the procurement of an optimal solution
with the adjacent vertices of the same route. At the lowest level, this can be achieved by the
removal of edges from digraph D(V ′, E′) that connect ”critical” groups of routes.

Besides the abovementioned case, the requirements for the successive execution of in-
dividual routes may occur, especially in the case of passenger trains, in order to obtain
connections for the transfer of passengers from one train to another. As in the previous
case, simply by modifying the digraph D(V ′, E′), it is possible to impose the successive
realization of the two groups of routes, but this time, by forcing the path, from one vertex
into another, i.e., through the existence of obligation of a particular edge in the TSP problem
solution.
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Figure 10: Incompatibility graph for additional routes and different frequency – alt. I

Figure 11: Incompatibility graph for additional routes and different frequency – alt. II

The process of determining the total occupancy time of the junction for a cycle period
remains completely unchanged - if there is a change in the number of groups of simultaneous
routes, they are equal with other groups, so the algorithm should be applied entirely. Ideally,
routes with a higher frequency can be realized simultaneously with the routes of another
group, so the graph will accordingly be colored.

In cases where it is predicted that an identical route is carried out by trains whose paths
in the timetable are different, i.e., in the case of heterogeneous traffic, as well as in the case
of different route frequencies, the vertices of routes using identical parts of the infrastructure
but different technical parameters (running speed, train length, etc.) are added to the graph
of mutually incompatible routes, while the mutual relations with remaining routes in the
incompatibility matrix do not change.

3 Case study and result analysis

For complete application and testing of the defined model, we created three different track
layout alternatives for flaying (or grade separated) railway junction. The examined railway
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junction has a track configuration in which two main double track railway lines cross each
other by a bridge to avoid conflicts of their 4 main routes (a, b, c, d). Furthermore, all three
alternatives have track connections that enable additional 8 routes for crossing trains over
both railway lines in both directions (e, f, g, h, i, j, k, l). However, the alternatives differ in
the complexity of their track layouts expressed either in the number of installed switches,
diamond crossings or bridges. The applied track layout directly influences the compatibility
of train routes.

Alternative 1 - a basic layout that provides single track connections required to enable
trains to cross over railway lines. The track layout consists of two main double track lines, 4
single track connections with installed 24 switches. The layout provides 52 compatibilities
among the observed 12 routes. This junction layout is shown in Figure 12

Figure 12: Alternative I of the conceptual solution of test junction

Alternative 2 - a layout that provides double track connections between main railway
lines (Figure 13). Double track connections enable two heading trains to cross between
main lines in parallel. In addition to two main double track lines, the layout consists of 4
double track connections with installed 16 switches and 8 fixed diamond crossings. The
layout provides 60 compatibilities among the observed 12 routes.

Figure 13: Alternative II of the conceptual solution of test junction

Alternative 3 - a layout that additionally reduce route conflicts providing grade separated
track connections instead of fixed diamond crossings. In addition to main double track lines,
the layout consists of 4 double track connections with installed 16 switches and 8 bridges.
The layout provides 84 compatibilities among the observed 12 routes. This layout is shown

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 503



in Figure 14.

Figure 14: Alternative III of the conceptual solution of test junction

In addition to the base traffic pattern with exactly one train run per route, we analyze
two variants where we increased number of trains on some routes. All routes, together with
the estimated duration time for each route, are shown in Table 1.

Table 1: Assumed routes and their duration in minutes
Route symbol Route duration [min.]

a 1.72
b 1.78
c 1.69
d 1.71
e 2.13
f 2.35
g 2.07
h 2.22
i 2.14
j 2.23
k 2.20
l 2.27

To demonstrate how the developed model responds to traffic heterogeneity, we analyze
two more variants where we increased number of trains on some routes. The number of
trains on each route in observed traffic pattern variants is shown in Table 2.

Table 2: The number of trains on each route in one cycle
Traffic pattern a b c d e f g h i j k l

variant I 1 1 1 1 2 4 2 4 2 4 2 4
variant II 1 1 1 1 2 4 4 2 2 4 4 2

Following a defined method, for every variant, an incompatibility graph was formed and
then we applied VCP and WVCP on them. With finding the optimal solutions of WVCP
for each defined variant, we obtained the minimum junction occupation times only by route
realization, for each alternative separately. The obtained results are shown in Table 3.
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After the minimum occupation times by route realization were established, graph reduc-
tion was executed. The reduced digraphs were used as an input to TSP and the solutions
were obtained using OPL models. The results are shown in Tables 3 and 4. In this manner,
we obtained junction occupation time only by minimal necessary time intervals between the
groups of mutually incompatible routes, as well as the best feasible sequences of the groups,
for each alternative and each variant separately.

Table 3: Acquired results, by variant
Nroute Ninc Nc TWVCP TTSP

alternative I 12 92 4 8.60 2.60
alternative II 12 84 3 6.40 2.05
alternative III 12 60 3 6.33 2.00
alt. I - variant I 28 564 11 24.66 6.80
alt. I - variant II 28 500 9 24.58 6.76
alt. II - variant I 28 508 7 20.26 5.86
alt. II - variant II 28 420 11 15.72 4.67
alt. III - variant I 28 308 7 15.58 4.69
alt. III -variant II 28 308 7 15.58 4.78

In the Table 3, column names represent:

• Nroute - Number of routes,

• Ninc - Number of incompatibilities between the routes,

• Nc - Number of colors,

• TWVCP - Total running time [min.] (solution of WVCP) and

• TTSP - Total time intervals [min.] (solution of TSP).

Table 4: Junction capacity, by alternative and by variant
U Nh

route η Nr

alternative I 11.20 64 18.70[%] 1542
alternative II 8.45 85 14.10[%] 2044
alternative III 8.33 86 13.90[%] 2074
alt. I - variant I 31.46 53 52.40[%] 1281
alt. I - variant II 31.34 53 52.20[%] 1286
alt. II - variant I 26.12 64 43.50[%] 1543
alt. II - variant II 20.39 82 34.00[%] 1977
alt. III - variant I 20.27 82 33.80[%] 1989
alt. III -variant II 20.36 82 33.90[%] 1980

Column names in the Table 4 represent:

• U - Total utilization time [min.],

• Nh
route - Theoretical maximum number of routes, per hour,
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• η - Utilization coefficient for one hour [%] and

• Nr - Theoretical maximum number of routes, per day

By analyzing the obtained results, we can conclude that the best design solution is al-
ternative III, according to the maximum theoretical capacity. As the second-best solution,
alternative II was selected.

Obtained results clearly indicate that in a defined model segment of determination of
minimum occupation time by route realization, obtaining WVCP solution, is equally impor-
tant as a segment of determination of minimum occupation time by necessary time intervals
between the routes and the best feasible sequence of the routes.

4 Conclusions

Although, thus far, considerable software has been developed for a precise determination
of infrastructure capacity, the existence of simple, analytical methods has always had its
advantages, especially when quick solutions with satisfactory accuracy are required. A
simulation model, although very fast, often requires long-term preparation for precise data
acquisition and storing them in a database.

The developed model provides the possibility of a relatively simple junction capacity
determination when there are no details regarding train sequence and no timetable. It’s ex-
tremely useful when it is necessary to quickly obtain solutions for the comparison of several
different junction designs, particularly conceptual solutions, considering that all elements
are not yet determined. In addition, the model provides the possibility of precise determi-
nation of capacity utilization in the time period and determination of the best sequence of
train routes.

Although all combinatorial problems used in the paper belong to the NP class (VCP in
the scope of decision problem is NP-complete, WVCP is NP-hard, while TSP is also NP-
complete), the application of the developed model in practice will be possible, since it is
almost impossible to find a junction with so many possible routes, which would make the
model too extensive for the application.

In the case study, our developed method was strictly applied on theoretical junction
designs, which could be classified as of medium-heavy complexity, or, at the very least,
not of easy one. Quality results were obtained, especially since the effects of different
conceptual designs were immediately noticeable, even in the case of very small changes in
layout. In addition, it was determined that by adopting a better design of the future junction,
the utilization coefficient could be reduced by almost 5%, comparing the most favorable and
most unfavorable alternatives and equal number of routes. With different train frequencies,
this improvement is even more noticeable.

The model has no implemented buffer times, in order to maintain timetable robustness
and stability. The implementation of these times should represent the next step in the pro-
posed model development.

Finally, it must be noted that the construction or modernization of a junction is an invest-
ment project with various criteria, and hence, the proposed model should be incorporated
into a comprehensive decision support system, where infrastructure capacity would be only
one criterion.
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