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Abstract
One of the crucial factors in achieving a high punctuality in railway traffic systems, is the 
ability to effectively reschedule the trains when disturbances occur. The railway traffic 
rescheduling problem is a complex task to solve both from a practical and a computational 
perspective. Problems of practically relevant sizes have typically a very large search space, 
making it a challenge to arrive at the best possible solution within the available compu-
tational time limit. Though competitive algorithmic approaches are a widespread topic of 
research, limited research has been conducted in exploring the opportunities and challenges 
in parallelizing them on graphics processing units (GPUs). This paper presents a conflict 
detection module for railway rescheduling, which performs its computations on a GPU. The 
aim of the module is to improve the speed of solution space navigation and thus the solu-
tion quality within the computational time limit. The implemented GPU-parallel algorithm 
proved to be more than twice as fast as the sequential algorithm. We conclude that for the 
problem under consideration, using a GPU for conflict detection likely gives rise to better 
solutions at the end of the computational time limit.

Keywords
Real-time decision support, Train rescheduling, Conflict detection, Parallel algorithms, Gra-
phics processing units.

1 Introduction

Scheduling is a frequently employed crucial operation in several sectors, e.g., manufacturing 
sector, railway transport sector, etc. In railway traffic network management, the ability to 
efficiently s chedule t he t rains a nd t he n etwork m aintenance, s ignificantly in fluences the 
punctuality of trains and Quality of Service (QoS). The importance is reflected in the goal 
set by the Swedish railway industry stating that by year 2020, 95% of all trains should arrive 
at the latest within five minutes of the initially planned arrival time (Trafikverket, 2017).

In 2017, punctuality of rail passenger services in Sweden was recorded as 90.3% (Trafik-
verket, 2017). The punctuality of trains is primarily affected by (1) the occurrence of distur-
bances, (2) the robustness of the train timetables and the associated ability to recover from 
delays, along with (3) the ability to effectively reschedule trains within an allowable time 
interval, whenever disturbances occur, so that their consequences (e.g., delays) are mini-
mized. This paper focuses on improving the ability to effectively reschedule trains during
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disturbances.
Day-to-day train services in the rail sector are based on preplanned railway timetables.

These timetables are planned to ensure that the services are feasible, i.e., the applicable
constraints are respected. Typically, such constraints enforce safety by requiring a mini-
mum time separation between consecutive trains passing through the same railway track. A
disturbance in a railway network is an unexpected event that renders the originally planned
timetable infeasible by introducing ‘conflicts’. A conflict is considered to be a situation that
arises when two trains require an infrastructure resource during overlapping time periods in
a way such that one or more system constraints are violated.

Disturbances occur due to (1) incidents such as over-crowded platform(s) that possibly
lead to unexpectedly long boarding times and minor delays, or (2) larger incidents such as
power shortages, signalling system failures, train malfunctions that cause more significant
delays. Train timetables are planned with appropriate time margins in order to recover from
minor delays. Hence, in case of a minor disturbance, the affected train(s) may be able to
recover from the effects of the disturbance provided there is sufficient buffer in the original
timetable. In case of a disturbance that causes a significant delay to one or more trains,
conflicts arise in the original timetable and it becomes operationally infeasible.

In order to resolve a conflict, the following rescheduling tactics are frequently employed:
(1) Retiming, i.e., allocating new arrival and departures times to one or more trains, (2) local
rerouting, i.e., allocating alternative tracks to one or more trains, (3) reordering, i.e., priori-
tizing a train over another, (4) globally rerouting the trains, or (5) partially/fully cancelling
the affected train services. Detecting conflicts (i.e., checking the feasibility of the timetable)
and resolving them (i.e., applying rescheduling tactics to obtain a feasible timetable) during
operations, constitutes real-time railway traffic rescheduling.

During a disturbance scenario, given sufficiently large computation time, the best alter-
native rescheduled timetable can be chosen rather unambiguously, based on the goals of the
decision-maker. However, in practice, the time interval available to reschedule the railway
traffic and obtain a conflict-free rescheduled timetable at the time of a disturbance is quite
narrow, e.g., 10–20 seconds (Bettinelli et al., 2017). Hence, it is a challenge to quickly ex-
plore the alternative desirable solutions and consequently reach the best alternative within
the available time.

According to a recent survey (Fang et al., 2015), heuristic algorithmic approaches are
most frequently employed by researchers to solve real-time railway rescheduling problems.
Josyula et al. (2018) present a fast heuristic search algorithm based on iteratively detecting
conflicts and resolving them using chosen rescheduling tactics. While solving the real-
time railway rescheduling problem, the algorithm searches the solution space and produces
feasible revised schedules of increasing quality with passage of time.

Though faster navigation of the solution space alone does not improve the quality of the
final solution obtained by a heuristic algorithm, it very likely improves the quality of the
final solution obtained within a computational time limit1. One way to improve the speed
of solution space navigation is by designing parallel algorithms (e.g., Josyula et al. (2018))
suited for parallel hardware.

This paper presents a fast conflict detection algorithm for GPUs, which in turn results in
a faster navigation of solution space. By speeding up the computation of alternative revised
schedules, the most desirable schedule can be obtained by the end of the computational time

1assuming that the computational time limit < time taken by the algorithm to obtain its final solution.
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limit, thus resulting in efficient r eal-time r ailway r escheduling. T he G PU-based conflict 
detection algorithm serves as a ‘building block’ for parallel train rescheduling algorithm(s).

The paper is organized as follows. The next section describes the problem at hand 
in more detail while overviewing the related research work. Section 3 presents a basic 
introduction to GPUs and explores the benefits and challenges of using them. It also presents 
a description of the algorithm for conflict detection (the CD algorithm) and i ts adaptation 
to GPUs (the CD-GPU algorithm). Section 4 includes the following: (i) description of the 
experiment used to evaluate the effects of incorporating GPUs in train conflict detection, 
and (ii) obtained results that comprise recorded execution times of conflict d etection on 
central processing unit (CPU) and GPU. Section 5 analyzes and discusses the results of the 
experiments in order to infer valid conclusions.

2 Problem description and Related work

Optimization problems of practically relevant sizes often demand significant computational 
resources. Real-time railway rescheduling is one such problem that requires substantial 
computing capabilities to be solved to completion within an acceptable time. One of the key 
challenges in efficient rescheduling is to quickly explore the alternative desirable solutions 
in the solution space and consequently reach the best alternative within the permitted time.

Recent advances in computer hardware have made powerful chips, such as multi-core 
CPUs and GPUs, quite affordable and available even on commonplace computers. However, 
in order to employ such hardware in solving optimization problems, relevant and suitable 
algorithms (particularly designed and implemented for such hardware) are required. Typi-
cally, parallel algorithms are designed to employ (1) multiple processing units constituting 
modern CPU(s), and/or (2) GPU(s). In real-time railway (re)scheduling, the potential of 
parallel algorithms employing multi-core CPUs has been investigated in Mu and Dessouky 
(2011); Iqbal et al. (2013). More recently, Bettinelli et al. (2017); Josyula et al. (2018) re-
port significant improvements in speed (without compromising solution quality) as a result 
of parallelization on CPUs.

Josyula et al. (2018) devise a train rescheduling algorithm that constructs and simultane-
ously navigates the branches of a search tree in parallel, as illustrated in Figure 1. The search 
tree is represented with conflicts as the nodes and rescheduling decisions as the edges. Each 
node also has a revised timetable associated with it; the root node corresponding to the orig-
inal, disturbed timetable. The timetable of a subsequent child node is obtained by applying 
the rescheduling decision represented by its incoming edge on the parent node’s timetable. 
The conflict represented by each node is obtained by (1) generating the node’s timetable,
(2) detecting the conflicts (using the CD algorithm) in the t imetable, and (3) selecting the 
earliest of the detected conflicts. For a more detailed description of the parallel algorithm, 
see Josyula et al. (2018).

From Figure 1, it can be seen that conflict detection i s a  crucial operation that i s fre-
quently performed throughout the search tree exploration. Hence, attempts to speed up 
such an operation to attain faster search tree explorations, are well-justified. Initial trials 
to speed up conflict detection in the existing parallel algorithm by creating additional CPU 
threads proved unfavorable. The reason is that this resulted in the algorithm creating a 
large, non-optimal number of total CPU threads. However, other techniques to speed up 
conflict detection by employing alternatives to multi-core CPUs (e.g., GPUs) remain yet to 
be investigated.
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Parallel construction of a Search Tree

decision0-1 =
94979 waits for 1267 at ÖND1

Conflict Detection 
Node 2

...

decision0-2 =
1267 waits for 94979 at...

Conflict Detection 
No conflicts detected!

Node 4
FEASIBLE solution 

Cost = 722

decision1-4 =
94979 waits for 1082 at ÖND1

decision1-3 =
1082 waits for 94979 at VÖV

decision3-5 =
1103 waits for 1082 at CR

decision3-6 =
1082 waits for 1103 at KAP

Conflict Detection  
Node 1

Train 94979 (19:18-19:21) 
Train 1082 (19:20-19:23) 

Opposite direction
Section ÖND1-VÖV with 1 track 

Track 1

Cost = 243

Conflict Detection
Node 3

Train 1082 (19:27-19:28) 
Train 1103 (19:28-19:30) 

Opposite direction
Section CR1-KAP with 1 track 

Track 1

Cost = 309

Root Node 0
Train 1267 (19:14-19:18) 
Train 94979 (19:15-19:19)           

Same direction

Section ÖND1-VÖV with 1 track 
Track 1

Cost = 200

Conflict Detection 
No conflicts detected!

Node 6
FEASIBLE solution 

Cost = 389

Conflict Detection 
No conflicts detected!

Node 5
FEASIBLE solution 

Cost = 538

Thread 1

Thread 2

Thread 3

Thread 0

Thread 0

Thread 0

Conflict Detection on (the original timetable + disturbance information)

Figure 1: Illustration of the parallel algorithm designed by Josyula et al. (2018) through an
example. The four parallel threads (0, 1, 2, and 3) explore the tree in parallel.

A parallel algorithm employing a GPU can either perform: (1) all of its computations on
the GPU, while requiring little or no interaction with the CPU, e.g., Gmys et al. (2016), or
(2) part of its computations on the GPU, while requiring significant CPU-GPU interactions.
Several algorithms have been parallelized on GPUs for well-known optimization problems,
such as the flow shop (Melab et al., 2012; Dabah et al., 2016), flexible job shop (Bożejko
et al., 2010; Bożejko et al., 2012) and routing problems (Schulz et al., 2013). Inspired by
the greedy algorithm in Törnquist Krasemann (2012), Petersson (2015) devised a building
block for train rescheduling, which employs the GPU to explore multiple branches of the
search tree in parallel. However, this building block spends significant time in exploring
redundant solutions due to the design choices made in the search tree representation.

Very little attention has been given to employ GPUs to improve real-time railway re-
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scheduling. Though commercial optimization solvers, such as Gurobi and CPLEX, make
use of multi-core CPUs to solve a formulated model (e.g., a Mixed Integer Programming
(MIP) formulation of the train rescheduling problem), currently, such solvers are not well-
suited for GPUs (Glockner, 2015). For example, while solving a MIP model, each node
of the search tree requires very different calculations (Glockner, 2015), whereas GPUs are
designed for efficiently performing identical calculations on different data. The main objec-
tive of this research is to explore the potential of GPUs in solving the railway rescheduling
problem. We did not come across research studies that answer the following research ques-
tion:

How can a GPU be employed to improve computational decision support for real-time rail-
way rescheduling?

This work contributes towards filling this research gap. The main contributions of the work
presented in this paper are as follows:

(i) a building block for conflict detection on GPUs.

(ii) an evaluation of the effects of incorporating GPUs in railway rescheduling.

3 Exploring the benefits and challenges of using GPUs

A typical computer consists of a CPU as well as a GPU, both with significantly different
architectures (Figure 2). A CPU is typically optimized for serial tasks, whereas a GPU is
optimized for several parallel tasks. For example, consider the job of converting a color im-
age to grayscale (Figure 3) wherein each color pixel described by a triplet of values (R, G,
B) is to be converted to a corresponding grayscale pixel described by a single value that is
computed by (R+G+B)

3 . A GPU is highly efficient at completing this job by converting in

Cache memory

Control unit

Dynamic random-access memory (DRAM)

CPU

DRAM

Arithmetic 
Logic unit

Arithmetic 
Logic unit

Arithmetic 
Logic unit

Arithmetic 
Logic unit

GPU
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Figure 3: Conversion of a picture from color to grayscale.

context of optimization, see Brodtkorb et al. (2013). In the context of search trees, the com-
puting power of a GPU can be utilized either for (i) parallel construction/exploration of the
search tree (e.g., Petersson (2015)), or (ii) computations during tree construction/exploration
(e.g., Melab et al. (2012)). The latter approach is well-motivated as the structure of the ex-
plored search tree is typically irregular, thus making tree exploration likely unfavourable for
parallelization on GPUs.

In order to identify the computations worth parallelizing on a GPU, the performance
reports of a previously profiled3 heuristic algorithm for train rescheduling (Josyula et al.,
2018) are examined. The results of profiling show that significant time is spent in con-
flict detection (the CD algorithm). While employing the algorithm to solve a rescheduling
problem of moderate size4 (i.e., a case study scenario in Josyula et al. (2018)), the conflict
detection operation occurs around half a million times. Therefore, with an aim to speed up
the detection of conflicts, we design a parallel algorithm for conflict detection on GPUs (the
CD-GPU algorithm). Appendix A presents a code snippet5 from the corresponding GPU
program (also known as a ‘kernel’ in GPU terminology) implemented using the CUDA®

framework (Fang et al., 2011).
Figure 4 gives an overview of the conflict detection on CPU (employing the CD algo-

rithm) and on GPU (employing the CD-GPU algorithm) through an example. The railway
infrastructure and timetable chosen for the example are illustrated in the figure. The graph
adjacent to the timetable depicts that the latter is operationally infeasible and has three con-
flicts (labelled 1, 2, and 3). In order to detect these conflicts on a CPU, the track event lists
are generated from the timetable, after which the CD algorithm is employed. When de-
tecting these conflicts on GPU (by employing the CD-GPU algorithm), we instead generate
concatenated track event lists. Then, the GPU threads, in parallel, detect the conflicts in
the timetable (e.g., in Figure 4, ten threads, in parallel, detect three conflicts). In the next
section, the effects of incorporating GPUs in train conflict detection are evaluated.

4 Experimental description

In order to explore the potential of GPU in solving the real-time rescheduling problem, we
conduct experiments through which the speed of conflict detection on GPU is measured.

3using Intel® VTune™ performance profiler.
459 sections, 3-hour time window, initial delay due to disturbance = 25 minutes.
5The entire kernel is uploaded online and is publicly available (Josyula, 2019).
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Algorithm 1: The CD algorithm for conflict detection on CPU
Input: Timetable T
Output: Set of detected conflicts

1 Generate track event lists from the timetable (see Figure 4).
2 foreach section j do
3 foreach track i of section j do
4 foreach pair of consecutive train events allocated to the track i do
5 if both the trains are in the same direction and
6 the section is a multi-block section then
7 if Headway time constraint is violated then
8 Conflict detected between the two train events on section j!

9 else
10 if Clear time constraint is violated then
11 Conflict detected between the two train events on section j!

Algorithm 2: The CD-GPU algorithm to detect conflicts on GPU (abridged version)
Input: Timetable T
Output: Set of detected conflicts

1 Sort the timetable array to generate concatenated track event lists (see Appendix B).
2 Create n threads to be executed in parallel, where n = length of the array T .
3 i = ID of the thread, i ∈ {0, 1, 2 . . . n− 1}.
4 foreach thread except the last thread do
5 Event ei = ith element of the sorted array T .
6 Event ei+1 = i+ 1th element of the sorted array T .
7 if ei and ei+1 are allocated to the same track of the same section then
8 if the trains are in the same direction and
9 the section is a multi-block line section then

10 if Headway time constraint is violated then Conflict detected!
11 else
12 if Clear time constraint is violated then Conflict detected!
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Figure 4: Summary of conflict detection on CPU vs GPU.
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Prior to describing the experiments in depth, it is crucial to realize the following steps that
are involved in the execution of a program that employs a GPU:

1. Allocation of required resources (e.g., global memory) on the GPU.

2. Transfer6 of input data from CPU to the allocated memory in GPU.

3. Invocation of the GPU kernel that works on the input data and outputs results.

4. Transfer of results from the memory in GPU to the CPU.

4.1 Input data

Given an initial timetable Tinit subject to a disturbance, the algorithm outlined in Josyula
et al. (2018) generates, in parallel, alternative rescheduling solutions which are computed
by iterating between conflict detection and conflict resolution (i.e., rescheduling of trains).
We denote an intermediary rescheduling solution that is subject to conflict detection, T .
Hence, the algorithm computes in parallel a set T of alternative rescheduling solutions.
For instance, in the example run of the parallel algorithm (Josyula et al., 2018) shown in
Figure 1, four rescheduling solutions are being generated in parallel (i.e., four branches of
the tree are being explored in parallel). Therefore, corresponding to this example, the set T
consists of four timetables. In other words, |T | = 4.

The purpose of the experiments is to apply the GPU-based conflict detection on the set
of alternative rescheduling solutions denoted T . This is accomplished through the following
three steps:

(i) transferring the set T from the CPU to the GPU,

(ii) detecting in parallel, conflicts in each timetable T , on the GPU,

(iii) transferring the results from GPU to CPU.

The potential of GPU can be best measured when the above steps (i)–(iii) are carried out
a considerable number of times (e.g., 5000 times). This is taken into consideration while
recording the execution times.

The size of results transferred in step (iii) is proportional to the size of the input data
transferred in step (i); it is not related to the number of conflicts detected by the CD-GPU
algorithm. The reason is that the results comprise values that correspond to each train event
of the input data. These values indicate the presence/absence of a conflict along with its type
(conflict due to violation of headway time constraint or clear time constraint). Similarly, the
time taken for step (ii) (the CD-GPU algorithm) depends on the number of train events,
not the number of conflicts in the input timetable(s). For instance, the CD-GPU algorithm
requires equal execution time in the following two cases:

• to determine that an input feasible timetable has zero conflicts,

• to determine the number of conflicts in an input infeasible timetable.

6Typically, CPU communicates with GPU via high-speed bus called PCI express.
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Due to the above reasons, the input data used throughout the experiments is generated in the
following way. A feasible timetable Tinit consisting of 740 train events is randomly chosen.
When subject to a random disturbance of five minutes, 13 conflicts arise in Tinit. This
disturbed timetable consisting of 13 conflicts is used for populating the set T throughout
the experiments. The railway infrastructure consists of 59 sections (including stations) and
extends from Karlskrona to Tjörnarp.

4.2 Experimental variables

Variable Description Type (Independent, Controlled or Depen-
dent)

|T | Number of timetables in the set T . This is an independent variable, the value
of which is systematically changed.

t Total number of times steps
(i)–(iii) are executed. The value of
t = 10,000.

The value of this variable is intentionally
kept constant in order to clearly isolate
the relationship between the other vari-
ables. This is the controlled variable.

c Total number of times the conflict
detection is performed (|T | × t).

This value is systematically changed to
see its effect on the recorded measure-
ments. This is the independent variable.

tgpu Time taken by GPU to perform
conflict detection c times.

The value of this variable is observed and
recorded. This is the dependent variable.

Table 1: Variables used in the experiments.

Table 1 lists the experimental variables and describes them in detail. As a benchmark for
the recorded values of tgpu, the associated conflict detection computations on the CPU are
performed by:

(I) detecting conflicts in the chosen timetable T ,

(II) recording the execution time (tcpu) taken by the CPU to perform step I c times.

Speedup (S) =
Time taken by CPU to perform conflict detection c times
Time taken by GPU to perform conflict detection c times

=
tcpu
tgpu

Note that each value of |T | in the performed experiments is intended to represent the
number of branches of the search tree that a train rescheduling algorithm explores in par-
allel. Hence, the values are limited to |T | = {1, 2, 4, 8, . . . , 256}7; for practical problem
scenarios, it is quite realistic to explore up to 256 branches of the search tree in parallel.
The measurements for |T | = 512 are recorded only to notice the trend of speedup.

4.3 Platform description

The experiments are performed on a laptop equipped with an Intel Core i7-8550U CPU and
an Nvidia® GPU with compute capability 6.1. The GPU consists of 3 streaming multipro-
cessors (SMs), each with 128 cores. For detailed specifications of the GPU, see Appendix C.

7For the sake of convenience, we use only powers of 2.
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The underlying operating system is 64-bit Windows® 10 Education and the available
random-access memory is 16 GB8. The CPU code has been compiled using Microsoft®

C++ optimizing compiler V19.14.26431, with whole program optimization (/GL flag) and
maximum optimization favouring speed (/O2 flag). The GPU code has been compiled
using Nvidia CUDA compiler V9.2.148.

4.4 Kernel launch parameters

In an Nvidia GPU, the basic unit of execution is a warp, which is a collection of several
threads. For devices with compute capability 6.1, a warp consists of 32 threads. All the
threads in a warp are executed simultaneously by an SM; multiple warps can be executed
on an SM at once.

A block of threads is a CUDA programming abstraction; all the threads in a block can
communicate with each other (via shared memory, synchronization primitives, etc.) to co-
operatively solve a problem in parallel.

In order to execute the conflict detection kernel on GPU, the number of threads per
block and the total number of blocks need to be specified. These are known as kernel launch
parameters. A frequently employed heuristic to select the number of threads per block is to
aim for a high occupancy.

Occupancy =
number of warps running concurrently on an SM

maximum number of warps that can run concurrently on the SM
(1)

The CUDA occupancy calculator (Nvidia, 2019) allows computation of the occupancy of a
GPU by a given CUDA kernel.

For the GPU used in the experiments, the denominator of Equation 1 is 64. Compiling
the conflict detection kernel with the compilation flag --ptxas-options=-v shows
that it uses 25 registers per thread and 18960 bytes of shared memory per block. When this
kernel resource usage is given as input to the occupancy calculator, Figure 5 is obtained as
output. Based on this figure, the number of threads per block is chosen to be 512 in order
to achieve 100% occupancy. The number of blocks to be launched is calculated using the
following formula:

Number of blocks (b) =
Total number of threads

Number of threads per block
=

Total number of threads
512

From Algorithm 2 and Figure 4, notice that the total number of GPU threads is equal
to the total number of events involved in conflict detection. In the experiments, the latter
number is supposed to be the number of events in set T , which is |T |×740. However, since
|T | × 740 is not always an integral multiple of 512, the number of blocks are determined
using the following formula:

Number of blocks (b) =
⌊

Total number of events in set T
512

⌋
(2)

Consequently, throughout the experiments, conflict detection on the GPU is not performed
on all the events in the set T . The last x events, where x = (|T | × 740) % 512, are not sent
as input to the GPU, and hence are not involved in conflict detection. The same events are
excluded while performing conflict detection on the CPU.

81 kilobyte (KB) = 210 bytes, 1 megabyte (MB) = 210 KB, 1 gigabyte (GB) = 210 MB.
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Figure 5: Impact of varying block sizes on multiprocessor occupancy.

4.5 Recorded results

The results of the experiments, summarized in Table 2, show that employing the GPU for
conflict detection during real-time railway rescheduling can make the process more than
twice as fast. Each recorded value of tgpu and tcpu is the average of five observations.
Explanation of the decrease in speedup value in Table 2: The total data9 d transferred
between CPU and GPU is proportional to |T |. Through profiling the kernel, it was observed
that the data transfer speed dspeed is not constant across different values of |T |; for smaller
values of |T | (consequently, smaller values of d), the dspeed is greater.

For example, for |T | = 1, d = 123 MB and dspeed = 6.3 GB/sec. For |T | = 2, d = 246
MB and dspeed = 5.7 GB/sec. For |T | = 256, 512, d = 45 GB and 90 GB, whereas the data
transfer speeds are 3 GB/sec and 2.6 GB/sec respectively. This explains the fall in speedup
(from 2.77 to 2.43) when the value of |T | is increased from 256 to 512.

5 Discussions and Conclusion

We present two examples (Figure 6) to illustrate the potential improvement (or the lack
thereof) in the quality of solution due to faster search tree navigation. As can be seen in
Figure 6a, a twofold faster search tree navigation leads us to obtain better solutions within a
given computational time limit of, e.g., 15 seconds. However, in the disturbance scenario in
Figure 6b, a twofold faster search tree navigation does not lead to a better solution within a
time limit of 15 seconds.

GPUs possess the potential to speedup real-time railway rescheduling, thus improving

9Size of total data transferred = (Size of input data + Size of results) × 103
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Number of Number of Time (sec)

Time-
tables in
set T

Times
conflict
detection (c)

Events in
set T

Events
used for
conflict
detection

Blocks
(b)

tgpu tcpu Speedup

1 1× 103 1× 740 1× 29 1 1.23 0.22 0.18
2 2× 103 2× 740 2× 29 2 1.45 0.42 0.29
4 4× 103 4× 740 5× 29 5 1.47 0.88 0.60
8 8× 103 8× 740 11× 29 11 1.66 1.87 1.13
16 16× 103 16× 740 23× 29 23 2.49 3.14 1.26
32 32× 103 32× 740 46× 29 46 3.50 7.33 2.10
64 64× 103 64× 740 92× 29 92 6.02 15.06 2.50
128 128× 103 128×740 185× 29 185 10.81 29.17 2.70
256 256× 103 256×740 370× 29 370 19.03 52.75 2.77
512 512× 103 512×740 740× 29 740 40.73 99.20 2.43

Table 2: Results of conflict detection on CPU and GPU. For each measurement of tgpu,
steps (i)–(iii) are carried out 103 times. The number of events per timetable = 740, and the
number of threads per block = 29.
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Figure 6: Examples to illustrate potential improvement in quality of obtained ‘best’ solution
due to faster search tree navigation.
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the likelihood of arriving at a better solution within the computational time limit. However,
results of the experiments (tabulated in Table 2) show that this potential speedup (resulting
from faster conflict detection using GPUs) requires several rescheduled timetables (i.e., ≥
8) to be sent to the GPU in one transfer.

Profiling10 the parallel program with the Nvidia Visual Profiler® shows (Figure 7) that
for T = 256, only 5.5% of the recorded time (indicated by the parameter tgpu in Table 2) is
actually spent detecting conflicts. A major portion of the recorded time is spent on transfer-
ring data between the CPU and GPU, which is a demanding side-effect of using a GPU in
frequent interaction with a CPU. Since Table 2 shows that the speedup of using the GPU (in-
cluding communication time) for T = 256 is 2.77, the speed up attained in conflict detection
on the GPU (excluding communication time) is ≈ 2.77

0.055 , which is ≈ 50. Hence, conflict
detection on GPUs is far more efficient than reflected by the speedup values in Table 2. This
indicates that massive speedups could be achieved through solution approaches that execute
the entire train rescheduling algorithm on a GPU (in contrast to the presented approach
of executing only the conflict detection on the GPU). Such approaches would drastically
reduce the CPU-GPU memory transfers which are significant bottlenecks in the presented
approach.

Thus, we conclude that it is worthwhile to investigate modifications to existing real-time
railway rescheduling algorithms (e.g., Josyula et al. (2018)) such that (i) several timetables
are sent to a GPU for parallel conflict detection, or (ii) the algorithm is executed entirely on
a GPU.
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A Fragment of code from the GPU program

Figure A: Code snippet from the GPU kernel

// 1D grid and 1D blocks
auto threadsPerBlock = blockDim.x;
// Local thread number in the block
auto l = threadIdx.x;
auto blockNumInGrid = blockIdx.x;
// Global thread number
auto i = blockNumInGrid * threadsPerBlock + l;

// Shared memory data structures for speed
__shared__ tr_event sh_concat_tracklists[1025];
__shared__ int sh_directions[128];
__shared__ sec_attribs sh_section_attr[128];

// Private variable (per GPU thread) to record the conflict
event↪→

int2 conflict;
conflict.x = -1;
conflict.y = -1;

// Copy the section attributes to the block's shared memory
if (l < numb_sections)

sh_section_attr[l] = section_attr[l];

// Copy the train directions to the thread block's shared
memory↪→

if (l < numb_trains)
sh_directions[l] = directions[l];

// Copy a 'block' of sorted section lists to shared memory
sh_concat_tracklists[l] = concat_tracklists[i];
// For the last thread in the block
if(l == threadsPerBlock - 1)

sh_concat_tracklists[l+1] = concat_tracklists[i+1];

// Ensure all writes to shared memory are completed
__syncthreads();

// Other code not included in this snippet

// Coalesced copy the detected conflict to global memory
conflicts[i] = conflict;
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B Efficient generation of concatenated track event lists

Concatenated track event lists (for use by the GPU) can be efficiently generated from a
timetable by sorting it using the following logic.

Figure A: Sorting logic for the train events comprising a timetable

sort (event1, event2)
{

if(event1.section == event2.section)
{
if(event1.track == event2.track)

// Sort based on begin times.
else

// Sort based on track numbers.
}
else
// Sort based on section numbers.

}

C Detailed specifications of the GPU used in the experiments.

Property Value

Number of streaming multiprocessors 3
CUDA cores per multiprocessor, total cores 128, 384
Number of threads per warp 32
Maximum warps per multiprocessor 64
Maximum blocks per multiprocessor 32
Maximum threads per multiprocessor 2048
Maximum threads per block 1024
Register size, registers per multiprocessor 32 bit, 65536
Maximum registers per block 32 bit, 65536
Maximum registers per thread 255
Register allocation unit size 256
Register allocation granularity warp
Shared memory allocation unit size 256
Warp allocation granularity 4
Maximum shared memory per block 48 KB
Shared memory per multiprocessor 96 KB
Constant memory 64 KB
Global memory 2048 MB

Table 3: Physical limits of the GPU used in the experiments.
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Figure 8: Further detailed specifications of the GPU.
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