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Abstract 

This study aims to investigate delays, delay increases, and delay recovery characteristics, 

by using statistical methods to clarify delay propagation patterns according to historical 

records of the Wuhan-Guangzhou high-speed railway (HSR) in China in 2014 and 2015. 

Specifically, we examined arrival and departure delay duration distributions and used 

heatmaps to demonstrate the spatiotemporal frequency distribution of delays, delay 

increases, and delay recovery, and the heatmaps clearly show hot spots (coordinates with 

high frequencies) in a timetable. Then, we separated delays as discrete intervals according 

to their severity, and analyzed the delay increasing frequency and the delay increasing 

severity within each interval, so as to clarify the relationships of delay increasing probability 

and delay increasing severity with delay extents. Next, we investigated the observed delay 

recoveries and prescheduled buffer times at (in) station (section), which demonstrate the 

recovery ability of each station and section. Finally, to understand the key influencing factor 

of delay propagation, we analyzed the relationship between capacity utilization and delays, 

delay increases, and delay recoveries, by examining their Pearson correlation coefficients. 

These indicate that delay frequencies and delay increasing frequencies with Pearson 

correlation coefficients as high as 0.9 are highly dependent on capacity utilization. The 

uncovered delay propagation patterns can enrich dispatchers’ experience, and improve their 

decision-making ability during real-time dispatching in HSR. 
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1 Introduction 

Train operations are subject to various disturbances, such as severe weather, power outages, 

and facility failure, and all of these can result in train delays and lead to considerable losses 

for both railway operators and travellers (Khadilkar, 2016). For instance, the statistics from 

a Dutch railway network show that infrastructure-related disruptions occur approximately 

22 times per day, and each disruption on average can last 1.7 hours (Jespersen-Groth et al. 

2009). The Austrian Federal Railways had to cope with financial losses of more than EUR 

100 million every year due to flooding (Kellermann, Schönberger and Thieken, 2016). In 

China, the average departure punctuality in origination stations was as high as 98.8% in 

2016, but because of various disturbances during their operations, the average punctuality 

at the final destination stations was less than 90%, though delays smaller than 5 minutes are 
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considered punctual (Lessan et al, 2018). For the train dispatchers, the key steps to reduce 

loss are not only managing the unexpected delays, but also making decisions in advance. In 

other words, if the dispatchers can know the delay probabilities at different times and 

locations and how the delay would evolve and propagate, they can make decisions before 

train delays that can result in more efficient timetable re-scheduling. Therefore, examining 

patterns of delay propagation is of great significance for improving railway delay 

management and real-time decision-making abilities. 

However, accurate train delay and propagation pattern recognition presents challenges, 

mainly because: 1) disturbances are totally unexpected; 2) delay propagation is 

spatiotemporal, and its influencing factors are complex; and 3) prescheduled time 

supplements and buffer times cannot be fully utilized (delay recoveries are stochastic). In 

practice, some skilled dispatchers usually predict delays and delay propagation empirically, 

leading to different decision-making standards even for the same dispatcher. Data-mining 

approaches have recently gained more attention, due to their better understanding of train 

delay concatenation and the fact they are more supportive of robust timetables and real-time 

dispatching (Wallander and Mäkitalo, 2012). Historical train operation records can be 

regarded as the interactive consequences of all potential influencing factors, and this 

supports us exploring the rules of delays and propagation from their historical performances, 

rather than fitting functional expressions. Hence, mining the delay and propagation patterns 

from historical operation records can provide more accurate and comprehensive results for 

railway operation managers. 

This study aims to recognize train delay and delay propagation patterns from train 

operation data of the Wuhan-Guangzhou (W-G) HSR in China. To this end, we first 

analyzed the duration and spatiotemporal distribution of train delays. Next, we split train 

delays as discrete intervals with a width of 5 minutes according their length, and 

investigated the delay increasing probabilities and severity on different delay extents. We 

also examined the delay recovery abilities and prescheduled buffer times at(in) each 

station(section). Finally, in order to understand the influences of capacity utilization on 

delays, delay increases, and delay recoveries, we investigated their relationships by 

calculating Pearson correlation coefficients. 

2 literature review 

Generally, train delays are caused by exogenous factors, such as natural disasters and bad 

weather conditions, and endogenous factors, such as operation interference resulting from 

equipment failure, man-made faults, railway construction, temporary speed limitations, 

defective braking systems, signal and interlocking failures, and excessive passenger 

demand (Olsson and Haugland, 2004; Hartrumpf et al, 2009; Higgins, Kozan and Ferreira 

1995). In addition, if the running and dwell times increase due to unexpected disturbances, 

it can result in knock-on delays and delays for other trains (Milinković et al, 2013). Serious 

disruptions such as switch or signal failures, if not managed effectively, can result in 

queuing of trains, creating a chain of delayed trains. The experience from the Taiwan HSR 

shows that shortening the maintenance cycle can effectively alleviate the problem of train 

delay caused by signal failures (Hasan, 2011). Some studies have made contributions on 

statistical models of delay, and the respective fitness models. The Weibull, Gamma, and 

Log-normal distributions have been adopted in several studies (Yuan, Goverde and Hansen, 

2002; Higgins and Kozan, 1998). It was shown that the distributional form of primary 

delays and the affected number of trains could be well-approximated by classical methods, 

such as Log-normal distribution and linear regression models (Wen et al, 2017). A q-
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exponential function is used to demonstrate the distribution of train delays on the British 

railway network (Takimoto, 2000). Using spatial and temporal resolution transport data 

from the UK road and rail networks, and the intense storms of 28 June 2012 as a case study, 

a novel exploration of the impacts of an extreme event has been carried out in (Hartrumpf 

et al, 2009). Given the HSR operation data, the maximum likelihood estimation method was 

used to determine the probability distribution of the different disturbance factors and the 

distributions of affected trains. However, the models of primary delay consequences have 

not been established in detail (Xu, Corman and Peng, 2016). Probabilistic distribution 

functions of both train arrival and departure delays at the individual station were derived in 

general, based on the data from Beijing-Shanghai HSR (Liang et al, 2009).  

Data-driven research studies proposed for delay management mainly focused on using 

regression or distribution approaches to fit delay data. (Milinković et al, 2013) mined data 

from peak hours, including rolling-stock and weather data, and developed a predictive 

model involving the mining of track occupation data for delay estimations. A data-mining 

approach was used for analyzing rail transport delay chains with data from passenger train 

traffic on the Finnish rail network, but the data from the train running process was limited 

to one month (Wallander and Mäkitalo, 2012). (Murali et al, 2010) reported a delay 

regression-based estimation technique that models delay as a function of train mix and 

network topology. A statistical analysis of train delays in the Eindhoven Station in the 

Netherlands was used to explain systematic delay propagation, based on the use of a robust 

linear regression model to uncover the correlations between arrival delays (Goverde, 2005). 

Recently, (Kecman and Goverde, 2015) developed separate predictive models for the 

estimation of running and dwell times by collecting data on the respective process types 

from a training set. (Lessan et al, 2018) examined different distribution models for running 

times of individual sections in an HSR system, and showed that the log-logistic probability 

density function is the best distributional form to approximate the empirical distribution of 

running times on the specified line. A hybrid Bayesian network model is also established to 

predict arrival and departure delays for the Wuhan-Guangzhou HSR (Lessan, Fu and Wen, 

2018).  

3 Data description 

The data used in this study are the real-world train operation records of the Wuhan-

Guangzhou HSR in China. This line connects to the Guangzhou-Shenzhen HSR line at GZS 

station, to the Hengyang-Liuzhou HSR line at HYE station, and to the Shanghai-Kunming 

HSR line at CSS station, respectively. All the trains operating on this line are equipped with 

the Chinese Train Control System (CTCS), which allows a maximum speed of 350 km/h, 

and the Automatic Train Supervision system that records the movements of all trains. We 

considered data from trains in the northbound direction comprising the segment from 

Guangzhou South (GZS) to Changsha South (CSS), as shown in Figure 1. The collected 

data contain 57,796 HSR trains in the GZS-HYE section and 64,547 HSR trains in the HYE-

CSS segment, comprising information about train operations from March 24, 2015 to 

November 10, 2016. The scheduled/actual arrival/departure records of each train and station, 

the number of trains, dates, occupied tracks, and section lengths were collected to construct 

a database with data recorded every minute. Figure 2 shows the accumulative HSR trains 

of each station during each hour, clearly indicating the differences of train services along 

with space and time axes. Therefore, in the following sections, we will investigate the 

spatiotemporal differences of delay and delay propagation characteristics. 
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4 Delay Characteristics Investigation 

Longer delays can have stronger influences on railway systems and can propagate farther, 

whereas shorter delays have smaller influences on railway systems, or can even be 

assimilated at the moment of occurrence. To understand their characteristics, we first 
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Figure 1: Map of Wuhan–Guangzhou high-speed railway line 

 
Figure 2: Cumulative HSR trains per hour 
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visualized the duration distribution of arrival and departure delays. The histograms in Figure 

3 clearly show that both arrival and departure delays follow a right-skewed and heavy-tailed 

distribution, which indicates that the longer the delays, the lower the frequencies. Also, train 

delays can propagate along time and space axes, which can result in different delay 

frequencies in a timetable. To understand the spatiotemporal distribution pattern of train 

delays, we analyzed the frequency distribution of delays. We separated delays as longer 

than 4 minutes and as longer than 30 minutes, to better understand the spatiotemporal 

distribution characteristics of different delay severities. The length of 4 minutes was chosen 

because it is the criteria set by the Chinese Railway Company to label trains as delayed, and 

the length of 30 minutes was chosen to understand the spatiotemporal distribution of longer 

delays. Figure 4 and Figure 5 clearly show that both 4 minute and 30-minutes-or-longer 

delay frequencies at the original station are extremely low, but they became much higher 

with the operation of trains. In addition, along the time axis, their frequencies are low during 

off-peak hours, and high during peak hours. In short, the hot spots of both 4 minute and 30-

minutes-or-longer delays appear during 14:00 to 20:00, in the LCE-CSS section. 

 

 

 

 
Figure 3: Delay length (min) distribution 

 

 

 
Figure 4: Spatiotemporal distribution of delays 
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5 Delay propagation pattern investigation 

5.1 Delay increasing characteristics 

Delays can increase due to secondary disturbances. In order to understand the delay 

increasing pattern in the timetable, we first made statistics about the delay increasing 

(growth more than 4 minutes) frequency, at station and in section. In this process, a train 

whose departure delay was 4 minutes longer than its previous arrival delay was labeled as 

delay increase at station, and an arrival delay that was 4 minutes longer than its previous 

departure delay was labeled as delay increase in section. Figure 6 clearly shows that the 

delay increasing frequency at station is high at junction stations (CSS, HYE, and GZS). 

This conclusion is understandable, as the junction stations have more tasks (such as trains 

turning-over, crossing-line, and terminating) than other stations, which makes the 

equipment utilization more frequent, leading to the higher disturbance probability. However, 

without evident task volume differences, probabilities in sections do not appear with any 

explicable regularity, as they are mainly related to equipment status, climate, weather, and 

the experience and skills of dispatchers. 

Then, we conducted sensitive analyses of delay increasing frequency and delay 

increasing severity on different delay severities. We transferred train delays as discrete 

intervals with a width of 5 minutes, and separated delays into the intervals that they fall in. 

Likewise, the sensitive analyses were also conducted on delay increases at station and in 

section, as shown in Figure 7 and Figure 8.  

Figure 7 shows that both delay increasing frequencies at station and in section rise with 

the growth of delay extent, meaning that longer delays are more likely to encounter 

secondary disturbances. An exception happens on the early-arrival-trains interval (the first 

interval), where the delay increasing probability at station is abnormally high, but that is 

not in the case in section. This can be explained by the dispatching principle that trains are 

only allowed to arrive early, but cannot depart early due to the passenger boarding 

requirements. Therefore, early arrival trains tend to be given more dwelling times to depart 

on schedule. Figure 8 shows the sensitivity of delay increasing severity, where, at stations, 

it is shorter with the growth of delay length, but, in sections, it keeps stable with the growth 

of delay length. Also, an exception happens on the interval of early arrival trains at station 

(the first interval). This result was caused by the recovery of early arrival trains, as their 

early arrival times (the smallest is -10 minutes) are not as long as delays (can reach 190 

minutes), thus limiting their increasing extent. 

 
Figure 5: Spatiotemporal distribution of delays longer than 30 minutes 

 

 

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 444



 

 

 
5.2 Delay recovery characteristics 

Delays can be recovered using buffer times prescheduled in sections and stations. To 

understand the delay recovery characteristics of each station and section, we conducted 

statistics analyses about the spatiotemporal probability distribution of delay recoveries, 

which is the proportion of the trains with delay recoveries to all delayed trains, as shown in 

Figure 9. Like the spatiotemporal distributions of delay increases in sections, delay 

recoveries do not have centralized hot spots, but their probabilities in section are much 

higher than those at station. Besides, delay recovery probabilities at(in) one station(section) 

are evidently different from others, coordinating the empirical conclusion that delay 

 
Figure 6: Spatiotemporal frequency distribution of delay increase 

 

 

 
Figure 7: Sensitive analysis of delay increasing frequency on delays severity 

 

 

 
Figure 8: Sensitive analysis of delay increasing severity on delays severity 
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recoveries are dominantly influenced by the buffer times distribution in the timetable. In 

practice, the buffer time allocation methods differ from timetables/railway lines, such as 

allocating according to section length and travel times or according to the specific recovery 

requirements of sections (Huang et al, 2018). Therefore, we investigated the observed delay 

recoveries and pre-scheduled buffer times of each station and section as shown in Figure 10 

and Figure 11, respectively. Figure 10 denotes the comparisons of scheduled running (dwell) 

times and practical running (dwell) times at(in) each station(section). Comparisons of the 

bar pairs indicate that the practical running and dwelling times are smaller than the 

scheduled running and dwelling times, implying that buffer times were somewhat effective 

in reducing delays at(in) station(section). However, different stations and sections appear 

to have different recovery values, as the left-hand bars were ranked from small to large 

(from top to bottom), but the right-hand bars were opposed to this rule, and the recovery 

volumes in sections are lower than those at stations. We thus calculated the available 

(prescheduled) buffer times at each station using prescheduled running times and minimum 

running times, and those in sections using prescheduled dwell times and minimum dwell 

times, given by (1) and (2). 

 

 

 

station station minBT T T= − ,                   (1) 

section section
max

LBT T
S

= − .                (2) 

where 
stationBT and 

sectionBT  are buffer times at(in) station(section); 
stationT and 

sectionT   are 

 
Figure 9: Spatiotemporal distribution of delay recovery probabilities 

 

 

 
Figure 10: Comparison of scheduled and practical dwell (running) times 
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prescheduled dwell times and running times at(in) station(section); 
minT is the minimum 

dwell times of trains at station, where, at junction stations, it is 2 minutes, and at other 

stations, it is 1 minute; L is the distance of every adjacent station; and Smax is the maximum 

speed of HSR trains, i.e., 310 km/h during the time span in the collected data, according to 

the technique documents from China Railway Company. The available buffer times 

distributions are shown in Figure 11, where buffer times value is extremely high at the GZS 

station and in the ZZW-CSS section, which can explain the high probabilities at GZS 

stations and in the ZZW-CSS section in Figure 9, and the large recovery ability of ZZW-

CSS in Figure 10.  

 

 
5.3 Correlation analyses with capacity utilization 

Figure 2, Figure 4, Figure 5, and Figure 6 indicate that both train delays and delay increasing 

have high frequencies during peak hours. To quantitatively estimate their relationships with 

capacity utilization, we calculated the Pearson correlation coefficients ( , see (4)) of 

delays and delay increases with the number of trains per hour (N), given by (3). 

totalN
N

d
= .                     (3) 

where Ntotal is the total train services of each hour shown in Figure 2, and d is the number of 

days the data included. 

( ) ( ) ( )

( ) ( ) ( ) ( )
,

2 2 2 2
X Y

E XY E X E Y

E X E Y E Y E X


−
=

− −

.          (4) 

In the above equation, X and Y are two variables, and E(X) and E(Y) are the expectations 

of X and Y, respectively. 

Table 1 clearly shows that delays (including arrival and departure delays) and delay 

increases (including delay increases at station and in section) have strong relationships with 

the number of trains per hour whose Pearson correlation coefficients can reach as high as 

0.9, but the Pearson correlation coefficients between delay recoveries and the number of 

trains per hour are as low as 0.413 and 0.598 at station and in section, respectively. Pearson 

correlation coefficients further clarify the quantitative relationships between the number of 

trains per hour with delays, delay increases, and delay recoveries. Specifically, the scatter-

lines in Figure 12 and Figure 13 show the matching effects of delays and delay increases 

 
Figure 11: Prescheduled buffer times at(in) each station(section) 
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with the number of trains per hour. Considering these figures and the Pearson correlation 

coefficients, the linear relationship between the probabilities of delays and delay increases 

with the number of trains per hour is high. 

 

Table 1: Pearson correlation coefficients of delays, delay increases, and delay 

recoveries and capacity utilization 

Arrival 

delays 

Departure 

delays 

Delay 

increase 

at station 

Delay 

increase 

in section 

Delay 

recovery 

at station 

Delay 

recovery 

in section 

0.936 0.933 0.915 0.945 0.413 0.598 

 

 

 

 

 
Figure 12: Correlation of delay and capacity utilization 

 

 

 
Figure 13: Correlation of delay increase and capacity utilization 
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6 conclusion 

The paper presents how to recognize train delays and delay propagation patterns from 

historical train operation records. The following conclusions were obtained. 

1) Train delay frequencies and delay increasing probabilities are spatiotemporally 

different, and are highly dependent on capacity utilization; the more the capacity utilization, 

the higher probabilities of delays and delay increases (with Pearson correlation coefficients 

over 0.9). 

2) For both arrival and departure delays, the longer the delays, the higher the delay 

increasing probabilities. 

3) Longer arrival delays could result in shorter delay increases, whereas departure 

delays do not influence the delay increasing extent. 

4) The delay recoveries, which are mainly influenced by prescheduled buffer times, 

have higher probabilities but lower volumes in section as compared against those at stations. 

The spatiotemporal probabilities and analyses on delay increase and recovery can help 

dispatchers improve their decision-making qualities. Explicitly, with the spatiotemporal 

distributions, the dispatchers can obtain the real-time and future probabilities of delays, 

delay increases, and delay recoveries. With the sensitivity analyses between delays and 

delay increase, the dispatchers can acquire their increase probabilities and severities under 

any delay length; with the relationship analyses between delay recoveries and total buffer 

times, the dispatchers can have a better understanding of the recovery abilities of each 

station and section. Additionally, the spatiotemporal probabilities can also be applied to 

train operation simulation systems to optimize disturbance setting and timetable 

rescheduling programs, as they are more practical than hypothetical models that bring 

certain gaps between simulations and practice, and usually over assume and ignore some 

situations and constraints of train operations. 
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