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Abstract  

Studies on the spatiotemporal distribution and duration characteristics of railway 

disruptions are very significant for the advanced prediction of disruption and development 

of real-time dispatch strategies. In this study, historical disruption records of some Chinese 

High-Speed Railways (HSRs) lines from 2014–2016 were used to investigate the 

distribution characteristics of railway disruptions. The spatiotemporal probability 

distribution of four railway lines were calculated and their hotspots (coordinates with high 

probabilities) and coldspots (coordinates with low probabilities) were revealed using 

heatmaps. Furthermore, all the disruptions were classified into seven clusters based on their 

causes, and statistical analysis was carried out on each cluster. In addition, three right-

skewed distribution models, namely Log-normal, Weibull, and Gamma distributions, were 

used to fit the duration of each cluster to uncover its duration regularities. Finally, goodness-

of-fit test was performed on the models using the Kolmogorov-Smirnov method, indicating 

that the duration of each classified disruption can be estimated using a Log-normal 

distribution function. The obtained spatiotemporal probabilities and duration time 

distribution models thus can be further applied into estimating the occurrence and duration 

of railway disruption in real-time dispatching to help dispatchers make advanced decisions. 
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1 Introduction 

The disruptions encountered in railway systems are caused by humans, equipment, and the 

environment, which can lead to considerable losses for managers and travelers. For example, 

the statistics from a Dutch railway network show that infrastructure-related disruptions 

occur approximately 22 times per day and each disruption lasts for an average of 1.7 h 

(Jespersen-Groth et al, 2009). Furthermore, the Austrian Federal Railways suffer huge 

financial losses of more than EUR 100 million every year due to flooding (Kellermann, 

Schönberger and Thieken, 2016). Meanwhile, the average departure punctuality in China at 

various origin stations was 98.8% in 2016. However, the average punctuality at the final 

destination stations was less than 90% due to various disruptions during operation, although 

delays smaller than 5 min are considered punctual (Lessan et al, 2018). Hence, train 

dispatchers are faced with the challenge of reducing the influence of disruptions by 

developing effective strategies in advance. In other words, the dispatchers can make 

effective decisions during or before disruptions for efficient timetable re-scheduling if they 
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can predict when and where the disruptions would occur and how long the disruptions 

would last. Therefore, studies on the rules and distribution characteristics of railway 

disruptions are significant for the real-time dispatch of trains.  

However, there are several challenges in the accurate prediction of the occurrence of train 

disruption and duration which are as follows: 1) the disruption is unexpected; and 2) the 

maintenance duration is highly dependent on the experience and skill of the maintenance 

staff. Functional models are not sufficient to explain the complex relationship between the 

disruptions and their potential influence factors. However, skilled dispatchers usually 

predict the disruption duration empirically, which tends to cause ineffective dispatching 

when disruptions happen. However, data-mining approaches have recently gained more 

attention because they can efficiently model train operations and can support robust 

timetables and real-time dispatching (Wallander and Mäkitalo, 2012). Historical disruption 

records are considered as interactive consequences of all potential influence factors such 

that the disruption rules can be determined from the historical performances rather than 

influence factors. Thus, advanced data-mining techniques, as well as big data, enable us to 

address these problems using data analysis. 

This paper aims to discover the spatiotemporal distribution and duration characteristics 

of railway disruptions based on data obtained from Guangzhou Railway Group in China. 

Thus, the spatiotemporal probability distribution of disruptions on four railway lines 

(Wuhan-Guangzhou HSR line, Shanghai-Shenzhen HSR line, Guangzhou-Shenzhen HSR 

line, and Guangzhou-Shenzhen intercity line) were analyzed. The disruptions were then 

classified into seven categories based on their source, and statistical analyses were 

conducted on the duration of each category. Furthermore, three right-skewed distribution 

models were used to fit the duration of disruption of each category. The histograms 

indicated that the duration has a right-skewed and heavy-tailed distribution. Finally, 

Kolmogorov-Smirnov method was used to perform the goodness-of-fit test in order to select 

the optimal models for each category. 

2 Literature review 

Generally, railway disruptions can be caused by exogenous factors, such as natural disasters, 
and bad weather conditions and endogenous factors, such as operation interference resulted 
from equipment failure, man-made faults, railway construction, temporary speed limitations, 
defective braking systems, signal and interlocking failures, and excessive passenger 
demand (Olsson and Haugland, 2004; Hartrumpf et al, 2009; Higgins, Kozan and Ferreira 
1995). Many methods and models have been suggested to manage these disruptions. 
Traditionally, train operation simulated systems such as LUKS (Janecek and Weymann, 
2010), RailSys (Wiklund, 2003), and OpenTrack (Nash and Huerlimann, 2004) have been 
used by railway researchers and managers worldwide. However, the disruption or delay 
parameters in these systems mainly depend on hypothetical and theoretical models. 
(Corman, D’Ariano and Hansen 2014) examined the resisting disturbance abilities of 
normal traffic and robust timetables using a simulation method. (Huisman and Boucherie, 
2001) established a delay propagation model considering the routes occupation relations to 
predict the knock-on delays, under the condition that train delays follow an Exponential 
distribution.  

Data-driven approaches are also widely used in railway disruption/delay management. 

These approaches aim to discover the delay and disruption patterns from historical train 

operation data or disruption records. (Murali et al, 2010) introduced a delay regression-

based estimation technique that models delay as a function of train mix and network 
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topology. (Kecman and Goverde, 2015) developed separate predictive models for the 

estimation of running and dwell times by collecting data on the respective process types 

from a training set. (Lessan et al, 2018) examined different distribution models for running 

times of individual sections in an HSR system and showed that the Log-logistic probability 

density function is the best distributional form to approximate the empirical distribution of 

running times on the specified line. It was shown that the distributional form of primary 

delays, and the affected number of trains could be well-approximated by Log-normal 

distribution and linear regression models (Wen et al, 2017). A q-exponential function is 

used to demonstrate the distribution of train delays on the British railway network 

(Takimoto, 2000). Using spatial and temporal resolution transport data from the UK road 

and rail networks, and the intense storms of 28 June 2012 as a case study, a novel 

exploration of the impacts of an extreme event has been carried out in (Hartrumpf et al, 

2009). Regression trees were trained using Hong Kong subway incident data to estimate the 

affected delay trains in (Weng et al, 2015). However, the environment of HSR trains is more 

complex than subway systems. Copula Bayesian networks were developed to predict the 

duration of turnout faults (Zilko, Kurowicka and Goverde, 2016). A hybrid Bayesian 

network model is also established to predict arrival and departure delays for Wuhan-

Guangzhou HSR (Lessan, Fu and Wen, 2018). 

3 Data description 

The data used in this study were obtained from the disruption records of Guangzhou 

Railway Group from 2014-2016, for Wuhan-Guangzhou, Shanghai-Shenzhen, and 

Guangzhou-Shenzhen HSR lines, as well as Guangzhou-Shenzhen intercity line, as shown 

in Figure 1. The trains have a maximum speed of 350 km/h when operated on Wuhan-

Guangzhou and Guangzhou-Shenzhen HSR lines and 250 km/h when operated on 

Shanghai-Shenzhen HSR line. In addition, the trains have a maximum speed of 200 km/h 

when operated on Guangzhou-Shenzhen intercity line. Thus, 2,256 disruptions attributed to 

nine causes were recorded which are Automatic Train Protection (ATP) system faults, 

turnout faults, track faults, pantograph faults, rolling stock faults, catenary faults, signal 

system faults, foreign body invasions, and severe weather. Table 1 shows four cases of the 

disruptions in the database. 

 

 Table 1: Records of HSR disruptions 

Line Date Train Time Duration(min) Cause 

Wuhan-

Guangzhou HSR 
2014.05.19 G275 19:10 19 

Catenary 

faults 

Wuhan-

Guangzhou HSR 
2014.05.20 G6313 14:30 63 

Severe 

weather 

Wuhan-

Guangzhou HSR 
2015.09.27 G1133 17:06 15 

Severe 

weather 

Shanghai-

Shenzhen HSR 
2015.10.24 G530 16:42 19 

Pantograph 

faults 
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Figure 1: Sketch map of HSR lines in the jurisdiction of Guangzhou Railway Group. 

 

 

4 Spatiotemporal probability distribution of disruptions 

Railway disruptions are unexpected. However, they tend to appear as regularities that can 

be investigated from large-scale historical records due to the influence of external factors 

such as weather and climate, and internal factors such as the characteristics and coordination 

of equipment, and train interval. Figures 1–4 show the spatiotemporal probability 

distributions of HSR disruptions, where darker colors represent higher probabilities. Owing 

to the low probabilities and frequencies of disruptions, each HSR line was divided into 

several segments to improve the statistical effects. For example, Wuhan-Guangzhou HSR 

line which has 17 stations was divided into four segments from south-north, such as GZS-

SG, SG-HYE, HYE-CSS, and CSS-WH. Figures 1–4 indicate that different segments have 

different probabilities in the time domain. The peak hours occurred between 12:00 and 

20:00. However, GZS-SG segment has the highest probabilities for Wuhan-Guangzhou 

HSR line, while SZN-SW and CS-ZA segments have higher probabilities for Shanghai-

Shenzhen HSR line. Similarly, GZS-HM has the highest probabilities for Guangzhou-

Shenzhen HSR line, while GZ-DG and ZMT-SZ have higher probabilities for Guangzhou-

Shenzhen intercity line. The spatiotemporal characteristics of disruptions indicate that the 

probabilities of the disruptions depend on the number of train operations in time domain. 

However, its influence factors are complex in space domain owing to weak regularities. The 

probabilities in the space domain tend to be influenced by the status of the equipment, skill 
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and experience of dispatchers, weather, and climate. However, these factors are different 

for different locations. 

 

 
Figure 2: Spatial-temporal distribution of Wuhan-Guangzhou HSR disruptions. 

 

 

 
Figure 3: Spatial-temporal distribution of Shanghai-Shenzhen HSR disruptions. 
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Figure 4: Spatial-temporal distribution of Guangzhou-Shenzhen Intercity Railway 

disruptions. 

 

 

 

 
Figure 5: Spatial-temporal distribution of Guangzhou-Shenzhen HSR disruptions. 

 

 

5 Investigation of disruption duration characteristics 

The spatiotemporal distribution probabilities can help dispatchers predict the occurrence of 

disruptions. However, in practice, it is also necessary to know the duration of disruptions to 

better understand the characteristics of disruptions, and estimate their influences on train 

operation, as the durations of disruptions can have different influence on railway systems. 

Therefore, in this section, we examine the rules of disruption durations using statistical 

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 430



method.  

5.1 Statistics analyses  

Based on the coordinated relationship between each equipment in HSR systems, pantograph 

faults and catenary faults can be regarded as a single category called power supply faults as 

they have the same effect on HSR systems. Likewise, track faults and turnout faults can be 

regarded as a single category called turnout-track faults. Thus, the disruptions were 

classified into seven clusters, namely ATP faults (ATPFs), rolling stock faults (RSFs), 

turnout-track faults (TTFs), power supply faults (PSFs), signal faults (SFs), severe weather 

(SW), and foreign body intrusions (FBIs). Statistical analyses were conducted to examine 

the differences in duration between each category, as shown in Table 2. The results show 

that the mean values of TTF and SW durations are higher than other values and are longer 

than 40 min, which indicates that these two categories have stronger influence on the HSR 

system. In addition, the variances of these two categories are larger than the other values, 

indicating that a larger uncertainty exists. Meanwhile, the mean and variance of ATPF 

duration have the least values, indicating that ATPF has the least influence on the HSR 

system. Its duration has a more centralized distribution. 

 

Table 2: Statistics on duration time of disruptions with different causes(min). 

Cause Min Mean Max Variance Sample size 

RSF 13 31.69 506 1148.22 472 

ATPF 10 20.68 154 327.16 328 

TTF 8 42.71 579 3185.21 149 

PSF 9 33.21 295 1340.07 543 

SW 4 41.97 286 2612.29 263 

FBI 11 34.35 372 1336.38 289 

SF 6 30.19 376 977.90 212 

Total 4 27.39 577 1568.39 2256 
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5.2 Distributional models for disruption duration 

The duration of disruption is the difference between its starting and ending time. Figure 6 

shows a real disturbance in YDW-SG section on W-G HSR line. This figure defines the 

disruption length, which is from the time when the station/section is blocked to the time 

when the first train is allowed to pass. Longer durations can lead to stronger influence on 

the HSR system, causing more damage and significant losses to railway managers and 

travelers. Hence, the duration distribution models of the disruptions were investigated to 

discover the characteristics of disruptions so that dispatchers can predict and control the 

disruptions effectively. The database just recorded the disruptions whose length are longer 

than 4 minutes, because the delays longer than 4 minutes are labelled as delayed trains by 

the China Railway corporation. In addition, samples with durations longer than 120 min 

were regarded as outliers because they had extremely low frequencies. In Figure 7, the 

histograms show the duration distribution of each category and all samples, which indicate 

that both each cluster and all samples have a long-tailed and right-skewed distribution. To 

quantitatively examine their duration, three right-skewed probability models were selected 

to fit the data: 

 

1) Log-normal distribution. 

If the logarithm of a random variable follows a normal distribution, the random variable 

also follows a Log-normal distribution. The probability density of a Log-normal model is  

( )
21 (ln )

exp
22π

x
f x; ,

x


 



 −
= − 

 
2

          (1) 

where x is a random variable, σ is the standard deviation, and μ is mean.  

 

2) Weibull distribution. 

( )
( )( )

1

exp 0

0 0

k
kk x

x λ x
f x; λ,k λ λ

x

−  
−   =   




                （2） 

where x is a random variable, λ>0 is the scale parameter, and k>0 is the shape parameter. 

 

3) Gamma distribution. 

( )
( )

11
exp 0α

α

x
f x;α,β x     x

β Γ α β

−  
= −  

 

                （3） 

( ) ( )1

0
expxΓ x = t t dt


− −                      （4） 

where x is a random variable, α is the shape parameter, and β is the scale parameter. 

The models above were used to fit the duration of the disruptions as shown in Figure 7. 

Meanwhile, the fitted parameters of each category are shown in Table 3. 
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Figure 6: A real disturbance happened on W-G HSR line shown in time-space diagram 

(horizontal axis is time, and vertical axis is space). 

 

 

 

Table 3: Fitted parameters of each category. 

Cause 
Log-normal Weibull Gamma 

μ σ k λ α β 

RSF 3.100 0.772 1.416 32.418 1.954 0.066 

ATPF 2.760 0.685 1.480 22.186 2.328 0.117 

TTF 3.301 0.707 1.553 38.491 2.272 0.066 

PSF 3.082 0.727 1.407 31.290 2.091 0.074 

SW 3.091 0.780 1.304 32.774 1.761 0.058 

FBI 3.138 0.733 1.434 33.230 2.067 0.069 

SF 2.768 0.845 1.323 23.836 1.739 0.079 

Total 3.029 0.766 1.376 30.211 1.933 0.070 
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Figure 7: Fitting results of duration time of each disruption category. 
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5.3 Goodness-of-fit testing 

To select the model that has the best performance for each category, a Kolmogorov-

Smirnov (K-S) (Massey Jr, 1951) method was used to test the goodness-of-fit of the models. 

K-S method tests if one random variable follows a theoretical distribution, or if two random 

variables have the same distribution. Its null hypothesis is as follows:   

H0：a random variable follows a theoretical distribution, or two random variables have the 

same distribution. 

Its test statistic (T) is the largest difference between the cumulative distribution function 

(CDF) of the data and the theoretical distribution, as described by (5). However, some 

random numbers, which follow an uniform distribution were added to the data in order to 

satisfy the continuity requirement of K-S because the historical train operation data were 

recorded in the minute timescale 

T max F ( x ) F( x )= −                           (5) 

where ( )F x is the CDF of the observed data, which consists of the duration of each 

category, ( )F x  is the CDF of the theoretical distribution models, which consists of three 

alternative distribution models. A significance level of 0 05= . was chosen for the test. 

As T becomes smaller, the sample distribution tends to follow the theoretical distribution. 

The K-S test results of all the models are summarized in Table 4. 

The results indicate that Log-normal models fitted using RSF, ATPF, FBI, all samples, 

as well as all alternative models fitted using TTF, and SF samples, passed K-S test. However, 

the Log-normal models had the least T value. Meanwhile, no model based on PSF and SW 

samples passed K-S test. However, Log-normal model had the least T value, and the p-

values were very close to  . Therefore, the CDF of Log-normal model had the smallest 

distance with that of PSF, and SW, and Log-normal model thus was chosen as the 

distribution model of all HSR disruption clusters. The parameters of each category are 

shown in Table 5. The fitted probability models can be used to estimate the duration of any 

disruption, once its causes are ascertained. 

 

 

Table 4: KS testing result of each cluster. 

Cause 
Log-normal Weibull Gamma 

T p-value T p-value T p-value 

RSF 0.028 0.863 0.078 0.007 0.067 0.031 

ATPF 0.041 0.635 0.099 0.003 0.086 0.016 

TTF 0.052 0.848 0.072 0.450 0.073 0.436 

PSF 0.066 0.021 0.109 0.000 0.083 0.001 

SW 0.094 0.034 0.119 0.003 0.129 0.000 

FBI 0.037 0.843 0.093 0.017 0.081 0.052 

SF 0.065 0.324 0.083 0.104 0.071 0.224 

Total 0.031 0.729 0.077 0.001 0.073 0.016 

Note: underline fonts mean passing K-S test 
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Table 5: Fitted Log-normal distribution parameters for each category. 

Cause Model μ
 

σ  Cause Model μ
 

σ  

RSF Log-normal 3.100 0.772 SW Log-normal 3.091 0.780 

ATPF Log-normal 2.760 0.685 FBI Log-normal 3.138 0.733 

TTF Log-normal 3.301 0.707 SF Log-normal 2.768 0.845 

PSF Log-normal 3.082 0.727 Total Log-normal 3.029 0.766 

 

6 Conclusion 

In this paper, we investigated the spatiotemporal distribution and duration distribution 

characteristics of railway disruptions based on the historical disruption records of four HSR 

lines in China. The conclusions made are as follows: 

1) The probabilities of railway disruptions are spatiotemporally different. 

2) Railway disruptions can be classified into seven categories based on their causes and 

influence on the HSR system. 

3) The statistical analyses of each category revealed that the average duration of TTF and 

SW is the highest and longer than 40 min, whereas ATPF has the least value. 

4) The duration of each category can be well fitted using Log-normal distribution model.  

The results can assist dispatchers in understanding the distribution characteristics of 

disruptions, thereby improving the quality of their decisions. In particular, they can obtain 

the real-time and future probabilities of disruption at any coordinates of the timetable to 

enable them develop strategies that can prevent the disruptions. Furthermore, they can 

estimate the duration of disruptions using fitted Log-normal distribution models in order to 

make better decisions. The probability models can also improve train operations and 

disruption management in simulated systems as they are more accurate than hypothetical 

models. Hypothetical models introduce certain gaps into the simulations and usually 

overestimate or ignore some situations and constraints of train operations, which are needed 

by dispatchers in rescheduling the timetable. 
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