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Abstract
Since railway companies have to apply for long-term public contracts to operate railway
lines in public tenders, the question how they can estimate the operating cost for long-term
periods adequately arises naturally. We consider a rolling stock rotation problem for a time
period of ten years, which is based on a real world instance provided by an industry partner.
We use a two stage approach for the cost estimation of the required rolling stock. In the first
stage, we determine a weekly rotation plan. In the second stage, we roll out this weekly
rotation plan for a longer time period and incorporate scheduled maintenance treatments.
We present a heuristic approach and a mixed integer programming model to implement
the process of the second stage. Finally, we discuss computational results for a real world
tendering scenario.
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1 Introduction

Due to structural changes in the railway system all over Europe, the operation of trains
does not lie solely in the hands of single state owned railway companies like it used to be.
Instead railway companies compete in public tenders to receive public contracts to operate
for example a certain railway line or the public railway network of a city, see Schlechte
(2012) and Abbink et al. (2018). This market forces the companies to act as cost-efficient
as possible to outperform others in the competition for public contracts. Since the planning
of railway operations by a single company is already a complex problem, planning in a
segregated market with several stakeholders becomes even more elaborate.

One of the arising problems is the estimation of costs to operate a railway enterprise
for long-term periods. If a private company participates in a public tender for the operation
of a railway line, it is critical to make a cost-effective offer, and, thus, to estimate the cost
for all operational aspects. In this paper we analyze the costs for the rolling stock rotations
including short-term, mid-term, and long-term maintenance schedules. A special feature of
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this analysis is that we cannot solely rely on known optimization techniques or the planning
of rolling stock rotations, because they are not suitable for periods of several years. To the
knowledge of the authors the rolling stock rotation problem has not been addressed in the
literature on such a long-term scale.

The objective of this paper is to obtain a vehicle and maintenance schedule for a given
fleet on a given timetable that is to be operated and maintained over the course of ten years.
The interesting aspect in this exposition is the presence of two scales. While the vehicles
travel only several thousand kilometers per week, the maintenance procedures have to be
performed after several ten thousand kilometers. Hence, they are not performed every week,
and cannot be included into a cyclical weekly rotation plan. Over the course of several
years it is still necessary to determine when and how often these maintenances have to be
performed and it may also be of interest whether they can be distributed evenly in order to
avoid peak workloads at the maintenance facilities.

In the following section we give a detailed description of the problem and our solution
approach which is divided into two stages. We present the algorithmic details to solve the
second stage separately in Section 3. Finally, we discuss the computational results that we
obtained and summarise our findings.

2 Methodology

2.1 Problem and Data

As a problem, we use an anonymized real-world instance provided by the TransDev GmbH.
The task is to plan the rolling stock rotations on a regional railway line between three cities
GB, WB and HAM that are 32km and 42km apart from each other. The data specify a
weekly timetable. There are 41 trips in each direction, which can be valid for different
days of the week, with varying required passenger capacities. Furthermore, fuelling and
maintenance intervals are provided and there are two kinds of vehicles available. One kind
has 400 seats available, the other kind has 200 seats. All vehicles can be coupled to increase
the capacity or to reduce the number of deadhead trips. Except for Saturday and Sunday
there are usually no trips between 1am and 5am in the morning. Since only the timetable
was provided, the cost for the vehicles, trips and so on had to be estimated. It was also
given that refuelling has to occur every 1,000km and an IS maintenance has to occur every
40,000km. The duration of the refuelling was assumed as 15min. The duration of the IS
maintenance depends on the level. It was estimated to take at least 10 hours for level 1.
At multiples of 40,000km a higher level IS maintenance is required that may take more
time. The highest level is 5, necessary after 640,000km, which was estimated to take full
24 hours.

2.2 Approach

Due to the dual scale of the problem, we decompose it into two stages and use a sequential
optimization approach. We will calculate a weekly rotation plan in the first stage and take
care of the long-term maintenances in the second stage, where we track every single vehicle
with the passage of time. If necessary or beneficial, we will break the rotation plan of the
first stage apart and reassemble it to suit our needs.
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First Stage
We use the rolling stock rotation optimizer ROTOR (Borndörfer et al. (2016); Reuther
(2017)) to calculate a one week rotation plan for the first stage. For this part the long-
term maintenance intervals are left out. ROTOR transforms the input timetable into a graph
where trips are vertices that have to be connected by arcs that represent turns and empty
trips, i.e. ROTOR models the problem using a mixed integer linear programming approach.
To reduce the problem size the connecting arcs are created dynamically in the solution pro-
cess. The pricing step that determines which arcs will be included into the problem is guided
by a coarser version of the problem that simplifies the problem to an assignment problem.
Furthermore, ROTOR uses heuristics like rapid branching to find primal solutions faster.

Table 1: Solution info

cycles 3
trips/turns 764
vehicles 4
total trip distance 27,974.31km
deadhead trip distance 242.83km
deadhead trips 6
solution time 47min
gap 0.00%

For the given timetable, ROTOR achieved an optimal solution using 4 of the vehicles
with a capacity of 400 passengers each although vehicles with 200 passengers were available
as well, see Table 1 for some statistics. The higher vehicle capacity was accounted for by a
cost factor of 1.5. It was possible to include a 24 hour idle time for one vehicle on Sunday,
since the trip density on that day was lower. This time is sufficient to include any of the
required maintenances. The second longest idle time was less than 8 hours and, therefore,
not even sufficient for an IS level 1 maintenance. ROTOR could be set up to include the
refuelling in its calculations. However, it is easier to verify that there are sufficiently many
time windows of 15min or longer in a postprocessing step, which we have done.

Since we want to roll out the rotation plan in the next phase, it is of importance that
ROTOR provides a cyclical rotation plan. Apart from that it is conceivable to use other
methods for the first stage, e.g. the method proposed by Frisch et al. (2018).

Second Stage
In the second stage, we intend to roll out the weekly rotation plan on a long-term planning
interval of ten years and consider different strategies to incorporate the required mainte-
nance treatments. A schematic drawing of the rotation plan is given in Figure 1 and the
respective distances in Table 2. It can be seen that the cyclical rotation plan consists of 3
cycles. The opportunity for a maintenance lies at A3 in the first cycle. Hence, only a single
vehicle could undergo the required IS treatments. In order to enable the maintenance of the
other vehicles, the rotation plan has to be modified. Our approach to connect every vehicle
to a maintenance opportunity is to possibly swap vehicles if they are located at the same
station overnight. It turns out that from Monday to Saturday either the vehicles on A and C
or the vehicles on B and D are both located in GB. We ruled out Saturday morning, since
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Figure 1: Schematic representation of the rotation plan computed in the first stage. The four
rows labeled from A to D represent possible sets of schedules during a week for a vehicle.
A vehicle that performsA orB will perform the same schedule in the next week. A vehicles
that performs C will perform D in the following week and vice versa. The capital letters
denote the various schedules/distances to be covered by the vehicles. The indexed capital
letters denote subschedules and subdistances. Since C and D form a cycle together, the
rotation plan consists of the 3 cycles in total. Since the vehicle on schedule B and D are
both located in GB on Wednesday night, they can be exchanged at this point. The same
applies to A and C on Thursday night and A and D on Sunday morning. These possibilities
for switching the vehicles are denoted by s1, s2 and s3.

the operations from Friday night to Saturday are more or less continuous. That would leave
two options to swap between A and C or B and D. In order to keep the approach as simple
as possible (also with regard to the practical implementation), we decided to take the latest
possible options on Thursday and Friday only. These are denoted as s1 and s2 in Figure 1.
Furthermore, at the beginning of the 24 hour idle time in GB, the vehicles on A and D are
both located in GB. Therefore, either of them could idle or be maintained, while the other
does the schedule D3. This opportunity for a swap is denoted as s3. Since railway planners
are often interested in single cycles in one rotation, it is worth mentioning that by switching
vehicles at s1 and s3 every time that these switches are possible, one can transform the three
cycles into one single cycle.

What is now left is to determine an actual rotation plan that spans several weeks. This
is the topic of the next section.
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Table 2: Distances (in km) of vehicle schedule

A1 3,830.400 B1 3,222.030 C1 4,296.040 D1 2,947.070
A2 2,316.580 B2 4,261.810 C2 3,304.210 D2 3,147.760
A3 0 B 7483.840 C 7,600.250 D3 891.240
A 6,146.980 D 6,986.070

3 Solution Approaches

3.1 Backtracking Heuristic

Since the rotation plan from the first stage does not assure that every vehicle can be main-
tained, we have to modify it on a week by week basis. We have the option s1 to intersect
the paths B and D, s2 to intersect A and C, and s3 to intersect A and D. If we want to
maintain the vehicle that starts the week on pathB, we can apply the intersections s1 and s3
simultaneously. To determine which option should be applied in which week, such that ev-
ery vehicle is maintained in time, we suggest a backtracking algorithm. For a given number
of weeks, it performs a depth first search. The algorithm decides on one of the following
options for a given week:

• run the rotation plan as determined by the first stage,

• apply the intersections s1 and s3,

• apply the intersection s2,

• apply the intersection s3 without s1.

Furthermore, it decides if a maintenance shall be performed during said week. The general
idea of backtracking is to have the algorithm select one option for a week and, then, to
advance to the next week. This process is iterated until the desired number of weeks is
reached or the maintenance interval of a vehicle is violated. In the first case, the algorithm
has successfully determined a feasible solution and terminates. In the second case, it moves
one week back and determines whether there is another choice out of the above options that
was not already tested and test it, if so. If no options are left, it moves one more week back
and so forth. If the options of the first week have run out, the algorithm has enumerated all
possibilities and it will detect that there is no feasible solution. In the case of success, it will
return the first solution that comes along.

We have two ways to control the heuristic. The first way is the range of decisions that we
allow for every week. The options given above were selected, such that every vehicle could
be maintained at the end of the week, regardless whether it started the week on A, B, C or
D. The second way of control is the order that the algorithm uses to test the various options.
We have used the order as stated above. Each of the options is tested without performing
maintenance first. If that does not work, the algorithm tests the option with performing
maintenance. If that does not work either, it moves on to the next option. If it was the other
way, the algorithm would recommend to perform a maintenance every week, since it does
not take the costs for a maintenance into account.

8th International Conference on Railway Operations Modelling and Analysis - RailNorrköping 2019 132



Table 3: Results of the backtracking heuristic. A periodic pattern that is repeated infinitely
is given by weeks 5 to 9. k – number of week. vi – position of vehicle i at the beginning of
the week. block – km travelled since last maintenance. current – km travelled in the current
week. total – total km travelled. m – perform maintenance at the end of the week?

k v1 block current total v2 block current total swaps m

0 A 0 0 0 B 0 0 0 n
1 A 6147 6147 6147 B 7484 7484 7484 y
2 A 0 6147 12294 B 14968 7484 14968 s1, s3 y
3 C 7038 7038 19332 A 0 6370 21337 s1, s3 y
4 D 14638 7600 26932 C 7038 7038 28376 s1, s3 y
5 B 21847 7209 34141 D 14638 7600 35976 n
6 B 29331 7483 41625 C 21625 6986 42962 s1, s3 y
7 A 0 6370 47995 D 29225 7600 50562 s3 y
8 C 7038 7038 55033 A 0 6095 56657 s1, s3 y
9 D 14638 7600 62633 C 7038 7038 63695 s1, s3 y

k v3 block current total v4 block current total swaps m

0 C 0 0 0 D 0 0 0 n
1 D 7600 7600 7600 C 6986 6986 6986 y
2 C 14586 6986 14586 D 14586 7600 14586 s1, s3 y
3 D 22187 7600 22187 B 21795 7209 21795 s1, s3 y
4 B 29395 7209 29395 A 0 6370 28165 s1, s3 y
5 A 0 6370 35765 C 7038 7038 35203 n
6 A 6147 6147 41912 D 14638 7600 42803 s1, s3 y
7 C 13185 7038 48950 B 21847 7209 50012 s3 y
8 D 20785 7600 56551 B 29331 7484 57496 s1, s3 y
9 B 27994 7209 63760 A 0 6370 63866 s1, s3 y

The heuristic was implemented in Python and it only takes a few seconds to run up
to week 520. However, it is actually sufficient to run it for 14 weeks to see that the weeks
5 to 9 give a periodic pattern that is repeated subsequently. The results of the first 9 weeks
are presented in Table 3. The only deviation from this pattern may happen in the last weeks
where a maintenance may be left out. Since only one maintenance per week is possible, the
algorithm has to plan ahead, so that only one vehicle reaches its maintenance interval and
has to be maintained at a time. At the end of the time horizon, a maintenance may be left
out, since the algorithm does not look ahead anymore. Thus, several vehicles can be close to
their kilometer limit and require maintenance in the week after the end of the time horizon.

3.2 MILP Model

In addition to the backtracking heuristic, we have come up with a Mixed Integer Linear
Programming (MILP) model. The model is basically a multi-commodity flow with one
commodity per vehicle. The coupling of the commodities happens via the integral s vari-
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ables that allow the transition of a flow between the four possible paths as shown in Figure 1.
If an s is set to 1 for one commodity, it means that the flow of the commodity transitions
downwards (A being on top and D being on the bottom). In that case, the corresponding s
of another commodity has to be set to −1, which means that the flow of the corresponding
commodity flows upwards.

Parameters
• N – number of weeks considered

• A = A1 +A2 +A3, B = B1 +B2, C = C1 +C2, D = D1 +D2 +D3 – distances
of the different vehicle schedules, cp. Figure 1

• U – maximum maintenance interval in kilometers

Variables
We assume i, j ∈ {1, 2, 3, 4} and k ∈ {1, . . . , N} if not specified otherwise. Also, if not
specified otherwise, the variables are non-negative and continuous.

• mk ∈ {0, 1} – perform a maintenance in week k

• si,l,k ∈ {−1, 0, 1} vehicle i transitions at sl (l ∈ {1, 2, 3}) in week k, cp. Figure 1

• yi,j,k ∈ [0, 1] – vehicle flow of vehicle i on path j (j = 1 corresponds to A, j = 2 to
B and so on) in week k ∈ {1, . . . , N + 1}

• xi,k ∈ R+ – kilometers travelled since last maintenance by vehicle i after week
k ∈ {1, . . . , N} or before week 1 (k = 0).

• ti,k ∈ R+ – transition variable to check that U is not exceeded

• wi,k ∈ R+ – auxiliary variable to reset x if a maintenance is performed
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Model

min
n∑

k=1

mk (1)

s.t.
yi,j,1 = δi,j for i, j ∈ {1, 2, 3, 4} (2)
yi,1,k+1 = yi,1,k − si,2,k − si,3,k for i ∈ {1, 2, 3, 4}, k ∈ {1, . . . , N} (3)
yi,2,k+1 = yi,2,k − si,1,k for i ∈ {1, 2, 3, 4}, k ∈ {1, . . . , N} (4)
yi,3,k+1 = yi,4,k + si,1,k + si,3,k for i ∈ {1, 2, 3, 4}, k ∈ {1, . . . , N} (5)
yi,4,k+1 = yi,3,k + si,2,k for i ∈ {1, 2, 3, 4}, k ∈ {1, . . . , N} (6)
4∑

i=1

si,l,k = 0 for l ∈ {1, 2, 3}, k ∈ {1, . . . , N} (7)

yi,2,k − 1 ≤ si,1,k ≤ yi,2,k for i ∈ {1, 2, 3, 4}, k ∈ {1, . . . , N} (8)
yi,4,k − 1 ≤ −si,1,k ≤ yi,4,k for i ∈ {1, 2, 3, 4}, k ∈ {1, . . . , N} (9)
yi,1,k − 1 ≤ si,2,k ≤ yi,1,k for i ∈ {1, 2, 3, 4}, k ∈ {1, . . . , N} (10)
yi,3,k − 1 ≤ −si,2,k ≤ yi,3,k for i ∈ {1, 2, 3, 4}, k ∈ {1, . . . , N} (11)
yi,1,k − s2,k − 1 ≤ si,3,k ≤ yi,1,k − s2,k for i ∈ {1, 2, 3, 4}, k ∈ {1, . . . , N} (12)
yi,4,k + s1,k − 1 ≤ −si,3,k ≤ yi,4,k + s1,k for i ∈ {1, 2, 3, 4}, k ∈ {1, . . . , N} (13)

ti,k = xi−1,k +Ayi,1,k +Byi,2,k for i ∈ {1, 2, 3, 4}, k ∈ {1, . . . , N} (14)
+ Cyi,3,k +Dyi,4,k

+ (D2 +D3−B2)si,1,k

+ (C2 −A2 −A3)si,2,k

+ (D3 −A3)si,3,k

xi,k+1 = ti,k − wi,k for i ∈ {1, 2, 3, 4}, k ∈ {1, . . . , N} (15)
wi,k ≤ Umk for i ∈ {1, 2, 3, 4}, k ∈ {1, . . . , N} (16)
wi,k ≤ Uyi,0,k+1 for i ∈ {1, 2, 3, 4}, k ∈ {1, . . . , N} (17)

Description
The objective of the model is to perform as few maintenances as possible. The constraint
(2) sets the starting positions of the vehicles. Here, δi,j = 1 if and only if i = j, other-
wise δi,j = 0. The constraints (3-6) are flow conservation constraints and (7) couples the
different commodities. With a pure flow model, it would be possible to have a flow back
in time, e.g. a flow on D1 and D2 that reverses on s3 and A2 and then uses s2. In order to
forbid these kind of flows and keep causality in the model, we use the constraints (8-13).
Moreover, (14) takes account of the travelled kilometers since the last maintenance. For ex-
ample, if vehicle 2 is scheduled for A in week 3, then y2,1,3 is 1. If the vehicle is supposed
to change on schedule C during that week, then s2,2,3 = 1. Thus, the remainder of the first
schedule A2 + A3 will be removed from the milage, while the second part C2 of the third
schedule will be added, cf. Figure 1. The constraints (15-17) ensure that the kilometers are
reset if a maintenance is performed.
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The model and the underlying problem could also be interpreted as a special case of
the Train Dispatching Problem presented in Boccia et al. (2013) and Mannino (2011) or
the Train Timetable Rescheduling Problem presented in Cacchiani et al. (2014). This leads
to slightly different model formulations, which are comparable in the sense of tractable
problem sizes.

The model was implemented and solved using the Python interface of the FICO Xpress
solver version 8.5.7. The solutions of the backtracking heuristic were used as initial solu-
tions. The tests were performed on a Dell Precision Tower 3620 with 30GB of main memory
and 8 Intel R© Xeon(R) CPU E3-1245 v5 @ 3.50GHz. For the instances with a time horizon
of 15 or fewer weeks, it turned out that the solution provided by the backtracking heuristic
was optimal, but it could take long to obtain the proof, see Table 4. For a 20 week instance,
the memory did not suffice.

Table 4: Solution info

weeks rows cols nodes optimal value time (s)

10 850 430 411,303 7 88
15 1265 511 47,045,565 11 17,867

3.3 Lower Bounds

Since proving the optimality of the heuristic solution using a general purpose MILP solver
was not always possible or took long, one might try to find lower bounds oneself to directly
prove the optimality of a backtracking solution or to provide these bounds to the solver.
An easy bound is obtained as follows. The maintenance interval is 40,000km and the ve-
hicles travel 27,974.31km per week (see Table 1). Hence, assuming a cyclical solution,
the vehicles have to be maintained at least ceil(N · 27,974.31/40,000) times in an N week
scenario, e.g. for a cyclical 5 week solution at least 4 maintenances are required. If the
solution is not cyclic, we have to account for the fact that the vehicles could start with 0km
travelled since the last maintenance but finish the scenario with almost 40,000km since the
last maintenance. Hence, the lower bound is decreased by 4.

These bounds are not tight enough to prove the optimality of our solution for the 10 year
scenario. One way to overcome this may be to use a cyclical solution. Borndörfer et al.
(2008) and Borndörfer et al. (2018) argue why it is reasonable to do that for long periods.
However, there are still ways to improve our bounds further. For example, we can determine
the distance to the maintenance facility for every vehicle at the beginning of schedule A,
B, C and D. Say a vehicle ends at position B. Then the vehicle needs to be able to
travel B1 + D2 = 6,369.79km before attaining its kilometer limit in order to reach the
maintenance facility. (The vehicle will have to switch at s1 and s3 to reach the maintenance
facility on Sunday.) We can determine analogous constraints for A, C and D. Using this
adaption of our MILP model, we can show that if the vehicles are only maintained three
times during five weeks, one vehicle will violate its maximum kilometer limit in the seventh
week. To do so, we bound the maintenances in the first 5 weeks by three and solve a 6 week
scenario, where we require all vehicles to be able to reach the maintenance facility in week
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7. This MILP is infeasible. Hence, we know that at least four maintenances are required
within every consecutive five weeks of the solution that do not include the last two weeks.

We now apply this knowledge to a solution of the backtracking heuristic for a long
scenario, i.e. 517 weeks. Given any five consecutive weeks of the first 515 weeks, there
have to be at least four maintenances within these five weeks. Hence, we can deduct that
that in the weeks 1 to 515, 515/5 · 4 = 412 maintenances have to be performed. This way,
there can be one week without maintenance in weeks 1 to 5, 6 to 10 and so on. If there are
fewer maintenances, we would find an ` ∈ {0, . . . , 103}, such set there are two weeks within
week 5`+ 1 to week 5`+ 5 where no maintenance is performed. Thus, one of the vehicles
would violate its kilometer limit in week 5` + 7 and the underlying solution would not be
feasible. Hence, we obtain a lower bound of 412 maintenances for a 517 week scenario.
Since the backtracking heuristic gives us a solution with 412 maintenances, we know that
this solution is optimal. For the 520 week scenario, the backtracking heuristic provides
a solution with 415 maintenances, but we do not have a strict mathematical proof of the
optimality with this method. Obviously, there still have to be at least 412 maintenances. We
can even improve this bound to 414 by arguing that there have to be at least 4 maintenances
within the weeks 514 to 518. For the 522 week scenario, we know that 416 maintenances
are optimal. Given the optimal solution values of 7 and 11 for ` = 10 and ` = 15, it is quite
possible that 415 maintenances is the optimal value for the 520 week scenario, but we did
not formally prove this claim.

4 Discussion

We have considered the problem of integrating a long-term maintenance schedule and a
weekly rotation plan on a real-world scenario. The specific issues that had to be addressed
were that

• a weekly rotation plan that includes a suitable idle time had to be found,

• the determined weekly rotation plan did only allow for the maintenance of one vehicle
per week,

• the weekly rotation plan did consist of several cycles, of which only one contained
the necessary idle time and

• that the time scale of the long-term maintenances made planning over several weeks
necessary.

We recognized that the lower density of the timetable on Sundays makes it possible to
include a 24 hour idle time for one vehicle and introduced transitions between the cycles of
the rotation plan, so that every vehicle can undergo the long-term maintenance treatments.
We provided a practical algorithm that quickly calculates a rotation plan on a scale of sev-
eral weeks or even years, which distributes the required maintenances uniformly and even
determines gaps in the maintenance calendar.

We could proof the optimality of the obtained solutions for a time horizon of up to 15
weeks. For longer time horizons, we obtained the optimal solutions for scenarios of length
k = 5` + 2 for a positive integer `. For k we found solutions that are at least close to the
optimum, but we did not prove their optimality.

Altogether, we provide a starting point for an estimate of the cost for a 10 year railway
enterprise.
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	Timo Berthold, Boris Grimm, Markus Reuther, Stanley Schade and Thomas Schlechte. Strategic Planning of Rolling Stock Rotations for Public Tenders

