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Abstract

Multi-stage train classification is a complex marshalling procedure that could be
applied for simultaneous multi-group train formation. Simultaneous train formation is
capable of processing a large volume classification insensitive on the number of outbound
trains. Through multi-stage classification, wagons are moved several times to achieve
desired outbound train sequences. The main optimization issue refers to finding a balance
between the number of sorting steps and the total number of wagon movements. The
optimization of the classification schedule could be addressed at different levels of the
yard planning hierarchy. In this paper we develop mathematical formulation and two
different heuristic algorithms to support tactical decisions for the multi-stage train
classification problem. The main optimization issue refers to the allocation of tracks for
performing multi-stage train classification minimizing annual operating costs. In order to
validate the mathematical formulation and evaluate the efficiency of the proposed
optimization model, we conduct computational tests and case study experimentations
based on infrastructural and operational conditions applied in Belgrade marshalling yard
in Serbia.
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1 Introduction

Marshalling yards, as consolidation nodes for rail wagonload transportation, play
important role in railway freight networks (see e.g. Boysen et al (2012), Belosevi¢ et. al
(2013) or Gestrelius et al. (2013)). Wagonload transportation, also called Single Wagon
Load Service (SWL), consolidate loads composed of single wagons and wagon groups.
These wagon loads are collected at different customer sidings and assembled in
marshalling yards to full trains on the same routes. Multi-group trains have potential to
take a substantial segment in wagonload service. Multi-group trains gather wagons into
groups of wagons and serve two or more destinations. The order of the groups in such
trains corresponds to the geographical disposition of destinations. The application of
multi-group train service leads to the reduction of total layover time of wagons and to the
concentration of shunting work on smaller number of main marshalling yards.
Multi-group trains are formed either applying single-stage or multi-stage classification
procedures. Multi-stage train classification is a complex marshalling procedure and in
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some recent research (Dahlhaus et al. (2010), Jocob et al. (2011), Bohlin et al. (2015) or
Bohlin et al. (2018)) it is proven that belongs to the class of NP hard problems
(nondeterministic in polynomial time). In the paper Jocob et al. (2011), a concise
encoding of classification schedules is suggested for multi-stage classification procedure.
This way of encoding is used in papers Marton et al. (2009) and Maue et al. (2009) for
formulation of linear programming models applicable at the operational planning level.
Generally, the models find out an optimal classification schedule with regard to the
number of sorting steps as a primary objective and the number of movements as a
secondary objective. The same encoding is also applied by Belosevi¢ and Ivi¢ (2018). In
contrast to above mentioned papers, Belosevic and Ivic (2018) provide overall
optimization simultaneously minimizing the number of sorting steps and the total number
of movements. The formulated model is applicable at strategic planning level. The model
integrates the creation of the classification schedule and design of sidings layout. As the
multi-stage classification problem is computationally consuming problem, current
literature also propose several usages of heuristics for efficient solving large scale
instances (see Hauser et al. (2010), Belosevi¢ et al. (2013) or Belosevi¢ et al. (2018)).

Extending the existing research on this topic, this paper provides the optimization
model applicable at tactical planning level. The main optimization issue refers to the
allocation of classification tracks for performing multi-stage train classification over
forthcoming period of the rail timetable validity. The model provides optimal track
allocation minimizing annual operating costs. Based on the heuristic optimization
approach presented in BeloSevi¢ and Ivi¢ (2018), this paper proposes two different
Variable Neighborhood search (VNS) algorithms for solving large scale classification
schedules. Developed algorithms perform a systematic search of variable neighborhoods
either in deterministic or stochastic form. As a part of experiment evaluations, we
randomly generate a set of various sized instances and analyze the performances of
developed deterministic and stochastic VNS algorithms. The performance comparison of
VNS algorithms is based on the objective value and running time of obtained solutions.
Finally, case study experimentations are conducted to examine the efficiency of developed
heuristic algorithms. The case study depicts infrastructural and operational conditions
applied in Belgrade marshalling yard in Serbia.

2 Problem Statement

Multi-group trains are formed using sorting by train or simultaneous strategies. Sorting by
train strategies result in a successive train formation procedure. Using a sorting by train
strategy, wagons are initially sorted according to their outbound trains. After
accumulating all wagons of a common outbound train, the wagons are resorted according
to destinations. The duration of sorting by train formation procedures directly depend on
the number of outbound trains (see e.g. Ivi¢ et al. (2013)). On other hand, simultaneous
strategies can greatly improve classification process, as they enable in parallel formation
of several trains. Using a simultaneous train formation strategy, the sorting procedure is
altered. Initially, wagons are sorted according to sorting blocks that encompass all groups
with the same disposition in all outbound trains. Afterward, the wagons are resorted
according to their target trains. This alternation makes the sorting procedure insensitive to
the number of outbound trains and therefore capable of processing a large volume
classification (see e.g. Belosevi¢ et al. (2012)).

Simultaneous formation strategies are based on the multi-stage classification
procedure. The multi-stage classification includes iterative repetition of operations:
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wagons pulling out from the track (pulling out operation) and wagons rolling in other
tracks (disassembling operation). The sorting process starts with wagons pulling out from
the first track in sidings for wagons accumulation and follows with their disassembling to
other tracks. This process is repeated at all other tracks. At the sidings for wagons
accumulation, sorting is performed according to the sorting blocks, while sorting
according to outgoing trains is performed at the sidings for final train formation (Figure

).

Sidings for sorting according fo trains
{far fial frain formmation)

Classification yard

‘H

Sidings for acumuiation and sorfing
according to blocks

Figure 1: Sorting sidings layout

Through multi-stage classification, wagons are moved several times to achieve a
desired order of wagons in an outbound train. The main optimization issue refers to
finding a balance between the number of sorting steps and the total number of wagon
movements indicating the length and complexity of the classification schedule. The
optimization of the classification schedule should respect operational constraints and
practical restrictions on the number and capacity of tracks. This optimization could be
implemented at different levels of planning hierarchy (operational, tactical or strategic).

In this paper, we consider tactical planning level with the main optimization issue to
allocate tracks that will be used for daily multi-stage train classification performed over
forthcoming period of the rail timetable validity. Commonly once a year, marshalling yard
managers make a decision referring to the distribution of classification tracks in the yard
among different marshalling procedures (e.g. single-stage classification, multi-stage
classification, empty wagons accumulation etc). In that sense, classification tracks have to
be allocated in the way to minimize annual operating costs. As tactical decisions affect
organizational processes, they have to be in accordance with the projected volume of daily
work.

3 Optimization model

In this section we propose a mathematical programming formulation and a heuristic
approach for solving the problem based on Variable Neiboruhood Search (VNS) strategy.

3.1 Mathematical formulation
The formulated mathematical model is based on the binary interpretation of multi-stage
classification schedules proposed in Jacob at al. (2011). Let us assume that an arbitrary

arranged ingoing sequence of N wagons have to be sorted into a properly sorted sequence
W= {wi, ... , wn} according to sorting blocks gs (s = I, ..., @max) Where gyax denotes the
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maximum number of groups among all outbound trains. Sorting blocks gather all groups
with the same disposition in all outbound trains.
The model minimizes annual operational costs TCyper and could be formulated as

follows:
min TCpper )]
subject to:
K K
Z 2] — Z 2] =21, VieF @
j=1 j=1
K K
Do = 2l 20, view\r 3)
j=1 =1
hj—xl 20, Vvje{l,.. K}i€(l,.., N} 4
hi—hjyy =20,  Vje{l, . K—1} (5)
N
x<c o vje(,.,K) (©)

i=1

where i and j are indices of wagons and sorting steps; £ is a subset of the set /¥ whose
elements are starting a new group of wagons with the same sorting block index; K is upper
bound on the number of tracks that technically could be allocated for multi-stage
classification; and Cindicates the track capacity limit expressed in the number of wagons.

Decision variables of the model are binary variables x;; and /; such that: x; = 1 if the
wagon w; participates in the sorting step 4, or 0 otherwise; A; = 1 if the sorting step 4; is
realized, or 0 otherwise.

The objective function in the proposed model minimizes annual operating costs for
performing multi-stage classification. The annual operating costs TCype, refer to the costs
of wagons’ layover and fuel consumption. These costs are calculated on the daily base as
a function of classification processing time. Specifically, operating costs could be
estimated as a function of the number of sorting steps and total number of movements
based on the classification processing time parameters t; and t,. The wagon layover cost
is weighted with a freight rate e,,, while the fuel consumption is weighted with a fuel
price e., fuel consumption rate ¢ and the power of the engaged locomotive E;. Finally,
annual operating costs TCyper could be expressed as:

e.c

K K N
- Cw _ Cw o € j
TCoper = 365 (6ON+ & El)t,,Zh] +365 (60N+ & El)txZin )

j=1 j=1i=1

Constraints (2) and (3) define the schedule of wagon sorting in compliance with the
basic principal of binary encoding. Specifically, wagons with a higher block index have
higher code value (2), otherwise wagons with the same index may be assigned with the
same code value (3). Constraints (4) and (5) define the relations between decision
variables. Constraint (6) specifies the track capacity restriction.

3.2 Heuristic approach

VNS meta-heuristic is developed by Mladenovi¢ and Hansen (1997) and is based on
the idea of systematic changes of neighborhood structures during a local search. The VNS
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strategy starts with an initial solution and performs local search procedure within Ny, (1 <
k < kpqy) sequential neighbourhoods. If local search results with an improvement, the
solution is updated and the procedure is repeated to the new incumbent solution. The final
solution presents a local minimum with respect to all k.. neighborhoods.

The initial classification schedule X is constructed based on triangular sorting (see
Daganzo et al. (1983)). Transformations used to generate candidate schedules within the
exploration of neighborhood are presented and explained in details in BeloSevi¢ and Ivi¢
(2018). The local search procedure performs an iterative evaluation of neighbors and
strictly a better solution is returned as the incumbent for the succeeding search. The best
improvement is used as a selection mechanism that returns into an incumbent a solution
which results in the maximal improvement among all neighbors. We implement Variable
Neighborhood Descent (VND) and Reduced Variable Neighborhood Search (RVNS) as
two heuristics that differ in the applied strategy of exploring neighborhood structures.

VND is a deterministic heuristic that intensifies a search aiming to improve the
solution greedily. Unfortunately, a persistent search of large neighborhoods is mostly time
consuming. An attractive approach for improving the performance of VND is to keep the
use of large neighborhoods but to reduce the exploration. RVNS is a stochastic heuristic
which randomly selects points in a neighborhood and then updates an incumbent solution
in the case of an improvement. RVNS diversifies a search aiming to disable improvement
stagnation in broad neighborhoods. Steps of the VNS meta-heuristic strategy applied for
multi-stage classification problem are presented in Figure 2.

Initialization
Select the set of neighborhood structures that will be used in local search
Find an initial classification schedule X
Repeat the following sequence until no improvement is obtained:
(1) Set k « 1;
(2) Repeat the following steps until k = k4,
(a) Exploration of neighborhood
Find the best neighbor X of X (X' € Ny
(b) Move or not
If the obtained solution X" is better than X: set X « X and k « 1,
Otherwise: set k « k + 1;

Figure 2: Steps of the VNS meta-heuristic

4 Numerical experiments

In order to evaluate the efficiency of developed VNS algorithms, we conduct numerical
experiments. All numerical experiments are done on a working station featuring Intel
Core 2.30 GHz Dual Core processor with 8GB of RAM memory. The proposed
algorithms are coded in Python 2.7.11. The exact solving is performed using CPLEX 12.6
with the running time restriction and memory restriction for the tree structure sets to 3,600
seconds and 8 GB, respectively.

The input data used in experiments are summarized in Table 1 citing costs and other
relevant parameters reported in BeloSevi¢ and Ivi¢ (2018).
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Table 1: Input data

Parameters Value

Freight rate per wagon 1.3 [$/h]
Fuel price 0.3 [$/kg]
Specific fuel consumption 50 [g/kWh]
Locomotive power 650 [kW]
Classification processing time 19.14 + 0.7x [min]
Track capacity 40 [wagons]
Upper bound on the number of tracks in sorting sidings 20

4.1 Computational tests

At first, we test the performance of developed VNS algorithms and show how they behave
for a varied set of classification task examples. We vary the total number of wagons (100,
150 and 250 wagons) and the number of sorting blocks (6, 8 and 10 groups in outgoing
trains). Combining different number of wagons and number of blocks, we obtain
examples with the wide range of complexity. Three random instances are created per each
example generating 27 instances in total.

All instances are first computed using the CPLEX solver and then evaluated by VND
and RVNS heuristics. Due to the stochastic nature of RVNS, the evaluation procedure is
repeated 50 times. The stopping condition for the evaluation is set as a function of N and
Gmax, specifically tmax = Nlogogmax.

Results from computational tests are presented in Appendix. Appendix presents the
objective value and running time of obtained solutions. Optimal solutions obtained by
CPLEX are marked with bold objective function values. Non-bold values refer to the
solutions returned in the moment when one of prescribed restrictions is reached, either
regarding running time or memory tree. RVNS outputs are indicated by the best and
average objective values, the standard deviation of objective values and the average
running time. Also, we report a gap obtained by each algorithm on each instance with
respect to the CPLEX value.

For all instances with 100 and 150 wagons in inbound flow, CPLEX proves optimality
of returned solutions. For these sets of instances, CPLEX running times vary in range from 7
to 2200 seconds. For all instances with 250 wagons, CPLEX fails to prove the optimality of
the returned solution. On other hand, VND and RVNS algorithms reach optimal or close
optimal solution (with gap lower than 1%) for all instances with 100 and 150 wagons. In
several instances, RVNS returns solutions with slight standard deviations due to the
stochastic exploration of neighborhood structures. Due to the small neighborhood structures,
running times of VND and RVNS algorithms are small and close to each other in most
instances with 100 and 150 wagons. Computational tests demonstrate the quality of
solutions returned by developed heuristic algorithms for the set of instances with 250
wagons, too. For the most of instances, developed heuristic algorithms return solutions that
reach the best objective value. Analyzing the objective values, we can conclude that VND
and RVNS algorithms perform almost similar. The minimal values for RVNS solutions are
for the most instances equal to the objective values for VND solutions. Furthermore, RVNS
solutions have a narrow spread around average values for all instances, so the highest gap
for VND is 1.4%, while for RVNS is 1.8%. Finally, RVNS drastically outperforms VND
considering running times. Running times for the VND algorithm vary in wide range
reaching in some instances more than 30 minutes. On other hand, running times for the
RVNS algorithm are mostly below one minute.
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4.2 Case study experimentations

In order to construct meaningful experimentations we create a case study that depicts
infrastructural and operational conditions applied in Belgrade marshalling yard. Belgrade
marshalling yard is main marshalling yard on Serbian railway network. The layout of the
yard is shown in the Figure 3. Belgrade marshalling yard features a hump with two
parallel tracks. Receiving yard consists of 14 tracks with length in range from 680 to 841
meters. Classification yard consists of 48 tracks arranged in 6 groups with 8 tracks. The
length of classification tracks chosen to conduct experimentations ranges from 850 to
1137 meters. Regarding the operation, Belgrade marshalling yard performs primarily
single-stage classification. Multi-group trains are formed one by one within secondary
sorting, grouping wagons for the same destination on a separate track. In this case study
we analyze possibilities for applying the simultaneous train formation strategy. The
projected volume of daily work in the forthcoming one year period of timetable validity is
presented in Table 2 depicting the classification work on forming a set of outbound trains
with maximum 10 groups per train. Each sorting block is assigned with the gamma
distributed number of wagons with a rate set to 1.

We analyze the results obtained by developed VNS heuristic algorithms once again.
Due to difficulties to use CPLEX for large scale examples, we compare obtained results
with the results obtained by elementary simultaneous strategy, sorting by block. This
strategy sorts wagons with same block number at a separate track and is close to the
applied sorting strategy in the observed yard. The procedure is iterated 250 times. In
addition to standard computational outputs regarding the objective function and running
time, Table 3 shows key performance indicators in order to analyze the quality of returned
classification schedules. Returned classification schedules are indicated with the number
of sorting steps and total number of movements.

Table 2: The projected volume of daily work
Sorting blocks
H @ & @ 6 © O & @ [J0§
Number of wagons 35 34 32 29 28 25 21 17 15 12

Figure 3: Layout of Belgrade marshalling yard
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Table 3: Statistic summary of illustrative experimentations

VND algorithm RVNS algorithm Sorting by block

Avg.  Range Avg. Range Avg. Range
Number of wagons 253 [208, 286] Same Same
Obj. value [10° €] 744.8 [541.3, 974.1] 749.0 [542.7,977.3] 776.4 [573.0, 995.6]
Gap [%] 0.0 [0.0,0.0] 0.6 [0.0, 3.8] 4.4 [0.0,12.8]
CPU [s] 551.7  [99.1,2181.4] 40.9 [19.5,216.7] 0.1 [0.0,0.1]
Sorting steps 9 [8,11] 9 [8,11] 11 [10,12]
Wagon movements 275 [234, 334] 276 [227,337] 253 [208, 286]

Obtained results by VNS heuristics dominate over sorting by block strategy (see
Figure 4). With respect to VND solutions, sorting by block strategy returns solutions with
average gap 4.4 %, while the highest gap amounts up to 13 %. In contrast, developed VNS
heuristic algorithms return close classification schedules with marginal differences in
objective values. The average gap of RVNS solutions (with respect to VND solutions)
amounts 0.6%, while the highest gap for RVNS is below 4%. Figure 5 shows the
variations on average gap for solutions returned by RVNS and sorting by block.
Experimentations confirm that performing complete local search of neighborhood
structures could be high consuming. In that sense, VND algorithm requires averagely 551
seconds (in some instances more than 2000 seconds) for performing iterated descend. On
other hand, RVNS does not have the problem with this computational issue and requires
averagely about 41 seconds. Figure 6 shows these differences between VND and RVNS
algorithms in terms of average running time.
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50000
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175
100
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Figure 4: Average objective value
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Figure 6: Average running time

Analyzing key performance indicator we can make similar conclusions regarding
differences in quality of classification schedules returned by VND and RVNS algorithms.
The results obtained by VND and RVNS are almost identical. The average number of
sorting steps amounts 9 steps for both algorithms, while VND solutions averagely require
275 movements comparing to 276 movements in RVNS solutions. Comparing to the
results from sorting by block, we can say that the heuristic optimization approach makes
savings. Although the number of wagon movements is slightly increased, the average
number of sorting steps is reduced for 2 steps. In order to define the required number of
tracks that should be allocated for performing sorting procedure, we analyze cumulative
distribution function (CDF) of the number of sorting steps. For developed heuristics the
0,90" quantile amount 10 tracks, while for sorting by block amounts 11 tracks. The
difference is higher considering 0,95" quantile values. For developed heuristics the 0,95%
quantile remain 10 tracks, while for sorting by block it increases on 12 tracks.

5 Conclusions

The potential of wagonload transportation is undeniable and confirmed with the
increasing interest among shippers in such services. Many environmental and economy of
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scale benefits are advantages of wagonload transportation, but it needs to improve speed,
reliability and cost competitiveness in comparison with other freight alternatives. In this
paper, we consider multi-stage classification as one particular marshalling procedure that
has the potential to improve the quality of wagonload transport allowing yards to
simultaneously compound a set of multi-group trains. Multi-group trains are dominantly
used for “last mile” service as local freight trains or industry trains.

In this paper we develop mathematical formulation and two different heuristic
algorithms to support tactical decisions for the multi-stage train classification problem.
The main optimization issue refers to the allocation of tracks for performing train
classification in existing marshalling yards. Optimal track allocation is addressed by
minimizing annual operating costs. Focusing on the computational complexity of the
multi-stage train classification problem, in this paper we performed comparison of the
efficiency of deterministic and stochastic heuristic approaches. The first one is a
deterministic VND algorithm where the returned solution is a local optimum with respect
to all predefined neighborhood structures. The second one is a stochastic RVNS algorithm
which randomly selects points in a neighborhood and then updates an incumbent solution
in the case of an improvement. RVNS diversifies a search aiming to disable improvement
stagnation in large neighborhoods.

Conducted computational tests shown negligible differences between the
solutions returned by developed heuristic algorithms and optimal solutions
returned by CPLEX. The highest gap evaluated between the solutions returned by
developed heuristics and optimal solutions amounts only 1.4%. Analyzing the objective
values returned by developed heuristics, we can conclude that VND and RVNS
algorithms perform almost similar. The computational tests show small dispersions of
objective values evaluated by RVNS solutions. It is confirmed with low standard
deviations obtained in all instances. On other hand, RVNS drastically outperforms VND
considering running times. Running times for the VND algorithm reach up to 30 minutes
in some instances, while running times for the RVNS algorithm are mostly below one
minute. The obtained performances of developed heuristics are also confirmed in the
conducted case study experiments. In the case study experiments, VNS heuristic results
are compared with the results obtained by sorting by block strategy. Specifically, sorting
by block strategy returns solutions with average gap 4.4 %, while the highest gap amounts
up to 13 % with respect to VND solutions. These savings are confirmed analyzing key
performance indicators, too.
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APPENDIX

Results from computational tests

CPLEX VND RVNS
@» o ) o—
= = - - = = —

E - 3 = o 5 = 2% S = 5 S © o
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P g2 = N =) NS o = s = = = £ = o =
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142172,8 168 | 1421728 00 110 | 1421728 1422323 184 00 80
6 2 | 1409838 13,7 | 1409838 00 29| 1409838 1409838 00 00 33
143956,4 283 | 1439564 0,0 10,7 | 1439564 1461504 25574 15 65
148117,9 322 | 1481179 00 111 | 1481179 1529589 49238 33 84
w0 8 2| 1522795 80| 1522795 00 45| 1522795 1522795 00 00 50
3| 1595835 215 | 1595835 00 122 | 1595835 1600591 5715 03 7.2
1 | 1655286 84,0 | 1661231 04 83| 1661231 1662023 2581 04 74
10 5 | 770284,7 227 | 1702847 00 87 | 1702847 1702847 00 00 60
3| 165528,6 549 | 1661231 04 87| 1661231 1662816 3468 05 7.3
o || s nies | 273283 00 496 | 2732483 2742935 7723 04 132
2 | 2732483 98,9 | 2732483 00 504 | 2732483 2746129 17069 05 13,0
3| 2729994 17,6 | 2732483 0.1 512 | 2732483 2752226 18853 08 133
1| 2993786 11107 | 2993786 0,0 51,2 | 2993786 3000464 7476 02 204
150 8 5 | 2958945 1307 | 2958945 0,0 47,6 | 2958945 2964462 5356 02 183
3| 2976366 1641 | 2976366 0,0 426 | 2976366 2980430 6760 01 195
1| 3176698 8363 | 3176698 0,0 220 | 3176698 3176698 00 00 116
10 5 | 3089597 2909 | 3089597 00 524 | 3089597 3097436 9798 03 216
3| 3176698 21038 | 3176698 0.0 1073 | 3176698 3261518 34075 2.7 252
o || 0757 36008 | 7024438 14 40LO| 7024438 7024913 2600 14 287
2 | 6682676 36056 | 6682676 0,0 4263 | 6682676 6687897 6980 01 29,5
3| 6711156 36004 | 6711156 0.0 3752 | 6711156 6714478 6126 00 260
1| 7056987 36379 | 6668435  -55 4636 | 6668435 6680777 16612  -53 62,0
250 8 5 | 6668435 36007 | 6668435 00 3935 | 6668435 6668910 2600 0,0 498
3| 6696916 22402 | 6696916 0,0 3706 | 6696916 6714004 14675 03 37,9
U | 7445538 36001 | 7445538 0,0 19476 | 7445538 7508194 55417 08 717
10 2 | 7384509 36031 | 7445538 08 14737 | 7445538 7460253  1650,7 10 656
30| 7370269 36008 | 7445538 1,0 13942 | 7445538 7504397 43408 18 530
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