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Abstract
We present a framework for generating, compressing and rendering of Surface Light Field (SLF) data. Our method
is based on radiance data generated using physically based rendering methods. Thus the SLF data is generated
directly instead of re-sampling digital photographs. Our SLF representation decouples spatial resolution from
geometric complexity. We achieve this by uniform sampling of spatial dimension of the SLF function. For compres-
sion, we use Clustered Principal Component Analysis (CPCA). The SLF matrix is first clustered to low frequency
groups of points across all directions. Then we apply PCA to each cluster. The clustering ensures that the within-
cluster frequency of data is low, allowing for projection using a few principal components. Finally we reconstruct
the CPCA encoded data using an efficient rendering algorithm. Our reconstruction technique ensures seamless
reconstruction of discrete SLF data. We applied our rendering method for fast, high quality off-line rendering and
real-time illumination of static scenes. The proposed framework is not limited to complexity of materials or light
sources, enabling us to render high quality images describing the full global illumination in a scene.

Categories and Subject Descriptors (according to ACM CCS): I.3.3 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

The ongoing pursuit for virtual realism has incited many re-
searchers for efficient and accurate modelling of the interac-
tion of light between surfaces. The complexity of analytical
models for spatially varying surface properties limit their us-
age for real-time rendering. Due to this limitation, many Im-
age Based Rendering (IBR) techniques were introduced to
directly acquire the appearance of a scene through captured
images [Zha04]. A successful appearance description model,
Surface Light Field (SLF), was introduced in [MRP98]. The
SLF function is defined as f (r,s,θ,φ); where r and s are
parametric coordinates for addressing a point on a surface. θ

and φ are used for representing a direction in spherical co-
ordinates. Depending on the sampling density of this func-
tion, the data generated by this method easily exceeds the
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capabilities of modern hardware even for a moderately de-
tailed scene. Therefore various compression methods has
been widely used to reduce the SLF size for rendering.

In the context of radiometry in computer graphics, one
can see a surface light field as a set of exitant radiance val-
ues for each point on a scene along every possible direc-
tion. The radiance can be resampled data from High Dy-
namic Range (HDR) images or computer generated radi-
ance data based on physically based rendering techniques.
In the case of computer generated radiance data, by placing
a virtual camera anywhere in the scene we can simply look
up the SLF data based on intersection point of the viewing
ray with the scene and the direction of it. We utilize this
observation in order to present a SLF-based framework for
fast real-time rendering of static scenes with all-frequency
view-dependent radiance distribution. Our method (Section
3) is divided into three stages: data generation (Section 3.1),
compression (Section 3.2) and rendering (Section 3.3). We
remove the resampling stage from [CBCG02] and instead
compute the outgoing radiance of uniformly sampled points
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on each surface in the scene along different directions. We
then compress the SLF data using Clustered Principal Com-
ponent Analysis (CPCA), similar to [SHHS03]. The renderer
can efficiently decompress and reconstruct the SLF data on
the GPU (Section 4). We will present our results for a real-
time and an offline renderer (Section 5)

Since our SLF approximation method is not based on sur-
face primitives (vertices, faces and edges), having low tes-
sellated geometries does not affect the rendering quality.
Instead we use uniform sampling of surfaces which leads
to decoupling of lighting from geometric complexity. For
instance, a highly tessellated portion of a polygonal mesh
may be a diffuse reflector having uniform radiance values.
In this case, a lot of memory is dedicated for a very low
frequency lighting data. Since lighting complexity is purely
scene dependent and cannot be determined before render-
ing (specially for glossy and specular objects), we use dense
uniform sampling to ensure that we do not under-sample
SLF function. Then we cluster this data, taking advantage of
the fact that for most scenes the within-cluster frequency is
low [MSRB07], therefore allowing us to approximate them
with low order of principal components.

The gap between the image quality of photo realistic of-
fline renderers and the state of the art real-time renderers
is our main motivation. Complexity of certain materials at
micro-scale is beyond the capability of current hardware
for real-time rendering using analytic solutions. Our pro-
posed framework is not limited to complexity of materials
or light sources. Our method supports first order lighting
from any type light source, e.g. point, spot and area lights.
The compression and rendering stages allow us to render all-
frequency view-dependent lighting effects in real-time for
static scenes. To summarize, we state our main contribu-
tions:

1. A flexible representation of SLF that decouples radiance
data from geometric complexity.

2. Application of CPCA in efficient compression of SLF
data while preserving view-dependent high frequency de-
tails.

3. An efficient real-time rendering method for CPCA gen-
erated data.

4. A fast power iteration method adapted for CPCA

2. Related Work

In computer graphics, the ultimate goal is to sample a
dataset (3D world) and then reconstruct or equivalently
render this data. There are two models for this purpose;
source description and appearance description [Zha04]. The
former requires mathematical models in order to describe
the 3D world. Reflection models, geometric models such
as polygonal meshes and light transport models are ex-
amples of source descriptors. The data for this model is
computed using mathematical models and during render-

ing they are reconstructed. The latter is based on captur-
ing data from a real environment using cameras or simi-
lar equipment. The plenoptic function [AB91], defined as
l(7)(Vx,Vy,Vz,θ,φ,λ, t), is used for representing such model;
the first three arguments define a point in space where a cam-
era is placed, θ and φ define a direction, λ is the wavelength
of the light rays towards the camera and t represents time.
The goal of many Image Based Rendering (IBR) techniques
is to simplify this function by applying certain assumptions
for practical sampling and rendering [Zha04].

Surface light fields was first introduced in [MRP98] as an
IBR technique for visualizing results of precomputed global
illumination. They formulated this representation for closed
parametric surfaces but used polygonal surfaces for practical
sampling of surfaces. Spatial samples were placed on ver-
tices and interpolated over the triangle. For directional sam-
ples they subdivide a polygon if it is more that eight pixels
in screen space. By representing the SLF data as an array
of images, block coding techniques were utilized for com-
pression. Our method is similar to [MRP98] regarding the
utilization of precomputed global illumination results, but
differs in data generation, compression and rendering.

Chen et. al. [CBCG02] introduced a new approximation
of SLF by using vertex-centered partitioning. Each part was
projected into lower dimensional functions using PCA or
NMF, resulting in a surface map and a view map. They
tile and store surface and view maps in textures and com-
press the results further using Vector Quantization (VQ) and
standard hardware accelerated texture compression meth-
ods. Unlike [MRP98], Chen et. al. used 3D photography for
acquiring a set of images. This technique is based on using
geometric models to assist re-sampling of captured images
in order to evaluate the SLF function. Utilizing hardware ac-
celerated interpolation between SLF partitions, they could
achieve real-time performance. Similarly, in [WBD03] a bi-
triangle or edge-based partitioning was introduced.

Lambert et. al. [LDH07] propose a sampling criterion in
order to optimize the smoothness of outgoing radiance in
the angular domain of SLF. This criterion eliminates the
use of actual surface in the SLF definition, replacing the
surface with a parametrization of SLF function. A seminal
work in SLF rendering was introduced in [WAA∗00]. They
propose a framework for construction, compression, render-
ing and editing SLF data acquired through 3D photography.
The compression was performed using a generalizations of
VQ and PCA. The framework can achieve interactive per-
formance on the CPU using a new view-dependent level-
of-detail algorithm. The editing supports linear modification
of surface geometry, changes in reflectance properties and
transformation relative to the environment.

The study of compression methods is not limited to
IBR literature. A machine learning compression method
[KL97, TB99] was employed in [SHHS03] for compress-
ing the precomputed radiance transfer (PRT) data. Referred
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to as CPCA, it is a combination of VQ and PCA. The sig-
nal is partitioned into clusters and transformed to an affine
subspace. Compressing radiance transfer data is an active
research field. In [MSRB07], an insightful study was per-
formed to determine how light transport dimensionality in-
creases with the cluster size. They show that the number
of basis functions for glossy reflections is augmented lin-
early relative to cluster size. This study resulted in deter-
mining the optimal patch size for all-frequency relighting
of 1024× 1024 images. Ruiters and Klein applied tensor
approximation to compress Bidirectional Texture Functions
(BTF) with a factor of 3 to 4 better than PCA [RK09]. Ten-
sor approximation was also used for compression of PRT
data [TS06].

A thorough review of PRT can be found in [KSL05,
Ram09]. Compared to these methods, our approach supports
first order lighting from any type of light source such as
point, spot and area lights. Although recent research such
as [KAMJ05] add local lighting support to PRT, our method
has this advantage inherently. Additionally, it can be used
for all-frequency view-dependent effects that cannot be ren-
dered faithfully with PRT because of projection on SH basis
functions.

3. Method

In this section we present a detailed overview of our SLF
compression and real-time rendering method. The technique
can be outlined by the following steps:

1. We start by uniformly sampling the surface of a mesh in
texture space, creating a set of points. For each point, we
generate a number of directions on the unit sphere cen-
tered at the point. Then we evaluate outgoing radiance.

2. The data is clustered based on the difference between the
radiance of points in all directions. We apply PCA on
each cluster and store the results to disk

3. During rendering and for each ray, we fetch and de-
compress the radiance data corresponding to intersection
point and the direction of ray

In the following subsections (3.1, 3.2 and 3.3) we will dis-
cuss each of the three main steps in more detail.

3.1. Data Generation

Sampling the SLF function requires discretization of spatial
and directional parameters. We choose the two dimensional
texture space for parameterizing the spatial coordinates. This
is shown in Figure 1 (a) and (b). Given the number of sam-
ples for each coordinate of texture space, we use a rasterizer
to determine world space points on a surface corresponding
to sampled texture coordinates. The rasterizer uses barycen-
tric coordinates to determine the world space coordinate of a
point inside a triangle by interpolating vertex positions based
on texture coordinates.
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Figure 1: A schematic illustration of data generation stage.
(a) is texture space of the Stanford bunny model discretized
with resolution X and Y , (b) illustrates a world space point
on the mesh corresponding to a sample (r,s). The parameter
space of directions sampled uniformly with resolution Z and
W is shown in (c). And (d) illustrates a set of directions on
the unit sphere.

For sampling the unit sphere we need a two dimensional
space of variables on the interval [0,1] with respect to solid
angle [PH04]. We define samples in this space and map them
to 3D directions on the unit sphere. During rendering, the
inverse mapping should be applied for SLF addressing. The
forward and inverse mapping are shown in Figure 1 (c) and
(d). For this purpose, we use the Latitude-Longitude formula
in [RHD∗10]. The forward mapping is expressed as:

(θ,φ) = (π(ξ1−1),πv),

(Dx,Dy,Dz) = (sinφsinθ,cosφ,−sinφcosθ), (1)

where ξ1 ∈ [0,2] and ξ2 ∈ [0,1] are uniform variables with
constant spacing. ξ1 and ξ2 are mapped to azimuth and ele-
vation angles, respectively. The bigger interval for ξ1 is han-
dled explicitly by multiplying a set of uniform variables on
the interval [0,1] by 2. Consequently, for backward mapping
we have:

(ξ1,ξ2) = (1+
1
π

atan2(Dx,−Dz),
1
π

arccosDy) (2)

Also note that we sample a sphere instead of a hemi-
sphere. This eliminates the need for converting every ray
to local coordinate frame of a point during rendering with
the drawback of having larger data. Since the compression
method approximates all directions with a few principal
components (k << n), this choice of sampling increases the
rendering performance and does have a small impact on size
of the data.

Having the position map and a set of outgoing directions
for each point, we evaluate the outgoing radiance. We un-
wrap the discretized spatial (r and s) and directional dimen-
sions (φ and θ) defining a matrix, F , where each row corre-

29



E. Miandji & J. Kronander & J. Unger / Geometry Independent Surface Light Fields for Real Time Rendering of Precomputed Global Illumination

sponds to a surface point and each column represents a direc-
tion. In other words, each row contains radiance for a point
along all directions; and each column represents radiance
along a specific direction for all surface points. Although
many representation of our 4D data are possible (such as ten-
sors), this type of representation facilitates our compression
stage where we cluster this matrix and apply PCA on each
cluster. To dicretize wavelength λ, we create three matrices
FR, FG and FB each storing radiance data for a color com-
ponent. Compression is applied to each matrix separately. In
the remainder of this paper we ignore wavelength dimension
and denote the SLF matrix as F .

3.2. Compression

In this section, we discuss the compression of the generated
SLF. The requirements for compression are as follows:

1. High compression ratio: Because of the large amount of
data stored in the SLF data structure, an algorithm with
high compression ratio is vital for fitting this data in the
system memory and ultimately the GPU memory.

2. Faithful decoding and reconstruction of data: A scene
may include diffuse surfaces (low frequency radiance
variation along the surface) along with highly specular
surfaces or even caustics (which exhibit very high fre-
quency radiance variations). The SLF contains high fre-
quency data in both spatial and angular domain. This puts
high requirements on a compression method that can re-
construct high frequency data faithfully.

3. Random access: During the rendering stage it is required
that the data be accessed randomly. This means that the
decompression method should be able to locally decode
the data and return the requested radiance value in an ef-
fective manner.

The widely used PCA method exhibits high compression
ratio and enables random access to data; yet it cannot repro-
duce high frequency angular variations of radiance present
in specular and glossy surfaces. For diffuse surfaces it can
reproduce smooth surfaces with only one principal compo-
nent, satisfying all three requirements to a great extent.

To this end, we use Clustered Principal Component Anal-
ysis (CPCA). A fast and versatile algorithm adapted from
machine learning literature [KL97, TB99] to the field of
computer graphics by Sloan et al. [SHHS03]. CPCA is a two
stage method of clustering followed by a PCA for each clus-
ter. When there is only one cluster, it is equivalent to PCA.
This method has a high compression ratio and will provide
random access of compressed data in real-time and on the
GPU. The clustering part of CPCA will compensate for the
reconstruction error of the compressed all-frequency SLF
data by creating clusters of low frequency radiance data; al-
lowing us to recover view-dependent details present in spec-
ular and glossy surfaces. The quality of reconstruction is
highly dependent on the number of principal components
and clusters; which increases the flexibility of the algorithm.

We calculate the mean of each row of F and store it in
a mean map, denoted as µ. Then we calculate the matrix of
residuals, G, via

G = [xp1−µp1,xp2−µp2, . . . ,xpm −µpm ]
T , (3)

The normalizing stage can also be done after clustering by
subtracting the mean from each cluster. We cluster the SLF
matrix using the K-Means method. Rows of G are treated as
data items and columns as variables. The result of clustering
is a set of cluster IDs with a size equal to the number of
points. The outcome will be a set of matrices Gi of size mi×
n where mi�m is the number of points belonging to cluster
i that have similar radiance distribution along all sampled
directions. Note that mi is not constant among all clusters.
Each cluster may have different number of points.

Denoting a cluster’s normalized SLF matrix as Gi, we
write the Singular Value Decomposition (SVD) of it as Gi =
UiDiV T

i ; where Ui is a mi× k matrix of left singular vectors,
Vi is a n× k matrix including right singular vectors and Di
is a diagonal matrix of singular values sorted in decreasing
order. When k < N we achieve a least-squares optimal linear
approximation Ĝi =UiDiV T

i of Gi where the approximation
error, [SHHS03], is:

mi

∑
j=1
‖xp j − ˆxp j‖

2 =
mi

∑
j=1
‖xp j −µp j‖

2−
k

∑
j=1

(Di)
2
j (4)

This decomposition can be thought of as selecting a set of
orthonormal eigenvectors representing a subset of directions
and linearly approximating every other direction by calcu-
lating a weighted sum of eigenvectors. The weights are rows
of UiDi and principal components are rows of Vi. Since we
are interested in the first few approximation terms (k� n),
we use Power iteration method [CBCG02]. This method is
well-suited for our technique for the following reasons:

• This method can iteratively calculate first k terms instead
of performing a full SVD. This saves a lot of computation
time
• The approximation is improved by adding more terms

without the requirement for recalculating previous terms.
• The memory footprint is very low. A careful implemen-

tation of Algorithm 1 (see Appendix) will require extra
memory allocation of size n2 +m+2n when m� n. This
is constant for all approximation terms.

In this method, left and right eigenvectors of the covari-
ance matrix is calculated for each term, and iterated for
all approximation terms k. The traditional power iteration
method presented in [CBCG02] assumes that mi� n, there-
fore the covariance matrix, GT

i Gi, is of size n×n. In the clus-
tered PCA method [CPCA], it is very likely that each cluster
will contain fewer points than directions. This will increase
the PCA computation time dramatically since we have to
apply PCA on each cluster. Instead, we modify power it-
eration according to [SHHS03], handling situations when a
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cluster has more variables rather than data items. The modi-
fied power iteration algorithm is presented in the Appendix.

We denote Ui as the surface map of cluster i and Vi as
view map of cluster i. The number of points within clusters
add to total number of points for a shape. Therefore we cre-
ate one surface map U for each shape. On the other hand,
each cluster has a unique view map Vi. In order to find the
corresponding view map, we add a cluster index for each
point in the surface map. Defining the size operator as Γ, the
total memory consumption (γ) for this representation is

γ = Γ(U)+Γ(V )+Γ(µ)+Γ(χ),

= [ζmk]+
η

∑
i=1

[ζnk]+ [ζm]+ [m], (5)

where χ is a vector containing cluster indices, ζ is number
of color components and η is number of clusters.

3.3. Rendering

The rendering method presented here can be easily imple-
mented for both CPU-based (offline) and GPU-based (real-
time) renderers. In the offline case, a ray caster is used for
shooting rays from the camera into the scene and extracting
the corresponding radiance value of the screen sample being
processed. The same procedure is applied to the real time
renderer but with the difference that we fetch and reconstruct
data in a pixel shader based on the view vector. The data is
stored in volume textures for cache efficient access.

In order to get radiance of a point along a viewing ray, we
need to reconstruct the SLF matrix, F , which is a discretiza-
tion of the SLF function, f (r,s,θ,φ):

f (r,s,θ,φ)≈ F [r,s,u,v] =

(
η

∑
i=1

UiV
T
i

)
+µ, (6)

where Ui corresponds to the surface map of cluster i and
Vi is the view map of cluster i. Here [r,s] and [u,v] are para-
metric space coordinates of a point and direction which are
mapped to address the SLF matrix.

One advantage of this representation is that we can di-
rectly compute an element in F without the need for com-
plete reconstruction of it. We define α and β to be a row
in surface map and view map, respectively. In this way, α

represents a surface map row index of a point (r,s) and β

represents a view map row index of a direction (θ,φ). Then,
we can compute the SLF matrix element F [r,s,u,v] as

F [r,s,u,v] =

(
k

∑
j=1

Ui[α, j]Vi[β, j]T
)
+µ[α], (7)

where Ui[α, j] is an element in the surface map of clus-
ter i at row α and column j; similarly, Vi[β, j] is an element
in view map of cluster i at row β and column j. The sum-
mation in Equation (7) is an inner product between a row
in Ui and Vi. Note that in practice we have one surface map

U and several view maps Vi, 1 < i < η. Hence, Ui[:, j] with
j = 1 . . .k, represents all the principal vectors inside U that
have cluster ID equal to i. Additionally, Equation 7 allows
us to render a shape in one pass. It is not required to render
each cluster separately (Section 4). As a result, the need for
super-clustering is removed. This technique was introduced
in [SHHS03] to reduce the overdraw of a triangles with ver-
tices belonging to different clusters.

Figure 2: Schematic view of SLF reconstruction during ren-
dering

To apply Equation (7) to a ray tracer or a GPU based scan-
line renderer, we need to convert a point p(x,y,z) and a di-
rection d(x′,y′,z′) to surface and view map row indices (α
and β). To address surface map, we fetch texture coordinates
of p (the intersection point). Then we find four nearest points
in the surface map. Due to uniform sampling, this can be eas-
ily done by clamping or rounding ι1X and ι2Y , where ι1 and
ι2 are interpolated texture coordinates of point p; X and Y
are sampling resolution of texture space. The final surface
map value for p is calculated by bi-linear interpolation of
four neighboring points. As described in Figure 2, the blue
arrow and circle correspond to the main view vector and its
intersection point with the surface, respectively. The black
arrows and circles are four nearest neighbors to the inter-
section point. The weights are calculated as the inverse of
the Euclidean distance between (ι1, ι2) for main intersection
point and the four nearest points. This is shown for a point
in Figure 2 as the two-sided dashed green line.

To address the view map, we apply a similar procedure.
We use the same neighboring points in order to calculate
four direction vectors. For the main direction and each of the
four additional direction vectors, we first calculate parameter
space coordinates of them by applying Equation (2), getting
ξ1 and ξ2. Then, each (ξ1,ξ2) coordinate set is discretized
as (ξ1Z,ξ2W ), again resulting in four view map indices for
each. This is shown as red arrows for one of the nearest
points in Figure 2. For simplicity of the illustration, we did
not include red arrows for other neighboring points. In order
to interpolate view map values of a point, the weights are cal-
culated as the difference between the main direction vector
and the four nearest direction vectors (red arrows in Figure
2). This is expressed as wi = ed.di , for i = 0 . . .3; where |.|
represents a dot product and di are nearest direction vectors.
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The final view map value of the main direction is a weighted
average with weights calculated before for spatial interpola-
tion. This type of interpolation leads to seamless reconstruc-
tion of the SLF function (Section 5).

4. Implementation

The data generation stage was implemented as a renderer
(C++ class) in PBRT [PH04]. We chose to implement a
renderer rather than a surface integrator in order to exper-
iment with different surface integrators. The renderer’s in-
put is a set of shapes flagged as SLF and non-SLF. For a
SLF shape, we generate SLF matrix, compress it and then
store both compressed and non-compressed data to disk. If
a shape is flagged as non-SLF, we ignore it during data gen-
eration. Data generation parameters are divided in two parts.
Parameters such as sphere sampling and compression meth-
ods that are unique for all shapes are provided by the ren-
derer. On the other hand, [X ,Y,Z,W,k,η] are provided per
shape. Therefore one can define various settings based on
material complexity of a shape. We will use the same no-
tation when presenting our rendering results. The renderer
first computes the position map, a two dimensional array of
points (Section 3), followed by a bucket of outgoing direc-
tions for each point. The point and the bucket of directions
are given to a thread for computing outgoing radiance val-
ues using a surface integrator. Afterwards, the data is stored
in FR, FG and FB at a row corresponding to the point; then
the thread terminates. This is iterated XY/q times, where q
is the number of available processors.

The K-Means was performed by an optimized multi-
processor implementation, provided by Wei-keng Liao
(http://users.eecs.northwestern.edu/~wkliao/). We imple-
mented the modified power iteration (Algorithm 1) using the
Eigen 3 library (http://eigen.tuxfamily.org) for matrix and
vector algebra. The error tolerance, ε, was set to 1e-12 and
the maximum number of iterations, c, to 1000. The param-
eter c ensures finite loops and since we handle numerical
fluctuations by monitoring the error, it is guaranteed that Vp
for p = c, will have the least error.

We implemented a PBRT based renderer for offline ren-
dering and a GPU based renderer using DirectX. For offline
rendering, we do not use a surface integrator since the in-
coming radiance to the camera can be directly acquired from
compressed SLF data. Providing a scene containing SLF and
non-SLF shapes, we compute radiance for rays that inter-
sect SLF shapes. To evaluate outgoing radiance for non-SLF
shapes, we evoke the default integrator, e.g. path tracing.
Our implementation does not support light transport between
SLF and non-SLF shapes although they can exist in the same
scene.

For real-time rendering, we store surface and view maps
in 3D textures. Each slice of this texture contains an ap-
proximation term for a surface or view map. We can also
store each approximation term in separate textures. But due
to hardware limitations, this will limit the number of PCA

terms, k, to a small value. Another advantage of using a
volume texture is that we can change the number of PCA
terms in real-time; that is, specifying a smaller value than
k in Equation 7 or equivalently sampling fewer slices from
the volume texture. As mentioned earlier, the compression
stage generates one surface map and η view maps, where η

is the number of clusters. Therefore, the size of the 3D sur-
face map will be X×Y × k. For the 3D view map the size is
Z×W ×d√ηe.

We tile individual view maps for each cluster in a sequen-
tial order. The same pattern is used for additional slices.
There are two ways for addressing individual view maps
inside the 3D view map during rendering. We can create a
2D texture, cluster map, of size d√ηe2 with two compo-
nents where each element points to the top-left corner of a
view map across all slices. Correspondingly, we can calcu-
late the address in the pixel shader given η, Z and W . The
first method is less expensive considering the fast texture
lookup in modern hardware; it is also more straightforward
to implement.

We implemented the real-time renderer utilizing DirectX
9.0. The surface, view and mean maps are 128-bit, 4-channel
floating point textures. Cluster IDs are encoded in alpha
channel of the mean map while the value for d√ηe is pro-
vided as a global parameter. Consequently, after fetching a
mean map texel and extracting its alpha value, we can sam-
ple the cluster map. Returned values are texture addresses
for top-left corner of a tile in view map. Having this base
address, we fetch the exact texel inside a tile by adding the
scaled ξ1 and ξ2 values in Equation 2. Because of HDR tex-
tures, the real time renderer requires a tone mapping opera-
tion as the final stage.

5. Results

Rendering results of our method is shown in Figure 3. The
scene consists of a diffuse Cornell box, a diffuse torus and
two specular spheres. For specular surfaces, the roughness
parameter is set to 0.02. The mesh for the pink specular
sphere is distorted intentionally. The left wall is textured
with a relatively high frequency texture. As it can be seen
in Figure 3, our uniform sampling method can reconstruct
this texture with minimum aliasing or noise, despite the fact
that it has four vertices only. Previous methods based on sur-
face primitive partitioning of SLF fail on cases like this. Data
generation and compression parameters for each shape is in-
cluded in Table 1. In addition, we used a box filter of width
5 for interpolating radiance along super sampled sphere di-
rections (Section 3.1). Sphere samples were generated using
low-discrepancy sampler in PBRT. For the reference image
we used the photon mapping integrator with 400000 pho-
tons and 64 final gathering samples. The resolution was set
to 1024×1024 and we used 256 samples per pixel. Our CPU
based renderer was configured accordingly but with the dif-
ference that we used only 8 samples per pixel. This value
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(a) (c)(b)

Figure 3: Rendering results for our GPU based renderer (a), the CPU based renderer (b) and the reference image (c)

Table 1: Per-shape parameters and timing results for three stages of our method.

Shape X Y Z W k η Data Gen. Comp. CPU Rend. GPU Rend. Ref. Rend.
Walls (average) 256 256 32 16 1 1 144 min 1.7 sec - - -

Torus 256 256 32 16 1 1 58 min 1.7 sec - - -
Blue sphere 256 256 64 32 8 256 946 min 24 min - - -
Pink Sphere 256 256 64 32 8 256 832 min 27 min - - -
The scene - - - - - - 1980 min 51 min 16.7 sec 120 FPS 202 min

was enough since our rendering method internally interpo-
lates radiance in spatial and angular dimensions. The image
resolution for GPU renderer was set to 1920×1080.

Our performance results for three stages of the algorithm
are illustrated in Table 1. The rendering parameters are the
same to those mentioned earlier and the data generation
stage uses the same photon mapping parameters. As illus-
trated, for diffuse surfaces we used the least amount of clus-
ters and PCA terms (k = 1 and η = 1). For specular shapes,
we set k = 8 and η = 512. Although we can increase k and
reduce η while getting the same image quality, according to
Equation 7 it will result in severe performance lost. Addi-
tionally, increasing k will affect the size of view map and
surface map (Equation 5) while η only has impact on the
view map. Comparing the rendering time for the reference
renderer with our CPU renderer, we can conclude that our
renderer can be used for fast realistic rendering of novel
views of static scenes. We tested our results using a PC with
a quad-core Intel Xeon processor and a NVIDIA GeForce
8800 Ultra. Using a PC with more cores will improve data
generation and compression performance linearly due to the
fact that all the stages utilize parallel processing.

6. Conclusions and Future Work

We presented a framework for creating, compressing and
rendering SLF data that can be used for viewing static scenes
with global illumination effects. Our SLF representation de-
couples radiance data from geometric complexity by using

uniform sampling of spatial dimension. We also showed that
the application of CPCA on SLF data can lead to relatively
high compression ratios while preserving view-dependent
high frequency details. Additionally, we presented an effi-
cient rendering algorithm that can be used for real-time or
fast off-line rendering of scenes with complex materials. Al-
though we focused on computer-generated radiance data, the
compression and rendering algorithm can be simply applied
to re-sampled data of captured digital images.

Our future work is mainly concentrated on compression,
rendering and interpolation. We seek to analyse various com-
pression techniques on SLF data. Of course this is dependent
on the representation of discretized SLF function. Whether
we see it as a tensor or matrix, different compression tech-
niques can be applied. Wavelet analysis, Tensor approxima-
tion [RK09,TS06] and sparse representations [RK09,BE08]
have been successfully applied for compression. Using our
presented representation, we can compress the surface map
and the set of view maps further by utilizing aforementioned
techniques. Having a smaller compressed data with minimal
loss allows us to increase the size of uncompressed SLF ma-
trix by sampling more densely, leading to better image qual-
ity with little rendering overhead.
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Appendix: Modified Power Iteration

Let F be a m×n matrix that represents SLF data of a cluster.
Computing SVD of F yields F = UDV T . Our goal to com-
pute a m× k matrix UD and a n× k matrix V in a way that
F̂ = UV T best approximates original matrix F . The power
iteration method computes the first k eigenvectors of the ma-
trix A = FT F , the covariance matrix of size n× n. When
m < n, we compute the m×m matrix FFT . Now the eigen-
vectors are F’s left singular vectors and the right singular
vectors can be computed as V T =UT D−1F .

Algorithm 1: Calculate F̂ = UV T where F is m× n, U
is m× k and V is n× k

Require: m > 0, n > 0, k > 0, c is maximum number of iterations for Vp or Up
convergence and ε is the error tolerance
if M ≥ N then

for p = 1→ k do
Ap ← FT F
V̂p ← random N× 1 non-zero values
V̂p ← V̂p/‖V̂p‖
for z = 1→ c do

Vp ← Ap V̂p
λp ← ‖Vp‖
σ← ‖Vp− V̂p‖
if σ < ε or σ > σ̂ then

break
end if
σ̂← σ

V̂p ← Vp
end for
Up ← FVp/λp
maxu ← max(abs(Up)) and maxv ← max(abs(Vp))

κ←
√

maxuλp/maxv
Up ← λp Up/κ

Vp ← κVp
F ← F− Up VT

p
U(:, p)← Up and V (:, p)← Vp

end for
else {N < M}

for p = 1→ k do
Ap ← FFT

Ûp ← random M× 1 non-zero values
Ûp ← Ûp/‖Ûp‖
for z = 1→ c do

Up ← Ap Ûp
λp ← ‖Up‖
σ← ‖Up− Ûp‖
if σ < ε or σ > σ̂ then

break
end if
σ̂← σ

Ûp ← Up
end for
Vp ← UT

p F/λ

maxu ← max(abs(Up)) and maxv ← max(abs(Vp))

κ←
√

maxuλp/maxv
Vp ← λp Vp/κ

Up ← κUp
F ← F− Up Vp
U(:, p)← Up and V (:, p)← Vp

end for
end if
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