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Abstract

Modelica models involving discrete-time aspects 
may lead to surprising results due to the way events 
are currently handled in the language. Indeed, simul-
taneity is interpreted as synchronism (see [2] for de-
tails) and, as a consequence, two unrelated sources of 
events may interfere in unexpected ways.

In  this  paper,  we  present  minimal  examples  of 
models that exhibit unexpected or surprising results, 
then we explain the general causes of such behaviors 
and propose to introduce the notion of  clock in the 
language to solve the issues. In contrast to [1] and 
[2], we focus here on models resulting from the com-
position of other models: we aim at showing that the 
current discrete-time theoretical model of Modelica 
is not robust with respect to model composition. For 
the final user, it means that it is generally not possi-
ble to build reliable models involving discrete-time 
aspects by simply connecting generic library models: 
manual adjustments are often required to obtain the 
expected behavior1.
Keywords: discrete-time modeling; clock calculus

1 Introduction

Modelica  has  been  designed  to  primarily  solve 
continuous-time systems of differential and algebraic 
equations. Unfortunately, discrete-time aspects have 
not been considered with the same level of interest. 
The result  is that essential features of synchronous 
languages  (e.g.,  Signal,  Lustre,  Esterel)  are  not 
present in Modelica today. Consider for instance the 
following Modelica model:

model M
  Real x, x_dot;
  Integer count;
initial equation
  x = 0;

1 This also begs for  a related question, which is:  how 
can we  know that our models actually require adjust-
ments!

  x_dot = 1;
  count = 0;
equation
  x_dot = der(x);
  der(x_dot) = ­x;
  when
    { x > 0.5, sin(time) > 0.5 }
  then
    count = pre(count) + 1;
  end when;
end M;

According  to  the  Modelica  specification,  that 
model is correct, so we can try to simulate it. One 
may wonder which is the value of count at the end of 
a simulation performed between 0 and 100 seconds 
for instance. Quite surprisingly, the Modelica speci-
fication does not give the answer: any value between 
16 and 32 is possible even if — it is the case here  — 
every event can be numerically detected with accura-
cy so that none is lost due to the limits of time toler-
ance of the solver2. Indeed, the  when clause that is 
used to update count is activated by two unrelated 
sources of events (put between curly braces in Mod-
elica syntax) that  may accidentally be seen as syn-
chronous during simulation, as explained in [2]. Ac-
tually the final value of count depends on:

– the “quality” of the translator implemen-
tation

– the kind of solver eventually required to 
solve the final system

– the  parameters  of  the  solver,  in  case  a 
solver is necessary.

In  this  paper,  we  aim  at  explaining  the  conse-
quences of such a design choice in terms of reliabili-
ty and reusability of models. The paper is organized 
as follows: section  2 gives an analysis of the prob-

2 The purpose of this paper is not to discuss numerical 
solver issues, in particular event detection in case of 
non-trivial continuous-time systems: we will only fo-
cus on discrete-time aspects. The introductory example 
is presented with the hope that it will help readers with 
physical background to get a feeling of what discrete-
time issues are.
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lem; section 3 introduces the proposed solution; sec-
tion  4 shows how to transpose the solution in  the 
context of the Modelica language; section 5 presents 
an example of application; section 6 gives a conclu-
sion.

2 Analysis of the problem

The problem with the model above comes from 
the fact that discrete-time aspects are somewhat “ap-
proximated” in Modelica's semantics: it is not possi-
ble  to  know for  sure,  in  that  model,  whether  both 
sources of events corresponding to  x > 0.5 and 
sin(time) > 0.5 are synchronous or not. It is 
not even possible to know for sure, in case they are 
seen as synchronous by the simulator at the begin-
ning of a simulation, whether they will remain syn-
chronous until the end or not. Indeed, according to 
the  Modelica  specification,  events  instants  are 
“probed” during simulation (only time associated to 
their occurrence is retained) so deciding whether two 
events happening at the same measured time are real-
ly  synchronous  (i.e.,  have  the  same  cause)  or 
whether it is pure coincidence is impossible. Unsur-
prisingly, this has unfortunate consequences over the 
design of event-based models in Modelica. Consider 
for instance the following purely discrete Modelica 
models:

connector Out = output Boolean;

model EventSource "Simple event 
source"
  parameter Real t0, T;
  Out out;
equation
  out = sample(t0, T);
end EventSource;

connector In = input Boolean;

model Counter "Simple event 
counter"
  parameter Integer n;
  In ins[n];
  Integer count;
initial equation
  count = 0;
equation
  when ins then
    count = pre(count) + 1;
  end when;
end Counter;

Figure 1: A simple test model

Instances  of  EventSource emit  events3 via 
their unique output port and instances of  Counter 
count the number of events received via their input 
ports.  Consider  the  following  model  built  upon 
EventSource and  Counter (Figure 1 gives its 
graphical representation):

model TestCounters
  EventSource src[2](t0 = { 0, 3 }, 
T = { 1, 2 });
  Counter cnt(n = 2);
equation
  connect(src.out, cnt.ins);
end TestCounters;

Figure 2: Simulation results of model in Figure 1
Simulation  of  an  instance  of  TestCounters 

between 0 and 10 seconds gives a rather surprising 
result (see Figure 2). Indeed, between 0 and 10 sec-
onds the sources emit a total of 11 + 4 events but 

3 Boolean  values  in  reality,  events  are  not  explicitly 
emitted.
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only  11  of  them  are  “saw”  by  the  instance  of 
Counter.  That  result  is  explained  by  Modelica's 
way of handling discrete events. Indeed, some events 
are  “lost”  because,  as  explained  above,  only  the 
measured time of events matters in Modelica, so two 
events happening at the same time cannot be distin-
guished: the simulator does not know whether they 
have been emitted by the same source connected to 
both input ports of the instance of  Counter (as in 
Figure 3) or by two distinct sources (as in Figure 1).
One may wonder why is it not possible, by default, 
to  consider  every  local  port  of  a  model  like 
Counter as an independent local source of events: 
indeed,  in  the  case  of  TestCounters,  it  would 
give the correct answer for count. But consider the 
following  model  which  graphical  representation  is 
given in Figure 3:

model TestCounters2
  EventSource src(t0 = 0,  T = 1);
  Counter cnt(n = 2);
equation 
  connect(src.out, cnt.ins[1]);
  connect(src.out, cnt.ins[2]);
end TestCounters2;

Figure 3: Another simple test model
In  any instance of  that  model,  if  every port  of 

cnt would be considered as a local source of events 
then twice the correct  number  of  events  would be 
found since there is only one real source of events 
(with duplicated outputs). One may notice that Mod-
elica's default behavior would lead to the correct re-
sult (by accident, however) in that very special situa-
tion.

Going  back  to  the  original  model,  one  way  to 
avoid the event loss problem in Modelica would be 
to associate one “subcounter” per input port and to 
sum the results into the global counter count, as in:

connector In = input Boolean;

model ImprovedCounter
  parameter Integer n;
  In ins[n];
  Integer count;

protected Integer subcount[n];
initial equation
  subcount = zeros(n);
  count = 0;
equation
  for i in 1 : n loop
    when ins[i] then
      subcount[i] = 
pre(subcount[i]) + 1;
    end when;
  end for;
  when ins then
    count = sum(subcount);
  end when;
end ImprovedCounter;

However,  this  solution  is  far  more  space-  and 
time-consuming than the original  Counter model 
(because a number of additional state variables pro-
portional to the number of listened sources has to be 
declared and the whole sum of subcounters has to be 
recomputed each time an event is detected on any in-
put port). Also, that new solution still fails to count 
the correct number of events in case of a configura-
tion like the one in Figure 3. We may even want to 
consider  configurations  like  the  one  in  Figure  4, 
where neither  Counter nor  ImprovedCounter 
would give the correct answer.

Figure 4: A slightly more complex version of previous test  
models

A last remark can be made regarding correctness 
of  models.  Going back to  the  first  test  model,  we 
managed  to  correct  it  by  providing  Improved­
Counter (an adapted version of Counter) to cir-
cumvent the issue with simultaneous events. It is im-
portant to notice that the correction was possible be-
cause we knew that our original model had problems 
with respect to event handling. But in real-world sit-
uations, where correctness of models in not known a 
priori, Modelica compilers will not be able to detect 
such errors since, as shown above, the Modelica lan-
guage itself does not retain the required information. 
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As a  result,  users  will  have  to  determine by  hand 
whether their models are correct  or  not.  Of course 
the task is impossible to complete as far as models 
get too big or contain encrypted parts for instance.

We conclude from those observations that Model-
ica needs some improvements to enable the defini-
tion of reliable models involving discrete events. The 
following section explains how that can be achieved. 
The proposal is based on a preliminary work by IN-
RIA and LMS Imagine in the course of the SimPA 2 
project ([1], [2]).

3 Proposal to enable the definition of 
reliable discrete models in Modeli-
ca

3.1 Introduction to clocks and signals

The most important feature of synchronous lan-
guages  that  is  currently  missing  in  Modelica  is 
clocks. In the Signal language ([3]) clocks give logi-
cal instants at which signals are said to be  present, 
i.e. instants at which values of signals are accessible. 
Signals sharing the same clock are said to be  syn-
chronous (their values are present at the same logical 
instant). Clocks give the domain of signals, and types 
(e.g., Boolean, Integer, Real, etc. in Modelica) give 
their  codomain.  Consider  the  following  Modelica 
program:

model M
  Integer count;
initial equation
  count = 0;
equation
  when sample(0, 1) then
    count = pre(count) + 1;
  end when;
end M;

Interpreted  in  terms  of  clocks  and  signals,  this 
program  would  define  the  discrete-time  signal 
count. One way to see count would be as a map-
ping from events to values (Event is the set of all 
events):

count: Event ⟶ Integer
e0 ⟼ 1
e1 ⟼ 2
e2 ⟼ 3
…

Of  course,  we  would  also  need  to  associate  a 
“physical time” with each event, as required by the 
definition of sample():

e0 ⟼ 0.0
e1 ⟼ 1.0
e2 ⟼ 2.0
…

It is fundamental to notice that the mapping from 
events to physical time is not a bijection: two distinct 
events may be associated with the same physical in-
stant,  in which case those events are said to be  si-
multaneous.  We  saw that  in  Modelica  there  is  no 
way to tell whether two simultaneous events have the 
same origin since we only look at physical time. By 
looking at logical instants, we have a more accurate 
view of the flow of events: that is the basis of the 
synchronous approach to event handling.

3.2 Why do clocks and signals solve the issues

Let's consider an expression like  sample(t0, 
T).  Interpreted  in  terms  of  signals  and  clocks,  it 
would represent a sequence of  fresh events, each of 
them mapped to physical instants so that ek (k ≥ 0) 
maps to t0 + kT. Consider the following program:

when sample(0, 1) then
  count = pre(count) + 1;
end when;

We say that the when clause above is activated at 
each logical  instant  yield by the sample construct, 
which defines a clock, and that count inherits that 
clock:  count causally depends on the sample con-
struct that is used to activate the equation.

We now introduce the notion of  clock union, as 
in:

when { c1, c2, ... } then
  count = pre(count) + 1;
end when;

{ c1, c2, ... } represents the union clock 
of  c1,  c2,  etc.  The  set  of  events  emitted  by  that 
clock is  the  union of  the  set  of  events  emitted by 
each clock used to compose it. And since in our in-
terpretation  events  can  be  distinguished  one  from 
each other we can, contrary to Modelica with its cur-
rent interpretation, compute the union accurately:

– without accidentally forgetting any element 
(as illustrated in  TestCounters above)

– without accidentally counting the same ele-
ment  twice  (as  illustrated  in  TestCoun­
ters2 above).
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Of course, taking clocks into account requires a 
less naive compilation process than those currently 
implemented in Modelica compilers. In the next sec-
tions we describe the steps required to transform a 
synchronous  language  program into  efficient  com-
piled code.

3.3 Considerations  about  the  compilation  of 
synchronous programs

Take for instance the model class  TestCoun­
ters defined above. If we instantiate it, we get the 
following flat Modelica program (where connection 
equations have been replaced by their contribution to 
the final system of equations):

model FlatTestCounters

  // variables introduced by the 
first event source
  parameter Real src[1].t0, 
src[1].T;
  Boolean src[1].out;

  // variables introduced by the 
second event source
  parameter Real src[2].t0, 
src[2].T;
  Boolean src[2].out;

  // variables introduced by the 
counter
  Boolean cnt.ins[1], cnt.ins[2];
  Integer cnt.count;

initial equation

  // initial equations introduced 
by the counter
  src.count = 0;

equation

  // equations introduced by the 
first event source
  src[1].out = sample(src[1].t0, 
src[1].T);

  // equations introduced by the 
second event source
  src[2].out = sample(src[2].t0, 
src[2].T);

  // equations introduced by the 
counter

  when { cnt.ins[1], cnt.ins[2] } 
then
    cnt.count = pre(cnt.count) + 1;
  end when;

  // expanded connection equations
  cnt.ins[1] = src[1].out;
  cnt.ins[2] = src[2].out;

end FlatTestCounters;

For the sake of conciseness, we will  consider a 
simplification of the previous program4 that still con-
tains the essential constructs:

model ShortFlatTestCounters
  parameter Real t0[1], T[1], 
t0[2], T[2];
  Boolean c[1], c[2];
  Integer count;
initial equation
  count = 0;
equation
  c[1] = sample(t0[1], T[1]);
  c[2] = sample(t0[2], T[2]);
  when { c[1], c[2] } then
    count = pre(count) + 1;
  end when;
end ShortFlatTestCounters;

That  program  defines  two  asynchronous  event 
sources since we consider that each sample construct 
introduces its own sequence of fresh events. It fol-
lows that c[1] and c[2] do not have any event in 
common  and  then  that  the  union  clock  {  c[1], 
c[2] } is irreducible. The  clock calculus we will 
propose below will have to reflect those considera-
tions, so that a compiler implementing it will auto-
matically derive canonical representation of clocks, 
as we currently do by hand in this simple case. The 
constraints in the above program are finally equiva-
lent to this pseudo-code:

c[1] = sample(t0[1], T[1]);
c[2] = sample(t0[2], T[2]);
when c[1] then
  count = pre(count) + 1;
end when;
when c[2] then

4 Obtained by removing alias variables  and associated 
equations, and renaming remaining variables
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  count = pre(count) + 1;
end when;

Notice  that  we now have two concurrent  equa-
tions defining count (which is explicitly forbidden 
in Modelica) but since both when clauses are guaran-
teed to be activated asynchronously thanks to our in-
terpretation of sample's properties,  there is actually 
no possible conflict5.

At this point, an important remark has to be made 
regarding  determinism.  Indeed,  with  the  semantics 
proposed in this report, we accept to consider that a 
connection of two independent event sources is ac-
ceptable because we force  interleaving of events so 
that two simultaneous events cannot be synchronous 
if they don't have the same origin. However, the or-
der into which simultaneous events will be treated at 
runtime is purposely left unspecified. From a control 
engineer  perspective  that  choice  seems  rather  sur-
prising, especially for a language that could eventu-
ally be used to design control systems, where deter-
minism  is  a  fundamental  aspect  to  consider.  But 
from a physical modeling point of view, non-deter-
minism is a natural consequence of the physical na-
ture of the world. Since our aim is to design a physi-
cal modeling language it seems reasonable to allow 
some form of non-determinism to avoid rejecting too 
many programs, especially those that most users hav-
ing a physical background will consider correct (and 
which are, given the limits of physics). Notice how-
ever that non-determinism can be detected statically 
by a compiler implementing our proposal: it just re-
quires a stricter criterion to select correct programs 
(that may be a compiler option). Compared to Mod-
elica in its current state, we offer a way to control de-
terminism so that  it  fits  control  or  physical  needs. 
Modelica, on the other hand, currently cannot prom-
ise anything regarding determinism for the reasons 
exposed in previous sections.

3.4 Clock calculus

In this section we introduce the elements of our 
clock  algebra and  give  essential  rules  that  govern 
clock calculus. We propose the following grammar 
to describe clock expressions (where  e represents a 
term denoting any signal, and b a term denoting any 
boolean signal):

clock ::=
  never (empty clock)
| always (full clock)
| clock(e) (clock of e)

5 Modelica  currently  has  to  impose  single  assignment 
restrictions precisely because two sources of cannot be 
statically proven to be asynchronous, as explained be-
fore.

| false(b) (instants at which b is false)
| true(b) (instants at which b is true)
| initial (initialization clock)
| edges(b) (instants at which b becomes true)
| sample(t0, T) (sample starting at t0, with period T)
| clock ∨ clock (union of clocks)
| clock ∧ clock (intersection of clocks)
| clock ∖ clock (difference of clocks)
| c1, c2, … (clock variables)

Several comments have to be made:
– we  introduce  the  notion  of  “full  clock”, 

which,  in  synchronous  languages  such  as 
Signal, makes no sense (since clocks are dis-
crete).  But  since here  we have to  consider 
continuous-time signals (we want to describe 
DAE systems among others), we have an im-
plicit  maximal  clock  for  any  program:  the 
default  continuous-time  clock,  which  in-
cludes all the instants of the simulation

– the  same kind of  remark  can be made for 
clock difference: if the first argument is the 
full clock, then we get the complementary of 
the  second  argument  as  result,  which  also 
makes  no  sense  in  synchronous  languages 
such as Signal

– sample() and edges() share the follow-
ing properties:

– they  are  generative:  they  always 
yield  a  fresh,  pure  discrete-time 
clock

– two  clocks  yielded  by  those  con-
structs  are  guaranteed  to  have  an 
empty  intersection  (which  implies 
for  instance  that  edges(e1)  ∧ 
edges(e2) = empty for any  e1, 
e2

6)
– initial is a special clock that contains only 

one  instant  which  corresponds  to  the  first 
simulation instant (i.e., no other instant may 
happen before this one).

Systems of equations will be described by the fol-
lowing grammar (where  ei(si1, si2, …) denotes an 
expression involving signals si1, si2, …,   ):

system ::=
  null (system having no constraint)
| system || system (parallel composition)
| system when clock (sampling)
| let c = clock in system (let binding)
| e1(s11, s12, ...) = e2(s21, s22, …) (equation)

To illustrate the use of the system description lan-
guage  defined  above,  let's  write  the  system corre-
sponding to an  instance of the model class  Test­
Counters defined above. It gives:

6 This is the property we used in section Considerations
about the compilation of synchronous programs to cal-
culate the union clock.
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let c[1] = sample(t0[1], T[1]) in
let c[2] = sample(t0[2], T[2]) in
count = 0 when initial ||
count = pre(count) + 1 when c[1] ∨ 
c[2]

We saw in previous section that it was also possi-
ble to write it as follow:

let c[1] = sample(t0[1], T[1]) in
let c[2] = sample(t0[2], T[2]) in
count = 0 when initial ||
count = pre(count) + 1 when c[1] ||
count = pre(count) + 1 when c[2]

Notice that clock expressions should be reduced 
to a  canonical  form so that  single assignment rule 
can be checked statically to avoid current Modelica 
issues  with  respect  to  discrete-time  modeling.  We 
then require that a compiler will have to perform full  
reduction of  clock expressions at  compile  time by 
eliminating local clock variables (i.e., rewriting  let 
v =  …  in … terms)  and  replacing  clock(...) 
terms by their actual value. This reduction will have 
to be carried out in parallel with the resolution of the 
assignment problem attached to equations. Indeed, in 
contrast to synchronous languages such as Signal, we 
have to deal with the acausal nature of the language: 
given an equation, it is not possible to tell which sig-
nal(s) it defines without performing a global causali-
ty analysis under clock constraints (we require how-
ever schedulability of clock constraints). So the algo-
rithm we propose is:

1. The initial contextual clock is always
2. Perform  partial  resolution  of  the  assign-

ment problem for any equation that is not 
constrained by a when construct, in order 
to find defined signals, which are added to 
current context

3. Pick any when construct which activation 
clock either depends on past (i.e., “pre sig-
nals”) or on signals that belong to current 
context; make that activation clock the cur-
rent contextual clock and go to step 2

If some subsystems remain unselected at the end 
of the algorithm, the whole system is:

– not schedulable, if any subsystem contains a 
clock which depends on the signals it actual-
ly defines

– under-constrained, if  the assignment prob-
lem failed for the remaining equations

– over-constrained, if any subsystem only con-
straints signals that have already been deter-
mined.

An additional check has to be performed in order 
to validate the whole system: the clock of any “pre 

signal” should be proven equal to the clock of the 
signal itself. The clock of a given signal can be de-
termined  by  “summing”  the  clocks  of  when  con-
straints that define that signal (union of clocks). The 
clock of a “pre signal” is the union of the minimal 
clocks at which that signal is required to be present 
(i.e., immediate contextual clocks during clock cal-
culus).  By “subtracting” (clock difference) both re-
sulting clocks we have to find  empty. Notice that 
the problem is decidable since we required full re-
duction of clock expressions to canonical form. That 
algorithm not only validates the original  system, it 
also returns its  constrained dataflow representation 
which can be used to generate efficient code.

4 Application to Modelica

One  can  notice  that  Modelica's  sample  expres-
sions yield boolean values that are quite exclusively 
used to activate discrete equations. The reason is that 
in Modelica when clauses require a test to be per-
formed  to  activate/deactivate  associated  equations. 
But  most  of  the  time,  that  test  is  useless:  it  only 
makes sense to “activate equations from the outside”. 
Indeed,  a  when  clause  which  activation  constraint 
only depends on pure events (as ideally generated by 
sample) would not need to check anything: the acti-
vation/deactivation  logic  would  be  “lifted”  in  the 
control  flow.  It  follows  that  when  clauses  can  be 
made more general and efficient by only depending 
on  clocks  instead  of  boolean  signals7:  pure  even-
t-based activations do no longer lead to any test in 
the generated code. That is particularly interesting in 
presence of external event sources, which in Modeli-
ca currently lead to the generation of “event loops” 
that  are  extremely  resource-consuming  (and  that 
eventually require dynamic synchronization with the 
source). Our proposal avoids the generation of those 
expensive loops.

In consequence of the above remarks, we propose 
to equip Modelica with a new type: Clock, the type 
of clocks (i.e., sequences of logical time events). We 
also propose to change the semantics of sample ex-
pressions, so that they now denote pure event gener-
ators8.  Here  is  a  modification  using  clocks  of  the 

7 This  is  the  reason  why  the  name  “when”  has  been 
coined historically in synchronous languages such as 
Signal.

8 It would be possible to make sample generate booleans 
and events simultaneously to avoid too many compati-
bility issues, but, since uses of values yielded by sam-
ple as regular booleans seems highly suspicious in our 
opinion, a more restrictive definition of sample would 
help to find abusive use of event-generating  expres-
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original  model  class  TestCounters defined 
above:

connector Out = output Clock;

model EventSource "Simple event 
source"
  parameter Real t0, T;
  Out out;
equation
  out = sample(t0, T);
end EventSource;

connector In = input Clock;

model Counter "Simple event 
counter"
  parameter Integer n;
  In ins[n];
  Integer count;
initial equation
  count = 0;
equation
  when ins then
    count = pre(count) + 1;
  end when;
end Counter;

model TestCounters
  EventSource src[2](t0 = { 0, 3 }, 
T = { 1, 2 });
  Counter cnt(n = 2);
equation
  connect(src.out, cnt.ins);
end TestCounters;

As shown in previous section, an instance of the 
above model can be represented in our intermediate 
language as:

let c[1] = sample(t0[1], T[1]) in
let c[2] = sample(t0[2], T[2]) in
count = 0 when initial ||
count = pre(count) + 1 when c[1] ∨ 
c[2]

Given  a  translation  from the  original  Modelica 
code to our system description language, we can pro-
ceed with static scheduling of equations by applying 
the algorithm proposed above. If the system does not 
contain  any  implicit  variable,  the  result  is  simply 
composed of several sequences of assignments, acti-
vated  by  primary  clocks (i.e.,source  clocks  of  the 
system). It is the case in our simple example:

sions in existing programs.

when initial:
  count := 0

when sample(t0[1], T[1]) ∨ sample(t0[1], T[1]):
  count := pre(count) + 1

The above representation of the system reads as 
follow:

– at  initialization,  assign  0 to  the  program 
variable count

– on  each  activation  scheduled  by  sam-
ple(t0[1],  T[1])  ∨ sample(t0[1], 
T[1]), assign the last value held by  count 
plus one to count.

We have derived  sequences of assignments from 
the functional specification expressed in our system 
description language.

5 Example

We consider a well-known example in the Hybrid 
Systems and Control Theory literature (we will use 
the version presented in  [BK09]). Here we consider 
the system consisting of a water tank, where water 
arrives at a variable rate  wi(t) ≥ 0 through one pipe 
and leaves through another one at the rate controlled 
by a valve (cf. Figure 5). The output pipe has a maxi-
mal throughput capacity C, and the valve position is 
given by 0 ≤ v(t) ≤ 1. Thus, the actual throughput of 
the output pipe at the moment t is C·v(t). The valve is 
controlled by a sensor measuring the level l of water 
in the tank, which aims at keeping this level in a giv-
en interval  [L1, L2]. For simplicity we assume that 
there is always enough water in the tank to saturate 
the output pipe and that the incoming flow does not 
exceed the output pipe’s capacity, i.e. max wi(t) ≤ C.

Figure 5: Tank with regulated valve

The transfer function of the complete system has 
the input space In = R+ (incoming flow rate) and the 
output space  Out = R+ × + (output flow rate and 
current water level in the tank). This system can be 
modeled as a composition of three sub-systems (see 
Figure 6).
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Figure 6: Block-diagram representation of the  
regulated tank

1. The Tank, taking on input current values of 
the incoming flow  wi and the position of 
the valve v and computing the correspond-
ing output flow wo and water level  l from 
the equations

dl=wi−wo

wo=C⋅v
The corresponding transfer function has the 

input and output spaces  InT = R+ × [0, 1] 
and OutT = R+ × R+.

2. The Sensor, taking on input the water level 
l and  computing  the  corresponding valve 
position  adjustment  dv from  some  given 
equation, e.g.:

dv=signl−
L1L2

2


The corresponding transfer function has the 
input and output spaces InS= R+ and OutS =  
[−1, 1].

3. The Valve, taking on input the adjustment 
dv and providing on output the correspond-
ing value v.
The corresponding transfer function has the 

input  and output  spaces  InV = [−1, 1] and 
OutV = [0, 1].

This kind of physical models is straightforward to 
define as a continuous-time Modelica model:

// Connector definitions

connector RealInput = input Real;
connector RealOutput = output Real;

// Submodel definitions

model Tank
  parameter Real C;
  RealInput wi;
  RealInput v;
  RealOutput wo;
  RealOutput l;

equation
  wo = C * v;
  der(l) = wi – wo;
end Tank;

model Sensor
  parameter Real L1, L2;
  RealInput l;
  RealOutput dv;
equation
  dv = sign(l ­ (L1 + L2) / 2);
end Sensor;

model Valve
  RealInput dv;
  RealOutput v;
equation
  /* In order to preserve the range 
of v, we
     have to constrain the values 
of its derivative */
  der(v) =
    if pre(v) <= 0 then max(dv, 0)
    elseif pre(v) >= 1 then min 
(dv, 0)
    else dv;
end Valve;

model Source "Sinusiodal source of 
flow"
  constant Real PI = acos(­1);
  parameter Real W0, f;
  RealOutput wo;
equation
  wo = W0 * (0.5 * sin(2 * PI * f * 
time) + 0.5);
end Source;

model TankSensorValve "Agregation 
of a tank, a sensor and a valve"
  RealInput wi;
  RealInput wo;
  Tank tank(C=10, l(start=1.5));
  Sensor sensor(L1=1, L2=2);
  Valve valve(v(start=0));
equation
  connect(wi, tank.wi);
  connect(tank.l, sensor.l);
  connect(sensor.dv, valve.dv);
  connect(valve.v, tank.v);
  connect(tank.wo, wo);
end TankSensorValve;
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// Example of use

model M "A simple use of above mod­
els"
  TankSensorValve tankSensorValve(
    tank(C=10, l(start=1.5)),
    sensor(L1=1, L2=2),
    valve(v(start=0)));
  Source source(W0=5, f=0.25);
equation
  connect(source.wo, tankSensor­
Valve.wi);
end M;

Simulating the above model gives the results in 
Figure 7.

Figure  7: Result of the simulation of a continuous-time  
model of regulated tank

A discrete-time specification of the regulated tank 
model would offer several advantages over the con-
tinuous-time  one:  it  does  not  require  sophisticated 
solvers to compute simulation results and it may run 
far faster than the high-fidelity version (the price to 
pay when using pure discrete-time models is, most of 
the time, poor accuracy). Here is a new specification 
in discrete-time Modelica of the submodels needed 
to  build  the  final  model  (changes  with  respect  to 
original version are in red):

// Connector definitions

connector RealInput = input Real;
connector RealOutput = output Real;

//useful constants

constant Real MILLI2SEC = 0.001;
constant Real MILLI_PERIOD = 20;
constant Real STRETCH = 400;
constant Real STEP = MILLI_PERIOD * 
MILLI2SEC / STRETCH;

// Submodel definitions

model Tank
  parameter Real C;
  RealInput wi;
  RealInput v;
  RealOutput wo;
  RealOutput l;
equation
  wo = C * v;
  l = pre(l) + (wi – wo) * STEP;
end Tank;

model Sensor
  parameter Real L1, L2;
  RealInput l;
  RealOutput dv;
equation
  dv = sign(l ­ (L1 + L2) / 2);
end Sensor;

model Valve
  RealInput dv;
  RealOutput v;
equation
  /* In order to preserve the range 
of v, we
     have to constrain the values 
of its derivative */
  v =
    pre(v) +
    (if pre(v) <= 0 then max(dv, 0)
    elseif pre(v) >= 1 then min 
(dv, 0)
    else dv) * STEP;
end Valve;

model Source "Sinusiodal source of 
flow"
  constant Real PI = acos(­1);
  parameter Real W0, f;
  RealOutput wo;
/* We explicitly define time as a 
discrete signal */
protected Real time;
initial equation
  time = 0;
equation
  when sample(0, STEP) then
    time = pre(time) + STEP;
  end when;
  wo = W0 * (0.5 * sin(2 * PI * f * 
time) + 0.5);
end Source;
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model Delay "Ideal delay"
  RealInput x;
  RealOutput zx;
equation
  zx = pre(x);
end Delay;

model TankSensorValve "Agregation 
of a tank, a sensor and a valve"
  RealInput wi;
  RealInput wo;
  Tank tank(C=10, l(start=1.5));
  Sensor sensor(L1=1, L2=2);
  Valve valve(v(start=0));
  Delay delay(zx(start=0));
equation
  connect(wi, tank.wi);
  connect(tank.l, sensor.l);
  connect(sensor.dv, valve.dv);
  connect(valve.v, delay.x);
  connect(delay.zx, tank.v);
  connect(tank.wo, wo);
end TankSensorValve;

Notice the use of difference equations instead of 
differential ones and also the use of a when clause 
that  provides  the  “main  clock”  exported  by  the 
Source model class. A new model class is neces-
sary (Delay) to break the algebraic loop (controller 
feedback) by inserting a delay into it, otherwise the 
model is not schedulable. The Sensor model class 
is kept unchanged: that is not surprising since it only 
involves  algebraic  equations.  Thanks  to  activation 
inheritance, model instances connected to  Source 
will be activated by the source's clock. Here is the 
system  of  equations  resulting  from  instantiating 
model class  M defined above, expressed in our sys-
tem representation language:

m.tankSensorValve.tank.l = 1.5 when initial ||
m.tankSensorValve.tank.wo = 10 * 
m.tankSensorValve.tank.v ||
m.tankSensorValve.tank.l = 
pre(m.tankSensorValve.tank.l) + 
(m.tankSensorValve.tank.wi – 
m.tankSensorValve.tank.wo) * 5e-5 ||
m.tankSensorValve.sensor.dv = 
sign(m.tankSensorValve.sensor.l – 1.5) ||
m.tankSensorValve.valve.v = 0 when initial ||
m.tankSensorValve.valve.v = 
pre(m.tankSensorValve.valve.v) + (if 
pre(m.tankSensorValve.valve.v) <= 0 then 
max(m.tankSensorValve.valve.dv, 0) elseif 
pre(m.tankSensorValve.valve.v) >= 1 then 
min(m.tankSensorValve.valve.dv, 0) else 
m.tankSensorValve.valve.dv) * 5e-5 ||
m.tankSensorValve.delay.zx = 0 when initial ||
m.tankSensorValve.delay.zx = 
pre(m.tankSensorValve.delay.x) ||

m.tankSensorValve.wi = m.tankSensorValve.tank.wi ||
m.tankSensorValve.tank.l = m.tankSensorValve.sensor.l 
||
m.tankSensorValve.sensor.dv = 
m.tankSensorValve.valve.dv ||
m.tankSensorValve.valve.v = 
m.tankSensorValve.delay.x ||
m.tankSensorValve.delay.zx = 
m.tankSensorValve.tank.v ||
m.tankSensorValve.tank.wo = m.tankSensorValve.wo ||
m.source.time = 0 when initial ||
m.source.time = pre(m.source.time) + 5e-5 when 
sample(0, 5e-5) ||
m.source.wo = 5.0 * (0.5 *. sin(1.5707963268 * 
m.source.time) + 0.5) ||
m.source.wo = m.tankSensorValve.wi

Sorting  that  system gives  the  following assign-
ments:

when initial:
  m.tankSensorValve.tank.l := 1.5
  m.tankSensorValve.valve.v := 0
  m.tankSensorValve.delay.zx := 0
  m.source.time := 0

when sample(0, 5e-5):
  m.source.time := pre(m.source.time) + 5e-5
  m.source.wo :=
    5.0 * (0.5 *. sin(1.5707963268 * m.source.time) +
    0.5)
  m.tankSensorValve.wi := m.source.wo
  m.tankSensorValve.tank.wi := m.tankSensorValve.wi
  m.tankSensorValve.delay.zx :=
    pre(m.tankSensorValve.delay.x)
  m.tankSensorValve.tank.v :=
    m.tankSensorValve.delay.zx
  m.tankSensorValve.tank.wo :=
    10 * m.tankSensorValve.tank.v
  m.tankSensorValve.tank.l :=
    pre(m.tankSensorValve.tank.l) +  
    (m.tankSensorValve.tank.wi –
    m.tankSensorValve.tank.wo) * 5e-5
  m.tankSensorValve.sensor.l :=
    m.tankSensorValve.tank.l
  m.tankSensorValve.sensor.dv :=
    sign(m.tankSensorValve.sensor.l – 1.5)
  m.tankSensorValve.valve.dv :=
    m.tankSensorValve.sensor.dv
  m.tankSensorValve.valve.v :=
    pre(m.tankSensorValve.valve.v) +
    (if pre(m.tankSensorValve.valve.v) <= 0 then
      max(m.tankSensorValve.valve.dv, 0)
    elseif pre(m.tankSensorValve.valve.v) >= 1 then
      min(m.tankSensorValve.valve.dv, 0)
    else m.tankSensorValve.valve.dv) * 5e-5
  m.tankSensorValve.delay.x :=
    m.tankSensorValve.valve.v
  m.tankSensorValve.wo := m.tankSensorValve.tank.wo

The sequences of assignments we have obtained 
above can be used to feed a real-time embedded code 
generator. It can be noticed that it can be statically 
reduced to yiel a final code that is both minimal and 
reliable. This example has shown how Modelica, if 
equiped with clocks, would lead to reliable and com-
position-friendly models: we would get the expected 
behavior by simply connecting generic models, with-
out further adjustments.
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6 Conclusions

In this paper, we have shown how the introduc-
tion of clocks solves the issues encountered in event-
based  models  written  in  Modelica.  We  have  also 
shown that clocks could be harmoniously integrated 
into the language without  compromising simplicity 
nor expressiveness, on the contrary: models could be 
made  more  generic  thanks  to  the  modular-friendly 
aspects of clock calculus (which would help a lot in 
the design of industrial-strength libraries) and, since 
it would be possible to express more subtle relation-
ships  between  event  sources,  development,  debug-
ging and maintainance of models involving discrete-
time aspects would be easier.

The  Modelica  community,  in  the  course  of  the 
Modelica 4 design process, is going to consider the 
problem of synchrony. We hope that modular aspects 
and expressiveness resulting from the introduction of 
a full clock calculus will be retained as key features 
of the new language.
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