
Enforcing Reliability of Discrete-Time Models in Modelica

Sébastien FURIC
LMS Imagine

7, place des minimes 42300 Roanne
sebastien.furic@lmsintl.com

Abstract

Modelica models involving discrete-time aspects
may lead to surprising results due to the way events
are currently handled in the language. Indeed, simul-
taneity is interpreted as synchronism (see [2] for de-
tails) and, as a consequence, two unrelated sources of
events may interfere in unexpected ways.

In this paper, we present minimal examples of
models that exhibit unexpected or surprising results,
then we explain the general causes of such behaviors
and propose to introduce the notion of clock in the
language to solve the issues. In contrast to [1] and
[2], we focus here on models resulting from the com-
position of other models: we aim at showing that the
current discrete-time theoretical model of Modelica
is not robust with respect to model composition. For
the final user, it means that it is generally not possi-
ble to build reliable models involving discrete-time
aspects by simply connecting generic library models:
manual adjustments are often required to obtain the
expected behavior1.
Keywords: discrete-time modeling; clock calculus

1 Introduction

Modelica has been designed to primarily solve
continuous-time systems of differential and algebraic
equations. Unfortunately, discrete-time aspects have
not been considered with the same level of interest.
The result is that essential features of synchronous
languages (e.g., Signal, Lustre, Esterel) are not
present in Modelica today. Consider for instance the
following Modelica model:

model M
 Real x, x_dot;
 Integer count;
initial equation
 x = 0;

1 This also begs for a related question, which is: how
can we know that our models actually require adjust-
ments!

 x_dot = 1;
 count = 0;
equation
 x_dot = der(x);
 der(x_dot) = ­x;
 when
 { x > 0.5, sin(time) > 0.5 }
 then
 count = pre(count) + 1;
 end when;
end M;

According to the Modelica specification, that
model is correct, so we can try to simulate it. One
may wonder which is the value of count at the end of
a simulation performed between 0 and 100 seconds
for instance. Quite surprisingly, the Modelica speci-
fication does not give the answer: any value between
16 and 32 is possible even if — it is the case here —
every event can be numerically detected with accura-
cy so that none is lost due to the limits of time toler-
ance of the solver2. Indeed, the when clause that is
used to update count is activated by two unrelated
sources of events (put between curly braces in Mod-
elica syntax) that may accidentally be seen as syn-
chronous during simulation, as explained in [2]. Ac-
tually the final value of count depends on:

– the “quality” of the translator implemen-
tation

– the kind of solver eventually required to
solve the final system

– the parameters of the solver, in case a
solver is necessary.

In this paper, we aim at explaining the conse-
quences of such a design choice in terms of reliabili-
ty and reusability of models. The paper is organized
as follows: section 2 gives an analysis of the prob-

2 The purpose of this paper is not to discuss numerical
solver issues, in particular event detection in case of
non-trivial continuous-time systems: we will only fo-
cus on discrete-time aspects. The introductory example
is presented with the hope that it will help readers with
physical background to get a feeling of what discrete-
time issues are.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

638

lem; section 3 introduces the proposed solution; sec-
tion 4 shows how to transpose the solution in the
context of the Modelica language; section 5 presents
an example of application; section 6 gives a conclu-
sion.

2 Analysis of the problem

The problem with the model above comes from
the fact that discrete-time aspects are somewhat “ap-
proximated” in Modelica's semantics: it is not possi-
ble to know for sure, in that model, whether both
sources of events corresponding to x > 0.5 and
sin(time) > 0.5 are synchronous or not. It is
not even possible to know for sure, in case they are
seen as synchronous by the simulator at the begin-
ning of a simulation, whether they will remain syn-
chronous until the end or not. Indeed, according to
the Modelica specification, events instants are
“probed” during simulation (only time associated to
their occurrence is retained) so deciding whether two
events happening at the same measured time are real-
ly synchronous (i.e., have the same cause) or
whether it is pure coincidence is impossible. Unsur-
prisingly, this has unfortunate consequences over the
design of event-based models in Modelica. Consider
for instance the following purely discrete Modelica
models:

connector Out = output Boolean;

model EventSource "Simple event
source"
 parameter Real t0, T;
 Out out;
equation
 out = sample(t0, T);
end EventSource;

connector In = input Boolean;

model Counter "Simple event
counter"
 parameter Integer n;
 In ins[n];
 Integer count;
initial equation
 count = 0;
equation
 when ins then
 count = pre(count) + 1;
 end when;
end Counter;

Figure 1: A simple test model

Instances of EventSource emit events3 via
their unique output port and instances of Counter
count the number of events received via their input
ports. Consider the following model built upon
EventSource and Counter (Figure 1 gives its
graphical representation):

model TestCounters
 EventSource src[2](t0 = { 0, 3 },
T = { 1, 2 });
 Counter cnt(n = 2);
equation
 connect(src.out, cnt.ins);
end TestCounters;

Figure 2: Simulation results of model in Figure 1
Simulation of an instance of TestCounters

between 0 and 10 seconds gives a rather surprising
result (see Figure 2). Indeed, between 0 and 10 sec-
onds the sources emit a total of 11 + 4 events but

3 Boolean values in reality, events are not explicitly
emitted.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

639

only 11 of them are “saw” by the instance of
Counter. That result is explained by Modelica's
way of handling discrete events. Indeed, some events
are “lost” because, as explained above, only the
measured time of events matters in Modelica, so two
events happening at the same time cannot be distin-
guished: the simulator does not know whether they
have been emitted by the same source connected to
both input ports of the instance of Counter (as in
Figure 3) or by two distinct sources (as in Figure 1).
One may wonder why is it not possible, by default,
to consider every local port of a model like
Counter as an independent local source of events:
indeed, in the case of TestCounters, it would
give the correct answer for count. But consider the
following model which graphical representation is
given in Figure 3:

model TestCounters2
 EventSource src(t0 = 0, T = 1);
 Counter cnt(n = 2);
equation
 connect(src.out, cnt.ins[1]);
 connect(src.out, cnt.ins[2]);
end TestCounters2;

Figure 3: Another simple test model
In any instance of that model, if every port of

cnt would be considered as a local source of events
then twice the correct number of events would be
found since there is only one real source of events
(with duplicated outputs). One may notice that Mod-
elica's default behavior would lead to the correct re-
sult (by accident, however) in that very special situa-
tion.

Going back to the original model, one way to
avoid the event loss problem in Modelica would be
to associate one “subcounter” per input port and to
sum the results into the global counter count, as in:

connector In = input Boolean;

model ImprovedCounter
 parameter Integer n;
 In ins[n];
 Integer count;

protected Integer subcount[n];
initial equation
 subcount = zeros(n);
 count = 0;
equation
 for i in 1 : n loop
 when ins[i] then
 subcount[i] =
pre(subcount[i]) + 1;
 end when;
 end for;
 when ins then
 count = sum(subcount);
 end when;
end ImprovedCounter;

However, this solution is far more space- and
time-consuming than the original Counter model
(because a number of additional state variables pro-
portional to the number of listened sources has to be
declared and the whole sum of subcounters has to be
recomputed each time an event is detected on any in-
put port). Also, that new solution still fails to count
the correct number of events in case of a configura-
tion like the one in Figure 3. We may even want to
consider configurations like the one in Figure 4,
where neither Counter nor ImprovedCounter
would give the correct answer.

Figure 4: A slightly more complex version of previous test
models

A last remark can be made regarding correctness
of models. Going back to the first test model, we
managed to correct it by providing Improved­
Counter (an adapted version of Counter) to cir-
cumvent the issue with simultaneous events. It is im-
portant to notice that the correction was possible be-
cause we knew that our original model had problems
with respect to event handling. But in real-world sit-
uations, where correctness of models in not known a
priori, Modelica compilers will not be able to detect
such errors since, as shown above, the Modelica lan-
guage itself does not retain the required information.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

640

As a result, users will have to determine by hand
whether their models are correct or not. Of course
the task is impossible to complete as far as models
get too big or contain encrypted parts for instance.

We conclude from those observations that Model-
ica needs some improvements to enable the defini-
tion of reliable models involving discrete events. The
following section explains how that can be achieved.
The proposal is based on a preliminary work by IN-
RIA and LMS Imagine in the course of the SimPA 2
project ([1], [2]).

3 Proposal to enable the definition of
reliable discrete models in Modeli-
ca

3.1 Introduction to clocks and signals

The most important feature of synchronous lan-
guages that is currently missing in Modelica is
clocks. In the Signal language ([3]) clocks give logi-
cal instants at which signals are said to be present,
i.e. instants at which values of signals are accessible.
Signals sharing the same clock are said to be syn-
chronous (their values are present at the same logical
instant). Clocks give the domain of signals, and types
(e.g., Boolean, Integer, Real, etc. in Modelica) give
their codomain. Consider the following Modelica
program:

model M
 Integer count;
initial equation
 count = 0;
equation
 when sample(0, 1) then
 count = pre(count) + 1;
 end when;
end M;

Interpreted in terms of clocks and signals, this
program would define the discrete-time signal
count. One way to see count would be as a map-
ping from events to values (Event is the set of all
events):

count: Event ⟶ Integer
e0 ⟼ 1
e1 ⟼ 2
e2 ⟼ 3
…

Of course, we would also need to associate a
“physical time” with each event, as required by the
definition of sample():

e0 ⟼ 0.0
e1 ⟼ 1.0
e2 ⟼ 2.0
…

It is fundamental to notice that the mapping from
events to physical time is not a bijection: two distinct
events may be associated with the same physical in-
stant, in which case those events are said to be si-
multaneous. We saw that in Modelica there is no
way to tell whether two simultaneous events have the
same origin since we only look at physical time. By
looking at logical instants, we have a more accurate
view of the flow of events: that is the basis of the
synchronous approach to event handling.

3.2 Why do clocks and signals solve the issues

Let's consider an expression like sample(t0,
T). Interpreted in terms of signals and clocks, it
would represent a sequence of fresh events, each of
them mapped to physical instants so that ek (k ≥ 0)
maps to t0 + kT. Consider the following program:

when sample(0, 1) then
 count = pre(count) + 1;
end when;

We say that the when clause above is activated at
each logical instant yield by the sample construct,
which defines a clock, and that count inherits that
clock: count causally depends on the sample con-
struct that is used to activate the equation.

We now introduce the notion of clock union, as
in:

when { c1, c2, ... } then
 count = pre(count) + 1;
end when;

{ c1, c2, ... } represents the union clock
of c1, c2, etc. The set of events emitted by that
clock is the union of the set of events emitted by
each clock used to compose it. And since in our in-
terpretation events can be distinguished one from
each other we can, contrary to Modelica with its cur-
rent interpretation, compute the union accurately:

– without accidentally forgetting any element
(as illustrated in TestCounters above)

– without accidentally counting the same ele-
ment twice (as illustrated in TestCoun­
ters2 above).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

641

Of course, taking clocks into account requires a
less naive compilation process than those currently
implemented in Modelica compilers. In the next sec-
tions we describe the steps required to transform a
synchronous language program into efficient com-
piled code.

3.3 Considerations about the compilation of
synchronous programs

Take for instance the model class TestCoun­
ters defined above. If we instantiate it, we get the
following flat Modelica program (where connection
equations have been replaced by their contribution to
the final system of equations):

model FlatTestCounters

 // variables introduced by the
first event source
 parameter Real src[1].t0,
src[1].T;
 Boolean src[1].out;

 // variables introduced by the
second event source
 parameter Real src[2].t0,
src[2].T;
 Boolean src[2].out;

 // variables introduced by the
counter
 Boolean cnt.ins[1], cnt.ins[2];
 Integer cnt.count;

initial equation

 // initial equations introduced
by the counter
 src.count = 0;

equation

 // equations introduced by the
first event source
 src[1].out = sample(src[1].t0,
src[1].T);

 // equations introduced by the
second event source
 src[2].out = sample(src[2].t0,
src[2].T);

 // equations introduced by the
counter

 when { cnt.ins[1], cnt.ins[2] }
then
 cnt.count = pre(cnt.count) + 1;
 end when;

 // expanded connection equations
 cnt.ins[1] = src[1].out;
 cnt.ins[2] = src[2].out;

end FlatTestCounters;

For the sake of conciseness, we will consider a
simplification of the previous program4 that still con-
tains the essential constructs:

model ShortFlatTestCounters
 parameter Real t0[1], T[1],
t0[2], T[2];
 Boolean c[1], c[2];
 Integer count;
initial equation
 count = 0;
equation
 c[1] = sample(t0[1], T[1]);
 c[2] = sample(t0[2], T[2]);
 when { c[1], c[2] } then
 count = pre(count) + 1;
 end when;
end ShortFlatTestCounters;

That program defines two asynchronous event
sources since we consider that each sample construct
introduces its own sequence of fresh events. It fol-
lows that c[1] and c[2] do not have any event in
common and then that the union clock { c[1],
c[2] } is irreducible. The clock calculus we will
propose below will have to reflect those considera-
tions, so that a compiler implementing it will auto-
matically derive canonical representation of clocks,
as we currently do by hand in this simple case. The
constraints in the above program are finally equiva-
lent to this pseudo-code:

c[1] = sample(t0[1], T[1]);
c[2] = sample(t0[2], T[2]);
when c[1] then
 count = pre(count) + 1;
end when;
when c[2] then

4 Obtained by removing alias variables and associated
equations, and renaming remaining variables

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

642

 count = pre(count) + 1;
end when;

Notice that we now have two concurrent equa-
tions defining count (which is explicitly forbidden
in Modelica) but since both when clauses are guaran-
teed to be activated asynchronously thanks to our in-
terpretation of sample's properties, there is actually
no possible conflict5.

At this point, an important remark has to be made
regarding determinism. Indeed, with the semantics
proposed in this report, we accept to consider that a
connection of two independent event sources is ac-
ceptable because we force interleaving of events so
that two simultaneous events cannot be synchronous
if they don't have the same origin. However, the or-
der into which simultaneous events will be treated at
runtime is purposely left unspecified. From a control
engineer perspective that choice seems rather sur-
prising, especially for a language that could eventu-
ally be used to design control systems, where deter-
minism is a fundamental aspect to consider. But
from a physical modeling point of view, non-deter-
minism is a natural consequence of the physical na-
ture of the world. Since our aim is to design a physi-
cal modeling language it seems reasonable to allow
some form of non-determinism to avoid rejecting too
many programs, especially those that most users hav-
ing a physical background will consider correct (and
which are, given the limits of physics). Notice how-
ever that non-determinism can be detected statically
by a compiler implementing our proposal: it just re-
quires a stricter criterion to select correct programs
(that may be a compiler option). Compared to Mod-
elica in its current state, we offer a way to control de-
terminism so that it fits control or physical needs.
Modelica, on the other hand, currently cannot prom-
ise anything regarding determinism for the reasons
exposed in previous sections.

3.4 Clock calculus

In this section we introduce the elements of our
clock algebra and give essential rules that govern
clock calculus. We propose the following grammar
to describe clock expressions (where e represents a
term denoting any signal, and b a term denoting any
boolean signal):

clock ::=
 never (empty clock)
| always (full clock)
| clock(e) (clock of e)

5 Modelica currently has to impose single assignment
restrictions precisely because two sources of cannot be
statically proven to be asynchronous, as explained be-
fore.

| false(b) (instants at which b is false)
| true(b) (instants at which b is true)
| initial (initialization clock)
| edges(b) (instants at which b becomes true)
| sample(t0, T) (sample starting at t0, with period T)
| clock ∨ clock (union of clocks)
| clock ∧ clock (intersection of clocks)
| clock ∖ clock (difference of clocks)
| c1, c2, … (clock variables)

Several comments have to be made:
– we introduce the notion of “full clock”,

which, in synchronous languages such as
Signal, makes no sense (since clocks are dis-
crete). But since here we have to consider
continuous-time signals (we want to describe
DAE systems among others), we have an im-
plicit maximal clock for any program: the
default continuous-time clock, which in-
cludes all the instants of the simulation

– the same kind of remark can be made for
clock difference: if the first argument is the
full clock, then we get the complementary of
the second argument as result, which also
makes no sense in synchronous languages
such as Signal

– sample() and edges() share the follow-
ing properties:

– they are generative: they always
yield a fresh, pure discrete-time
clock

– two clocks yielded by those con-
structs are guaranteed to have an
empty intersection (which implies
for instance that edges(e1) ∧
edges(e2) = empty for any e1,
e2

6)
– initial is a special clock that contains only

one instant which corresponds to the first
simulation instant (i.e., no other instant may
happen before this one).

Systems of equations will be described by the fol-
lowing grammar (where ei(si1, si2, …) denotes an
expression involving signals si1, si2, …,):

system ::=
 null (system having no constraint)
| system || system (parallel composition)
| system when clock (sampling)
| let c = clock in system (let binding)
| e1(s11, s12, ...) = e2(s21, s22, …) (equation)

To illustrate the use of the system description lan-
guage defined above, let's write the system corre-
sponding to an instance of the model class Test­
Counters defined above. It gives:

6 This is the property we used in section Considerations
about the compilation of synchronous programs to cal-
culate the union clock.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

643

let c[1] = sample(t0[1], T[1]) in
let c[2] = sample(t0[2], T[2]) in
count = 0 when initial ||
count = pre(count) + 1 when c[1] ∨
c[2]

We saw in previous section that it was also possi-
ble to write it as follow:

let c[1] = sample(t0[1], T[1]) in
let c[2] = sample(t0[2], T[2]) in
count = 0 when initial ||
count = pre(count) + 1 when c[1] ||
count = pre(count) + 1 when c[2]

Notice that clock expressions should be reduced
to a canonical form so that single assignment rule
can be checked statically to avoid current Modelica
issues with respect to discrete-time modeling. We
then require that a compiler will have to perform full
reduction of clock expressions at compile time by
eliminating local clock variables (i.e., rewriting let
v = … in … terms) and replacing clock(...)
terms by their actual value. This reduction will have
to be carried out in parallel with the resolution of the
assignment problem attached to equations. Indeed, in
contrast to synchronous languages such as Signal, we
have to deal with the acausal nature of the language:
given an equation, it is not possible to tell which sig-
nal(s) it defines without performing a global causali-
ty analysis under clock constraints (we require how-
ever schedulability of clock constraints). So the algo-
rithm we propose is:

1. The initial contextual clock is always
2. Perform partial resolution of the assign-

ment problem for any equation that is not
constrained by a when construct, in order
to find defined signals, which are added to
current context

3. Pick any when construct which activation
clock either depends on past (i.e., “pre sig-
nals”) or on signals that belong to current
context; make that activation clock the cur-
rent contextual clock and go to step 2

If some subsystems remain unselected at the end
of the algorithm, the whole system is:

– not schedulable, if any subsystem contains a
clock which depends on the signals it actual-
ly defines

– under-constrained, if the assignment prob-
lem failed for the remaining equations

– over-constrained, if any subsystem only con-
straints signals that have already been deter-
mined.

An additional check has to be performed in order
to validate the whole system: the clock of any “pre

signal” should be proven equal to the clock of the
signal itself. The clock of a given signal can be de-
termined by “summing” the clocks of when con-
straints that define that signal (union of clocks). The
clock of a “pre signal” is the union of the minimal
clocks at which that signal is required to be present
(i.e., immediate contextual clocks during clock cal-
culus). By “subtracting” (clock difference) both re-
sulting clocks we have to find empty. Notice that
the problem is decidable since we required full re-
duction of clock expressions to canonical form. That
algorithm not only validates the original system, it
also returns its constrained dataflow representation
which can be used to generate efficient code.

4 Application to Modelica

One can notice that Modelica's sample expres-
sions yield boolean values that are quite exclusively
used to activate discrete equations. The reason is that
in Modelica when clauses require a test to be per-
formed to activate/deactivate associated equations.
But most of the time, that test is useless: it only
makes sense to “activate equations from the outside”.
Indeed, a when clause which activation constraint
only depends on pure events (as ideally generated by
sample) would not need to check anything: the acti-
vation/deactivation logic would be “lifted” in the
control flow. It follows that when clauses can be
made more general and efficient by only depending
on clocks instead of boolean signals7: pure even-
t-based activations do no longer lead to any test in
the generated code. That is particularly interesting in
presence of external event sources, which in Modeli-
ca currently lead to the generation of “event loops”
that are extremely resource-consuming (and that
eventually require dynamic synchronization with the
source). Our proposal avoids the generation of those
expensive loops.

In consequence of the above remarks, we propose
to equip Modelica with a new type: Clock, the type
of clocks (i.e., sequences of logical time events). We
also propose to change the semantics of sample ex-
pressions, so that they now denote pure event gener-
ators8. Here is a modification using clocks of the

7 This is the reason why the name “when” has been
coined historically in synchronous languages such as
Signal.

8 It would be possible to make sample generate booleans
and events simultaneously to avoid too many compati-
bility issues, but, since uses of values yielded by sam-
ple as regular booleans seems highly suspicious in our
opinion, a more restrictive definition of sample would
help to find abusive use of event-generating expres-

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

644

original model class TestCounters defined
above:

connector Out = output Clock;

model EventSource "Simple event
source"
 parameter Real t0, T;
 Out out;
equation
 out = sample(t0, T);
end EventSource;

connector In = input Clock;

model Counter "Simple event
counter"
 parameter Integer n;
 In ins[n];
 Integer count;
initial equation
 count = 0;
equation
 when ins then
 count = pre(count) + 1;
 end when;
end Counter;

model TestCounters
 EventSource src[2](t0 = { 0, 3 },
T = { 1, 2 });
 Counter cnt(n = 2);
equation
 connect(src.out, cnt.ins);
end TestCounters;

As shown in previous section, an instance of the
above model can be represented in our intermediate
language as:

let c[1] = sample(t0[1], T[1]) in
let c[2] = sample(t0[2], T[2]) in
count = 0 when initial ||
count = pre(count) + 1 when c[1] ∨
c[2]

Given a translation from the original Modelica
code to our system description language, we can pro-
ceed with static scheduling of equations by applying
the algorithm proposed above. If the system does not
contain any implicit variable, the result is simply
composed of several sequences of assignments, acti-
vated by primary clocks (i.e.,source clocks of the
system). It is the case in our simple example:

sions in existing programs.

when initial:
 count := 0

when sample(t0[1], T[1]) ∨ sample(t0[1], T[1]):
 count := pre(count) + 1

The above representation of the system reads as
follow:

– at initialization, assign 0 to the program
variable count

– on each activation scheduled by sam-
ple(t0[1], T[1]) ∨ sample(t0[1],
T[1]), assign the last value held by count
plus one to count.

We have derived sequences of assignments from
the functional specification expressed in our system
description language.

5 Example

We consider a well-known example in the Hybrid
Systems and Control Theory literature (we will use
the version presented in [BK09]). Here we consider
the system consisting of a water tank, where water
arrives at a variable rate wi(t) ≥ 0 through one pipe
and leaves through another one at the rate controlled
by a valve (cf. Figure 5). The output pipe has a maxi-
mal throughput capacity C, and the valve position is
given by 0 ≤ v(t) ≤ 1. Thus, the actual throughput of
the output pipe at the moment t is C·v(t). The valve is
controlled by a sensor measuring the level l of water
in the tank, which aims at keeping this level in a giv-
en interval [L1, L2]. For simplicity we assume that
there is always enough water in the tank to saturate
the output pipe and that the incoming flow does not
exceed the output pipe’s capacity, i.e. max wi(t) ≤ C.

Figure 5: Tank with regulated valve

The transfer function of the complete system has
the input space In = R+ (incoming flow rate) and the
output space Out = R+ × + (output flow rate and
current water level in the tank). This system can be
modeled as a composition of three sub-systems (see
Figure 6).

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

645

Figure 6: Block-diagram representation of the
regulated tank

1. The Tank, taking on input current values of
the incoming flow wi and the position of
the valve v and computing the correspond-
ing output flow wo and water level l from
the equations

dl=wi−wo

wo=C⋅v
The corresponding transfer function has the

input and output spaces InT = R+ × [0, 1]
and OutT = R+ × R+.

2. The Sensor, taking on input the water level
l and computing the corresponding valve
position adjustment dv from some given
equation, e.g.:

dv=signl−
L1L2

2


The corresponding transfer function has the
input and output spaces InS= R+ and OutS =
[−1, 1].

3. The Valve, taking on input the adjustment
dv and providing on output the correspond-
ing value v.
The corresponding transfer function has the

input and output spaces InV = [−1, 1] and
OutV = [0, 1].

This kind of physical models is straightforward to
define as a continuous-time Modelica model:

// Connector definitions

connector RealInput = input Real;
connector RealOutput = output Real;

// Submodel definitions

model Tank
 parameter Real C;
 RealInput wi;
 RealInput v;
 RealOutput wo;
 RealOutput l;

equation
 wo = C * v;
 der(l) = wi – wo;
end Tank;

model Sensor
 parameter Real L1, L2;
 RealInput l;
 RealOutput dv;
equation
 dv = sign(l ­ (L1 + L2) / 2);
end Sensor;

model Valve
 RealInput dv;
 RealOutput v;
equation
 /* In order to preserve the range
of v, we
 have to constrain the values
of its derivative */
 der(v) =
 if pre(v) <= 0 then max(dv, 0)
 elseif pre(v) >= 1 then min
(dv, 0)
 else dv;
end Valve;

model Source "Sinusiodal source of
flow"
 constant Real PI = acos(­1);
 parameter Real W0, f;
 RealOutput wo;
equation
 wo = W0 * (0.5 * sin(2 * PI * f *
time) + 0.5);
end Source;

model TankSensorValve "Agregation
of a tank, a sensor and a valve"
 RealInput wi;
 RealInput wo;
 Tank tank(C=10, l(start=1.5));
 Sensor sensor(L1=1, L2=2);
 Valve valve(v(start=0));
equation
 connect(wi, tank.wi);
 connect(tank.l, sensor.l);
 connect(sensor.dv, valve.dv);
 connect(valve.v, tank.v);
 connect(tank.wo, wo);
end TankSensorValve;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

646

// Example of use

model M "A simple use of above mod­
els"
 TankSensorValve tankSensorValve(
 tank(C=10, l(start=1.5)),
 sensor(L1=1, L2=2),
 valve(v(start=0)));
 Source source(W0=5, f=0.25);
equation
 connect(source.wo, tankSensor­
Valve.wi);
end M;

Simulating the above model gives the results in
Figure 7.

Figure 7: Result of the simulation of a continuous-time
model of regulated tank

A discrete-time specification of the regulated tank
model would offer several advantages over the con-
tinuous-time one: it does not require sophisticated
solvers to compute simulation results and it may run
far faster than the high-fidelity version (the price to
pay when using pure discrete-time models is, most of
the time, poor accuracy). Here is a new specification
in discrete-time Modelica of the submodels needed
to build the final model (changes with respect to
original version are in red):

// Connector definitions

connector RealInput = input Real;
connector RealOutput = output Real;

//useful constants

constant Real MILLI2SEC = 0.001;
constant Real MILLI_PERIOD = 20;
constant Real STRETCH = 400;
constant Real STEP = MILLI_PERIOD *
MILLI2SEC / STRETCH;

// Submodel definitions

model Tank
 parameter Real C;
 RealInput wi;
 RealInput v;
 RealOutput wo;
 RealOutput l;
equation
 wo = C * v;
 l = pre(l) + (wi – wo) * STEP;
end Tank;

model Sensor
 parameter Real L1, L2;
 RealInput l;
 RealOutput dv;
equation
 dv = sign(l ­ (L1 + L2) / 2);
end Sensor;

model Valve
 RealInput dv;
 RealOutput v;
equation
 /* In order to preserve the range
of v, we
 have to constrain the values
of its derivative */
 v =
 pre(v) +
 (if pre(v) <= 0 then max(dv, 0)
 elseif pre(v) >= 1 then min
(dv, 0)
 else dv) * STEP;
end Valve;

model Source "Sinusiodal source of
flow"
 constant Real PI = acos(­1);
 parameter Real W0, f;
 RealOutput wo;
/* We explicitly define time as a
discrete signal */
protected Real time;
initial equation
 time = 0;
equation
 when sample(0, STEP) then
 time = pre(time) + STEP;
 end when;
 wo = W0 * (0.5 * sin(2 * PI * f *
time) + 0.5);
end Source;

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

647

model Delay "Ideal delay"
 RealInput x;
 RealOutput zx;
equation
 zx = pre(x);
end Delay;

model TankSensorValve "Agregation
of a tank, a sensor and a valve"
 RealInput wi;
 RealInput wo;
 Tank tank(C=10, l(start=1.5));
 Sensor sensor(L1=1, L2=2);
 Valve valve(v(start=0));
 Delay delay(zx(start=0));
equation
 connect(wi, tank.wi);
 connect(tank.l, sensor.l);
 connect(sensor.dv, valve.dv);
 connect(valve.v, delay.x);
 connect(delay.zx, tank.v);
 connect(tank.wo, wo);
end TankSensorValve;

Notice the use of difference equations instead of
differential ones and also the use of a when clause
that provides the “main clock” exported by the
Source model class. A new model class is neces-
sary (Delay) to break the algebraic loop (controller
feedback) by inserting a delay into it, otherwise the
model is not schedulable. The Sensor model class
is kept unchanged: that is not surprising since it only
involves algebraic equations. Thanks to activation
inheritance, model instances connected to Source
will be activated by the source's clock. Here is the
system of equations resulting from instantiating
model class M defined above, expressed in our sys-
tem representation language:

m.tankSensorValve.tank.l = 1.5 when initial ||
m.tankSensorValve.tank.wo = 10 *
m.tankSensorValve.tank.v ||
m.tankSensorValve.tank.l =
pre(m.tankSensorValve.tank.l) +
(m.tankSensorValve.tank.wi –
m.tankSensorValve.tank.wo) * 5e-5 ||
m.tankSensorValve.sensor.dv =
sign(m.tankSensorValve.sensor.l – 1.5) ||
m.tankSensorValve.valve.v = 0 when initial ||
m.tankSensorValve.valve.v =
pre(m.tankSensorValve.valve.v) + (if
pre(m.tankSensorValve.valve.v) <= 0 then
max(m.tankSensorValve.valve.dv, 0) elseif
pre(m.tankSensorValve.valve.v) >= 1 then
min(m.tankSensorValve.valve.dv, 0) else
m.tankSensorValve.valve.dv) * 5e-5 ||
m.tankSensorValve.delay.zx = 0 when initial ||
m.tankSensorValve.delay.zx =
pre(m.tankSensorValve.delay.x) ||

m.tankSensorValve.wi = m.tankSensorValve.tank.wi ||
m.tankSensorValve.tank.l = m.tankSensorValve.sensor.l
||
m.tankSensorValve.sensor.dv =
m.tankSensorValve.valve.dv ||
m.tankSensorValve.valve.v =
m.tankSensorValve.delay.x ||
m.tankSensorValve.delay.zx =
m.tankSensorValve.tank.v ||
m.tankSensorValve.tank.wo = m.tankSensorValve.wo ||
m.source.time = 0 when initial ||
m.source.time = pre(m.source.time) + 5e-5 when
sample(0, 5e-5) ||
m.source.wo = 5.0 * (0.5 *. sin(1.5707963268 *
m.source.time) + 0.5) ||
m.source.wo = m.tankSensorValve.wi

Sorting that system gives the following assign-
ments:

when initial:
 m.tankSensorValve.tank.l := 1.5
 m.tankSensorValve.valve.v := 0
 m.tankSensorValve.delay.zx := 0
 m.source.time := 0

when sample(0, 5e-5):
 m.source.time := pre(m.source.time) + 5e-5
 m.source.wo :=
 5.0 * (0.5 *. sin(1.5707963268 * m.source.time) +
 0.5)
 m.tankSensorValve.wi := m.source.wo
 m.tankSensorValve.tank.wi := m.tankSensorValve.wi
 m.tankSensorValve.delay.zx :=
 pre(m.tankSensorValve.delay.x)
 m.tankSensorValve.tank.v :=
 m.tankSensorValve.delay.zx
 m.tankSensorValve.tank.wo :=
 10 * m.tankSensorValve.tank.v
 m.tankSensorValve.tank.l :=
 pre(m.tankSensorValve.tank.l) +
 (m.tankSensorValve.tank.wi –
 m.tankSensorValve.tank.wo) * 5e-5
 m.tankSensorValve.sensor.l :=
 m.tankSensorValve.tank.l
 m.tankSensorValve.sensor.dv :=
 sign(m.tankSensorValve.sensor.l – 1.5)
 m.tankSensorValve.valve.dv :=
 m.tankSensorValve.sensor.dv
 m.tankSensorValve.valve.v :=
 pre(m.tankSensorValve.valve.v) +
 (if pre(m.tankSensorValve.valve.v) <= 0 then
 max(m.tankSensorValve.valve.dv, 0)
 elseif pre(m.tankSensorValve.valve.v) >= 1 then
 min(m.tankSensorValve.valve.dv, 0)
 else m.tankSensorValve.valve.dv) * 5e-5
 m.tankSensorValve.delay.x :=
 m.tankSensorValve.valve.v
 m.tankSensorValve.wo := m.tankSensorValve.tank.wo

The sequences of assignments we have obtained
above can be used to feed a real-time embedded code
generator. It can be noticed that it can be statically
reduced to yiel a final code that is both minimal and
reliable. This example has shown how Modelica, if
equiped with clocks, would lead to reliable and com-
position-friendly models: we would get the expected
behavior by simply connecting generic models, with-
out further adjustments.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

648

6 Conclusions

In this paper, we have shown how the introduc-
tion of clocks solves the issues encountered in event-
based models written in Modelica. We have also
shown that clocks could be harmoniously integrated
into the language without compromising simplicity
nor expressiveness, on the contrary: models could be
made more generic thanks to the modular-friendly
aspects of clock calculus (which would help a lot in
the design of industrial-strength libraries) and, since
it would be possible to express more subtle relation-
ships between event sources, development, debug-
ging and maintainance of models involving discrete-
time aspects would be easier.

The Modelica community, in the course of the
Modelica 4 design process, is going to consider the
problem of synchrony. We hope that modular aspects
and expressiveness resulting from the introduction of
a full clock calculus will be retained as key features
of the new language.

7 Acknoledgements

Many thanks to Ramine Nikoukhah for having
pointed out issues related to synchrony and for hav-
ing been the first to suggest having a look at the con-
cept of clock in the context of Modelica. I would
also like to thank Simon Bliudze and Marc Pouzet
for interesting discussions about the theoretical as-
pects of hybrid systems.

References

[1] R. Nikoukhah, Activation Inheri-
tance in Modelica, EOOLT, 2008

[2] R. Nikoukhah, S. Furic, Synchro-
nous and Asynchronous Events in
Modelica: Proposal for an Improved
Hybrid Model, 6th international Mod-
elica conference, 2008

[3] A. Benveniste, P. Le Guernic, and C.
Jacquemot, Programming with
events and relations: the Signal lan-
guage and its semantics, 1991

[4] S. Bliudze., D. Krob, Modelling of
Complex Systems: Systems as
dataflow machines, 2009

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

649

	1 Introduction
	2 Analysis of the problem
	3 Proposal to enable the definition of reliable discrete models in Modelica
	3.1 Introduction to clocks and signals
	3.2 Why do clocks and signals solve the issues
	3.3 Considerations about the compilation of synchronous programs
	3.4 Clock calculus

	4 Application to Modelica
	5 Example
	6 Conclusions
	7 Acknoledgements

