
Error-free Control Programs
by means of Graphical Program Design, Simulation-based Verification

and Automatic Code Generation
Stephan Seidel Ulrich Donath

Fraunhofer Institute for Integrated Circuits
Design Automation Division

Zeunerstrasse 38
01069 Dresden, Germany

Stephan.Seidel@eas.iis.fraunhofer.de Ulrich.Donath@eas.iis.fraunhofer.de

Abstract

Currently the formalisation in the process of creating
automation control programs starts with the pro-
gramming of the real-time controller. But inconsist-
encies in the requirements definition and misinter-
pretations will lead to errors in the program which
have to be resolved through expensive software-in-
the-loop and field tests. This paper introduces a ho-
listic approach for the formalisation of the control
design already in the design phase. It also illustrates
the design flow for the model-based creation of er-
ror-free control programs. Created by means of
graphical editors the system definition, which in-
cludes the control algorithm, is transferred into Mod-
elica code and thus the executable system model is
used for the simulation-based verification. The simu-
lation results are compared to the requirements. Once
these are fulfilled and no further errors found, pro-
gram code for the real-time controller is generated
automatically. In this paper Structured Text for pro-
grammable logic controllers (PLCs) according to
IEC 61131 is generated. In final software-in-the-loop
tests the real-time capabilities of the control program
are validated.
Keywords: Graphical program design; Modelica;
IEC 61131; Structured Text; Software in the Loop

1 Introduction

During traditional control program development it is
often necessary to find erroneous sections in the
software and fix such code modules by means of ex-
tensive software-in-the-loop simulations. The errors
are often caused by wrong interactions between
components of the control program which are a re-

sult of inconsistencies in the initial project definition
[1]. Such inconsistencies could have been found by
an intensive and paper-dominated reviewing process
which is often shortened in order to save time. As an
alternative the formalisation should no longer be car-
ried out at the coding stage but already at the design
stage of the software project.

The formalisation of the design consists of the
creation of models which contain not only the struc-
ture of the system but also the definition of the func-
tionality. In case the models are executable in a sim-
ulation software the simulation-based testing of sin-
gle components as well as the overall system is fea-
sible. Simulation results will be compared to the pro-
ject’s requirements definition. As soon as differences
occur they have to be solved by an iterative adjust-
ment of the models or a more precise process defini-
tion. When the overall models functionality complies
with all requests from the definition an automatic
code generation is executed during which code for
the target controller is generated. For the final verifi-
cation of the generated code software-in-the-loop
tests are carried out. In these simulation-based tests
the real control program is coupled with machine and
operator model components which provide request
and response signals.

The control program development which is de-
scribed in the following sections is based on a case
filling machine. This machine’s model can be subdi-
vided into the machine model, the control model, and
the operator model [2].

The machine model is composed of models of all
the relevant subsystems such as electrical, mechani-
cal, and hydraulic systems. All of these models are
coded in Modelica [3] and are available as objects in
libraries. They are instantiated in the model view and
then connected with each other in order to reproduce

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

628

the structure and composition in the real world. The
machine model acts in its entirety as a model of the
physical environment with which the controls inter-
act.

Figure 1: Schematic of the case filling machine

The control model describes the required control
operations for the desired course of machine actions.
In simple cases the control operations may be linear
assignment sequences, but in complex cases they are
algorithms which represent state machines. For the
graphical description of state machines an UML-
profile [4][5] is utilized. These statecharts include
simple states, sequential composite states, and pseu-
dostates (initial state, junction, shallow history). The
transitions of states are triggered by signal triggers,
change triggers, and time triggers and can also be
labelled with guards and priority numbers. Priority
numbers of transitions are an addition to UML in
order to define an evaluation sequence. Activities,
which are coded in Modelica, can be assigned to en-
tries, exits, and transitions of states. They are also
edited with the graphical editor while creating the
statechart. The whole statechart will be automatically
translated into Modelica code.

The operator model contains the operating in-
structions of the system which are derived from the
production schedule. They form in general a com-
mand sequence and are also given as Modelica code
in order to enable an overall system simulation with
SimulationX [6].

Figure 2: Structure of the tongue’s model

Each step during the development of the control
program

• Graphical program design
• Test and verification at Modelica level
• IEC 61131 code generation [7]
• Software-in-the-loop tests

is illustrated by using the example of the feeding de-
vice of the case filling machine.

This machine conducts the final packaging of
bags containing products into shipping cartons. The
bags are transported on a conveyor from the produc-
tion process to the feeding device shown in Figure 1.

 Figure 3: Statechart of the tongue controller

They are placed by the conveyor in front of a pusher
on a tongue. The carton is positioned by a belt direct-
ly in front of the pusher. As soon as the carton has
arrived at this position the tongue is extended and

StartStop

entry/ TO_REQ := 0;
TO_right := 0;

ISleft

entry/ TO_REQ := 0;
TO_right := 0;

entry/ TO_REQ := 1;

GOleft

ISright

entry/ TO_REQ := 0;
TO_right := 1;

BE_OK <> 0 and
PU_OK <> 0 and
PU_right == 0 /

TO_ACK <> 0 /

HALT <> 0 and
PU_right == 0 /

RUN <> 0 and
BE_OK <> 0 and
PU_OK <> 0 and
PU_right == 0 /

TO_OK <> 0 and
PU_right <> 0 /

entry/ TO_REQ := 1;

GOright

TO_ACK <> 0 /

12

1

1

1

1

HALT

RUN

TO_ACK

TO_OK

PU_right

TO_REQ

TO_right

PU_OK

BE_OK

StartStop

entry/ TO_REQ := 0;
TO_right := 0;

ISleft

entry/ TO_REQ := 0;
TO_right := 0;

entry/ TO_REQ := 1;

GOleft

ISright

entry/ TO_REQ := 0;
TO_right := 1;

BE_OK <> 0 and
PU_OK <> 0 and
PU_right == 0 /

TO_ACK <> 0 /

HALT <> 0 and
PU_right == 0 /

RUN <> 0 and
BE_OK <> 0 and
PU_OK <> 0 and
PU_right == 0 /

TO_OK <> 0 and
PU_right <> 0 /

entry/ TO_REQ := 1;

GOright

TO_ACK <> 0 /

12

1

1

1

1

HALT

RUN

TO_ACK

TO_OK

PU_right

TO_REQ

TO_right

PU_OK

BE_OK

TO_REQ
TO_ACK

TO_right

TO_OK

driveTO

massTO

controllerTO

elasticFrictionTO

deviceTO

TO_REQ
TO_ACK
TO_OK

BE_OK PU_right

testEnvironment

commands
RUN
HALT

PU_OK

TO_REQ
TO_ACK

TO_right

TO_OK

driveTO

massTO

controllerTO

elasticFrictionTO

deviceTO

TO_REQ
TO_ACK
TO_OK

BE_OK PU_right

testEnvironment

commands
RUN
HALT

PU_OK

Tongue Conveyor

Pusher

Bags

Discharge Belt

Case/
Carton

Bag

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

629

the bag is pushed by the pusher over the tongue into
the carton. Thereafter the tongue and pusher are re-
tracted and the carton is repositioned to the next fill-
ing position.

This paper is organised as follows. Section X2X in-
troduces the graphical design approach. Thereafter
section X3 X demonstrates the simulation-based verifica-
tion of the system. The code generation for Modelica
and IEC 61131 is detailed in section X4 X whereas sec-
tion X5X illustrates the software-in-the-loop simulation
and its benefits. The paper closes with a conclusion
in section X6X.

2 Graphical program design

At first the models for tongue (TO), pusher (PU)
and discharge belt (BE) are designed. Each compo-
nent is separated into its control model and machine
model.

Figure 4: Structure of the discharge belt’s model

The machine models of tongue and pusher have
the same internal structure consisting of drive mech-
anism, mass, and friction and show an equal device
interface (Figure 2). The setting of the component’s
input signal REQ (request) will start the positioning
of pusher or tongue while the direction of the move-
ment is alternated. The component’s output signal
ACK (acknowledgement) affirms the movement re-
quest whereas OK indicates the request’s comple-
tion.

The interface of the control is modelled inversely
to the device interface. Additional inputs are RUN
and HALT to start and stop the operations (Figure 2).
Furthermore signals are defined which contain the
status of the cooperating devices or send the own
status to other devices.

The controls of tongue and pusher are imple-
mented as state machines (Figure 3). In the entry
activities of the states the signal REQ is set or reset.
The drive will move thereupon the tongue or pusher
back and forth. Transitions between states contain
Boolean conditions which act as change triggers.
Such triggers fire when the corresponding condition
is evaluated to true. In this example these triggers are
the feedback from the drive ACK and logical combi-
nations of OK, RUN, and HALT with status signals
from the cooperating devices.

The model of the component discharge belt de-
scribes the up and down movement of belt and car-
ton. Apart from drive, mass, and friction, the weight
is also registered which accumulates as the carton is
filled with bags. The interface (Figure 4) includes the
signals SPEED, EJECT, ZERO, and POS. Input sig-
nal SPEED is the nominal value for the carton’s ve-
locity. After the carton is filled, the setting of input
signal EJECT starts the ejection of the full carton
and thereafter the insertion of an empty one. Output
value ZERO indicates the arrival of the carton at the

zero position whereas POS indicates its current posi-
tion. The component’s interface is completed with
signals RUN and HALT and diverse status signals.

As shown before the control operation is de-
scribed by a statechart (Figure 5) which groups the
belt’s movement into a starting phase (states:
RunUp, SlowToMin, SlowToNull) and a cyclic posi-
tioning phase (RunMax, RunMin, SlowToNull) for
filling the carton. In the entry activities of the states
the belt’s velocity SPEED is set and the target posi-
tion is calculated. Transition triggers are the ZERO
signal as well as the current belt position POS in re-
lation to the target position. Right before the start of
the movement the pusher’s activity is checked to
avoid damage caused by a collision between pusher
and carton. The cyclic repositioning of the belt is
stopped as soon as the carton is full and the carton is
ejected.

driveBE frictionBE_Box massBox

weightBox

controllerBE
BE_SPEED
BE_EJECT
BE_ZERO
BE_POS

STOP GO BE_OK

RUN
HALT

commands

PU_right

PU_OK

deviceBE

BE_SPEED
BE_EJECT
BE_ZERO
BE_POS

testEnvironment

driveBE frictionBE_Box massBox

weightBox

controllerBE
BE_SPEED
BE_EJECT
BE_ZERO
BE_POS

STOP GO BE_OK

RUN
HALT

commands

PU_right

PU_OK

deviceBE

BE_SPEED
BE_EJECT
BE_ZERO
BE_POS

testEnvironment

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

630

After the design of each component (pusher,
tongue and discharge belt) they are instantiated in the
model view and connected with each other (Figure
6). The belt controller takes over the master function
by activating the GO and STOP signals as well as the
OK signal after successful positioning for the subor-
dinate controllers of pusher and tongue.

3 Test and verification at
Modelica level

Models of the devices are built from physical ele-
ments such as mass and friction and from signal
blocks which are also part of the library and possess
a representation in Modelica. The control compo-
nents are each translated automatically into a Model-
ica model with corresponding type, variable, parame-
ter, and signal declarations as well as an algorithm

section. The structure of this code is illustrated in
section X4.1 X. Figure 6 shows the overall Modelica
model which consists of all aforementioned compo-
nents and their connections.

At first for the verification of the controls, the
simulation results of pusher and tongue are com-
pared to the requirements. In Figure 2 the structure
of the tongue’s model is shown. The model of the
pusher has an equal structure. This connection of
control model and device model can be seen as test
bench. A path-time diagram for tongue and pusher in
relation to the RUN and HALT commands is shown
in Figure 7.

The simulation results are: The tongue is retracted
from the carton before the pusher is retracted and
thus the bag will remain in the carton. The RUN
command starts the operation whereas the HALT
command stops tongue and pusher after they have
reached their initial positions.

series >= Max_Series and
PU_OK <> 0 and
PU_right == 0 /

Start

entry / BE_SPEED := 0;
BE_OK := 0;
STOP := 0;
GO := 0;

RunUp

entry / series := 0;
mass := 1;
BE_SPEED := Max_Speed;
BE_OK := 0;
BE_EJECT := 0;

SlowToMin

entry / h := BE_POS + h0;
BE_SPEED := Min_Speed;

SlowToNull

entry / BE_Speed := 0;
BE_OK := 1;

RunMax

entry / h := BE_POS + 0.6*H_bag;
BE_SPEED := Max_Speed;

RunMin

entry / h := h + 0.4*H_bag + hx;
BE_SPEED := Max_Speed;

WaitForEnable

entry / series := series + 1;
mass := mass + 0.2;
BE_OK := 0;

Eject

entry / BE_EJECT := 1;
series := 0;
mass := 1;

Restart

entry / BE_EJECT := 1;
Series := 0;
mass := 1;

Stop

entry / BE_SPEED := 0;
BE_OK := 0;
STOP := 1;
GO := 0;

BE_ZERO <> 0 /

BE_POS >= h /

PU_right <> 0 /

PU_OK <> 0 and
PU_right == 0 /

BE_POS >= h /

BE_POS >= h /

Work

entry / STOP := 0;
GO := 1;

RunE /

HaltE /

RunE /
after(Run_Up_Delay) /

after(Run_Up_Delay) /

1

1

1

2

1

1

1

0

1

1

1

1

RUN

HALT

BE_ZERO

BE_POS

PU_right

PU_OK

BE_SPEED

BE_EJECT

BE_OK

GO

STOP

Figure 5: Statechart of the discharge belt controller

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

631

Secondly, the discharge belt’s control is tested in
its own test bench, shown in Figure 4. Thirdly, the
models of tongue, pusher, and discharge belt are
combined into an overall model of the case filling
machine as depicted in Figure 6. The simulation re-
sults, shown in Figure 8, illustrate the belt position in
relation to the movement of tongue and pusher as
well as the value of the belt speed. The requirement
that the belt moves only in the case that tongue and
pusher are in the initial positions has been fulfilled.
The HALT and RUN signals along with a filled car-
ton result in a coordinated stop and restart of the
course of events.

Position of Discharge Belt

Speed of Discharge Belt

Figure 8: Simulation results of the overall model

RUN HALT

Tongue
Pusher

Figure 7: Path-time diagram of pusher and tongue

Figure 6: Structure of the case filling machine’s overall system model

driveBE frictionBE_Box massBox

weightBox

controllerBE
BE_SPEED
BE_EJECT
BE_ZERO
BE_POS

TO_REQ
TO_ACK

TO_right
TO_OK

driveTO

massTO

massPU

drivePU

controllerTO

controllerPU

elasticFrictionTO

elasticFrictionPU
PU_REQ
PU_ACK
PU_OK

PU_right

STOP
GO

BE_OK

RUN
HALT

commands

PU_right

PU_OK

PU_OK
PU_right

driveBE frictionBE_Box massBox

weightBox

controllerBE
BE_SPEED
BE_EJECT
BE_ZERO
BE_POS

TO_REQ
TO_ACK

TO_right
TO_OK

driveTO

massTO

massPU

drivePU

controllerTO

controllerPU

elasticFrictionTO

elasticFrictionPU
PU_REQ
PU_ACK
PU_OK

PU_right

STOP
GO

BE_OK

RUN
HALT

commands

PU_right

PU_OK

PU_OK
PU_right

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

632

4 Modelica and IEC 61131 code
generation

4.1 Structure of the Modelica control program

The statecharts of the controllers of pusher, tongue,
and belt are translated separately into Modelica code
without any manual assistance. Figure 9 highlights
the general code structure of these controllers.

The algorithm section contains the following
blocks:

• Event generation:
when-statements with relations of signals or
times in order to toggle flags

• Entry activities:
when-elsewhen-statements to check discrete
state variables and enclosed
signal assignments

• Do activities:
if-elseif-statements to check discrete state
variables and enclosed
simple signal assignments

• Transitions:
if-elseif-statements to check discrete state
variables and to evaluate Boolean transition
conditions and enclosed state assignments to
the state variables and signal assignments.

The Entry Activity Blocks, Do Activity Blocks and
Transition Blocks are created according to the hier-
archy of the corresponding statechart. There is no
hierarchy existent in the tongue’s and pusher’s con-
trols (Figure 3). Hence they are translated into one
Entry Activity Block and one Transition Block re-
spectively. The belt’s controls show a two level hier-
archy which comprises the composite state Work and
additional simple states (Figure 5). After code gener-
ation the two-level hierarchy is represented by two
Entry Activity Blocks and two Transition Blocks.

4.2 Structure of the PLC program

The Modelica code’s semantics are the standard for
the code of the target controller. In this paper Struc-
tured Text (ST) according to IEC 61131 [7] is cho-
sen as target code language. ST is analogue to Pascal
and can be used to write programs for programmable
logic controllers (PLCs).

The code sections in ST are similar to the
statechart’s Modelica code and can be separated into
the Event Generation, Entry Activities, Do Activities,
and Transition sections. In addition, the internal pro-
gram structure requests a separation of declaration
and executable functions.

I/O signals and global variables as well as the
names of all implemented functions are noted in the
symbol table. This table is created automatically
when the target controller’s code is generated [8].
Local data is defined and stored in a data block
which is also part of the generated ST code.

The function FC Event Generation (EG) scans for
signal events and sets or resets the corresponding
flags. Because there is no when-statement in ST,
edge detection is achieved by using additional flag
variables and if-statements. An ST code example is
shown below:

// Event Generation Block
IF NOT("DBSC1".trigEventFlag) AND ("in1">0)
THEN
 "DBSC1".trigEvent := TRUE; //SignalEvent
ELSE
 "DBSC1".trigEvent := FALSE; //SignalEvent
END_IF;
IF ("in1">0) THEN
 "DBSC1".trigEventFlag := TRUE; //EventFlag
ELSE
 "DBSC1".trigEventFlag := FALSE; //EventFlag
END_IF;

when-initial-statement

when-statements

when-statements

if-statements

end XY

if-statements

model XY

Initialization

Event Generation

Entry Activities

Entry Activities

Transitions

Transitions

Declaration

Do Activities

Do Activities
Simulation
Cycle

Figure 9: Structure of the statechart’s Modelica code

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

633

All entry activities of the states are contained in
the function FC Entry Activities (EA). A case-
statement detects the active state according to the
state variable. Thereafter the one-time activation of
the entry activity is ensured by the implementation of
a entry activity flag within an if-statement:

// Entry Activity Block of Main_State
CASE "DBSC1".S_1 OF //StateVariable
3: IF ("DBSC1".A_1 <> 3) THEN

 out1:=false; //EntryActivity
 "DBSC1".A_1 := 3; //EntryActivityFlag
END_IF;

Do activities in are also implemented in the FC

EA and noted similarly but do not contain an if-
statement with an entry flag. Hence do activities are
executed in contrast to entry activities in every PLC
cycle.

The function FC Transition (TR) is comprised of
transition triggers, exit activities and transition activ-
ities. As illustrated before the active state is detected
in a case-statement. In each branch an if-statement
exists which evaluates the corresponding transition
trigger and holds the exit- and transition-activity. In
case the transition’s trigger condition is true, the ex-
it- and transition-activity are executed and the state
variable is set to the subsequent state:

// Transition Block of Main_State
CASE "DBSC1".S_1 OF
3: IF ("trigger" > 0) THEN
 out1:=TRUE; //ExitActivity
 out2:=FALSE; //Trans.Activity

 "DBSC1".S_1:=4; //State‐Variable
END_IF;

All aforementioned functions are called in the
function block FB Statechart in the following se-
quence: EG, EA and TR. Timers which are used in
the statecharts time triggers are also administrated in
this function block. FB Statechart is called in organi-
sation block OB1, which is the PLC’s cyclic main
program and is executed right after the update of the
input register. The program of OB1 contains the calls
of functions and function blocks which implement
the control program functionality. After the execu-
tion of each function, the PLC jumps back into OB1
and when OB1’s end is reached the current cycle
ends with the update of the outputs. Figure 10 illus-
trates the PLC cycle and the call sequence of the
control program’s functions.

At startup of the PLC the initialisation block
OB100 is executed which resets and initialises the
state machine’s internal variables. Organisation
blocks OB1 and OB100 as well as function block FB
Statechart are also part of the automatically generat-
ed ST program code. Hence a complete PLC pro-
gram is generated from the controller’s statechart.

After code generation two ASCII-files are availa-
ble: one file containing the symbol table and one file
containing the program code. Either file can be im-
ported into the PLC engineering software Step7 by
Siemens [9].

4.3 Compilation of the PLC program from a
Structured Text source

The aforementioned transformation of a statechart
into Structured Text indicates the similarities to
Modelica, but there are additional requirements that
need to be fulfilled. The main requirement which is
caused by the PLC program’s organisation into func-
tions, function blocks, data blocks etc. says that
within the ST source code called functions are stated
in front of the functions that call them [10].

Therefore the order of the functions in the ST
source code has to be as follows:

1. Data block DB with internal variables
2. Functions FC Event Generation, FC Entry

and Do Activities, FC Transitions
3. Function block FB Statechart
4. Organisation block OB1 Cyclic Block
5. Organisation block OB100 Initialising.

The SCL batch compiler [10] of Step7 transforms
the ST source code into MC7 code, which is execut-
ed by the PLC, and carries out a lexical, syntactical
and semantic analysis and thereafter generates auto-
matically all defined functions and blocks. They are
stored in the design environment and can be loaded
into as well as executed and tested on the PLC.

OB1
Cyclic
Block

FB
Statechart 1

FC Event Generation

FC Entry|Do Activities

FC Transitions

Write Outputs

Read Inputs

FB
Statechart 2

FC Event Generation

FC Entry|Do Activities

FC Transitions

OB100
Initialising

Figure 10: PLC program cycle

PLC
cycle

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

634

In case the automation systems controls are dis-
tributed over several statecharts, as is the case with
the case filling machine described in section 2, then
one set of source files (symbol table and ST code) is
generated for each statechart. An add-on tool was
implemented which merges all source files into one
file set. The tool scans all symbol tables, eliminates
double entries and copies all other entries into one
table. The ST sources are also combined into one
source. Functions and data block of the statecharts
remain unchanged only their numbering is adjusted.
The main task is to merge all organisation blocks
(OB1’s, OB100’s) into one block of each type as
there is only one instance of each type allowed in the
PLC. At this point it is very important to consider the
call sequence of the state machines on the PLC in
order to avoid unwanted effects such as racing condi-
tions caused by the serialisation of the
PLC code [12].

5 Software-in-the-Loop tests

The simulation of the automation system can now be
taken to a new level which will be illustrated in the
following by using the belt controller as an example.
After the PLC program has been generated, compiled
and loaded a co-simulation of machine model (Mod-
elica simulation) and PLC program (software PLC)
can be conducted. The simulation tool PLCSIM [11],
which is part of the Step7 PLC engineering system,
is applied as software PLC. PLCSIM runs as a sepa-
rate process on any Windows PC and enables the
execution of the PLC program analogue to a hard-
ware PLC. As a simulator PLCSIM offers no inter-
face to hardware I/Os communicating with the field
and thus can only be employed for simulation pur-
poses.

In order to perform a co-simulation the inputs and
outputs of the PLC have to be assigned to the corre-
sponding signals of the machine model and cyclical-
ly updated in both directions.

The Modelica statechart model in the simulator
has to be substituted with a coupling element that has
exactly the same input and output signals as the
statechart block. There are coupling elements availa-
ble in the system simulator but these do not provide a
suitable interface for a connection with the PLC. In
addition the PLC’s timing needs to be adapted to the
system simulators timing or in other words, the PLC
can no longer run in real-time but needs to run syn-
chronous to the simulators simulation time.

Hence a coupling tool was designed and imple-
mented which enables the coupling of PLC and sys-
tem simulator. The tool provides interfaces in either

direction. A TCP-socket connection is used for
communication with the system simulator whereas
communication with the PLC is achieved via a
COM-object. The coupling tool, also called Back-
plane, is configured and then started by the user.

Apart from configuration data such as IP-address and
port, also the assignment of PLC I/O signals to the
system simulator signals is defined.

In addition all PLC timers that are used some-
where in the PLC program have to be noted, as they
will be synchronised by the Backplane. The Modeli-
ca simulation for operator and machine model is
running in simulation time whereas the PLC is run-
ning in real-time. Therefore the synchronisation of
time is indispensable and so the PLC’s timers are
synchronised at the beginning of each PLC cycle.
Hence the progression of the timers is no longer re-
lated to the real-time, but depends only on the simu-
lation time.

After the start of the simulation the Backplane
takes over the control of the Modelica simulator and
the PLC simulator and performs the data exchange
between them. As show in Figure 11 in both simula-
tors the same fixed time interval is simulated and
thereafter the simulation is halted. The real-time du-
ration TCycSIM and TCycPLC of the simulation cycles
may differ. The Backplane scans the sensor signals
of the machine model and writes them to the PLC’s
input signals. Then the PLC’s output signals are read
and transferred to the machine model’s actuator sig-
nals before a new simulation cycle starts. This mode
of operation is shown in Figure 11.
After the simulation run the results from the co-
simulation are compared to the results of the Modeli-

Simulation X PLCSIM Backplane
Reset

Initialisation with PLC outputs

Writing PLC inputs

Reading PLC outputs & Start new cycle

Writing PLC inputs

TCycSIM TCycPLC

Sync. PLC-Timers

Figure 11: Simulator Synchronisation

Copy Simulation Time

Sync. PLC-Timers Copy Simulation Time

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

635

ca-only simulation. A path-time diagram (discharge
belt’s position) of these simulation runs is shown in
Figure 12. The waveforms are not identical as there
is a growing time offset between characteristic points
and also a spatial offset. Both effects can be traced
back to the PLC’s cycle time which is not present at
the Modelica model level. The state machine of the
controller model responds immediately to a change
of the input signals. As soon as an input signal from
the machine or operator model triggers a transition
the simulation is halted. The Modelica code of the
statechart block will then calculate the subsequent
state and execute all exit activities, transition activi-
ties, and entry activities. This procedure is repeated
until a stable state configuration is found, i.e. no fur-
ther transition can fire. Therefore state transitions
consume no simulation time and activities are in-
stantly visible. The simulation is then started again
and will run until the next event occurs. This behav-
iour is caused by the simulator’s model of computa-
tion.

The PLC processes its control program after a
different Execution Model [12]. As already dis-
cussed in section X4.2 X the controller is executing the
control program in a cyclic manner. Therefore the
calculation of a new output signal vector requires
one or more PLC cycles depending on the call se-
quence of the functions that where generated from
the UML statechart. Typical cycle times for industri-
al controllers are 5 to 50 ms. The call sequence of the
functions EG, EA, TR is also a cause for serialisation
effects such as racing conditions. In case more than
one state machine is used for controlling the system
the sequence of their execution is also important.
Such effects are not covered by the Modelica control
model and can hence not easily be simulated. It is
therefore necessary to extend the control model with

an execution model of the real-time controller. At
present the authors implement an execution model
for PLCs at model level. The execution model is also
designed as statechart and thereafter translated into
Modelica code. First results of this approach are dis-
cussed in [12].

The main cause for the different behaviour of
Modelica control model and real-time controller is
the cycle time. For time-critical functions such as
fast positioning operations a large cycle time can be
unfavourable and result in the example of the case
filling system in delays and spatial offsets when po-
sitioning the discharge belt as depicted in Figure 12.

The Backplane provides the option to force the
cycle time. Therefore simulation runs with different
cycle time can be simulated and the effects on the
results analysed. This data can then be employed to
find an upper limit of the cycle time which guaran-
tees the correct and exact function of the system. The
determined value is a criterion for the selection of a
PLC.

The generated PLC program is tested against pre-
defined test cases and the results are scanned for er-
rors or deviations from the control models results.
All test cases should encompass an extensive amount
of input signal combinations and not only valid but
also erroneous signal combinations. In case the con-
trol programs behaviour and function was correct the
PLC program can be transferred to the real system
without further adaptations.

6 Conclusion

In this paper the model-based design and simulation-
based verification of an automation system as illus-
trated in Figure 13 was presented. Following the ex-
ample of an industrial case filling machine the mod-
elling of its control with statecharts was demonstrat-
ed. These statecharts were transformed automatically
into Modelica code and then executed in test bench-
es. For verifying the control algorithms the Modelica
control blocks were stimulated with test signals and
their behaviour was improved until the function cor-
responded to the defined requirements. Thereafter
the Modelica blocks of control model, machine mod-
el and operator model were combined to an overall
system model and a system simulation was executed
by which the system’s function was verified and im-
portant performance indicators were established.
Once the behaviour and performance of the system
was correct the IEC 61131 Structured Text code for
the real-time controller, a PLC, was generated. The
PLC’s control program was then tested and validated

Distance

Time

Δt3 Δt2

Δs1 Δs2 Δs3

Δt1

Figure 12: Path-time diagram of belt movement
controlled by Modelica control model and PLC pro-
gram

Modelica control model
PLC program

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

636

as software-in-the-loop against the machine and op-
erator model. This procedure showed a satisfying
behavioural consistency between Modelica control
model and real-time control program and only minor
deviations were detected. These effects can be traced
back to the PLC’s cycle time. In order to overcome
such deviations the authors are working on the im-
plementation of an execution model for real-time
controllers in Modelica.

SensorsInput
Output

Control model
UML statechart

Machine
model
Modelica code

Control model
Modelica code
//Statechart Code
model SC1 „Statechart 1“
protected …
public …
algorithm
//Entry Activity Blocks
when (MainState == …) then
…

elsewhen (MainState == …)
…

Actua‐
tors

Modelica Simulator (SimulationX)

Software PLC
(PLCSIM)

Controller
Structured Text
(PLC program)

FB 1

FB 2

Code Generator for
Modelica and Structured Text

Figure 13: Design flow for modelling and verification
of machine controls

The approach discussed in this paper removes the
need for the error-prone manual coding of the PLC
program and saves a huge amount of time by mini-
mising the field and start-up tests through simula-
tion-based verification of the control algorithms. The
design-flow is faster and much more efficient than
the current state-of-the-practice procedures and pro-
vides an easy way to error-free control programs
through graphical and model-based design, simula-
tion-based verification, and automatic code genera-
tion. The transformation steps in this chain are car-
ried out automatically so that human efforts can be
focused on the design of the controls and its evalua-
tion.

References

[1] HSchwabe, S.: Modellbasierter Systems-Engi-
neering-Prozess. ECONOMIC ENGINEER-
ING 3/2009, S. 58-59
http://www.berner-mattner.com/.../BernerMa
ttner_Fachartikel_ModellbasSystemsEngPro
zess.pdf, visited on: 20.01.2011

[2] Haufe, J., Donath, U., Lantzsch, G.: Mod-
ellbasierter Entwurf von Steuerungen in der
Automatisierungstechnik. Dresdner Arbeit-
stagung Schaltungs- und Systementwurf
(DASS), Dresden, March 2009

[3] https://www.modelica.org/documents/Modeli
caSpec30.pdf, visited on: 20.01.2011

[4] OMG Unified Modeling Language Super-
structure V2.2

[5] Donath, U.; Haufe, J.; Blochwitz, T.; Neid-
hold, T.: A new approach for modeling and
verification of discrete control components
within a Modelica environment. Proceedings
of the 6th Modelica Conference, Bielefeld,
March 2008, p. 269-276

[6] Hhttp://www.simulationx.comH,
visited on: 20.01.2011

[7] Int. Electrotechnical Commission: IEC
Standard 61131-3: Programmable controllers
- Part 3, 1993

[8] Lindner L.: Rapid Control Prototyping by
Transformation of Hierarchical State Ma-
chine Control Models into IEC 61131 PLC
Code. Diploma thesis, TU Dresden, 2009.

[9] Siemens AG. Software for SIMATIC con-
trollers.
http://www.automation.siemens.com/mcms/
automation/en/automation-systems/
industrial-automation/Pages/Default.aspx,
visited on 20.01.2011

[10] Siemens AG. S7-SCL V5.3 for S7-300/400
Manual, 2005

[11] Siemens AG. SIMATIC S7-PLCSIM V5.4
Manual, 2007.

[12] Seidel S., et al.: Modelling the Real-time Be-
haviour of Machine Controls Using UML
Statecharts. Proceedings of the 15th Interna-
tional IEEE Conference on Emerging Tech-
nologies and Factory Automation, Bilbao,
September 2010

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

637

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

