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Abstract 

Many open-source (OS) tools exist in the Modelica 
universe. OS tools have the benefit that they are 
freely available and fit well to Modelica as a non-
proprietary language. However, the industrial usage 
of these tools seems to be very limited so far. De-
spite this fact, fluid modeling is possible if restric-
tions are taken into account. 

In this contribution, we propose to use benchmark 
models for the systematic investigation of the accu-
racy and the performance of Modelica OS tools. The 
present implementation circumvents the limitations 
of OpenModelica making it possible to simulate the 
model system despite existing restrictions. Beside 
simulation tasks Modelica-based optimization is pos-
sible using the OS tool JModelica. However, care 
must be taken with respect to the model features. In 
particular instantaneous transitions within the system 
dynamics, such as phase transitions, switching of 
valves with discrete behaviour or flow reversal rep-
resent a severe obstacle for optimization. In this arti-
cle, we present a parameter estimation problem in-
cluding instantaneous changes of the flow direction. 
In addition, an example of model predictive control 
(MPC) for a control task difficult to solve with con-
ventional methods is shown. 

Keywords: Fluid Simulation; Optimization; OS 
Modelica Tools 

1 Introduction 

Modelica is the preferred modeling language for dy-
namic simulations within Siemens Energy [1] due to 
its applicability for multi-domain modeling of physi-
cal systems and the high degree of maintainability of 
Modelica models. The Modelica Libraries Mode-
lica.Media and Modelica.Fluid provide basic ele-
ments to model pipe networks including, e.g., 
economizers, super heaters and evaporators which 
are essential parts of each power plant. However the 
flexible approach of Modelica.Fluid makes it unsuit-
able for daly buisness in a well defined application 

area. Thus well proven models of these components 
exist in the in-house library SiemensPower.  
The commercial tool Dymola is used for modeling 
and simulation. The alternative tool OpenModelica  
[2] is an OS Modelica-based modeling and simula-
tion environment intended for industrial and aca-
demic usage, which has the large benefit that it is 
freely available and fit well to Modelica as a non-
proprietary language. However, the tool support for 
fluid modeling is limited due to some advanced 
Modelica features, e.g. the usage of Modelica.Media 
and Modelica.Fluid. Despite this fact, fluid modeling 
is possible if the functions missing in OpenModelica 
are called from external libraries. In order to measure 
the quality of OS Modelica tools compared to the 
established commercial software, e.g. Dymola with 
respect to the accuracy and the performance 
benchmark models are needed. In this way the 
systematic investigation of models with increasing 
size and complexity can reveal bottlenecks and 
shortcomings in OpenModelica. To go beyond 
simulation applications towards optimization, the 
Modelica-based open source platform for 
optimization, simulation and analysis of complex 
dynamic systems JModelica [3] is the most prefer-
able choice. The main objective of the project is to 
create an industrially viable open source platform for 
optimization of Modelica models. The three-level 
structure of the user interface is probably its main 
advantage, since it allows for convenient 
implementation of user specified applications. The 
issues of compilation, data processing, setting up the 
algorithm and starting the optimization are well 
addressed in the Python script file. Furthermore, the 
Python script file serves to store the data and to do 
some customized plotting. These capabilities for 
Python scripting considerably reduce the effort to 
implement user applications. By means of the 
Optimica extension to Modelica, the optimization 
problem itself is formulated at the middle level 
implementing the objective function and the 
constraints using the special class optimization. At 
the lowest level of the JModelica user interface the 
dynamic model is defined. We used JModelica for 
solving the parameter estimation problem of a hybrid 
dynamic system as well as an off-line model 
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predictive control (MPC) problem presented in 
sections 3 and 4, respectively. 

2 Simulation of Fluid Models with 
OpenModelica  

Fluid Modeling based on OpenModelica is not very 
common so far. This is mainly due to the following 
restrictions still present in OpenModelica. As men-
tioned above, the support of Modelica.Fluid and 
Modelica.Media is limited. On the other hand, the 
performance of the solver (the so called back-end) is 
very poor, i.e. solving real life problems is not possi-
ble up to now. However enormous improvements are 
on the way supported by joint efforts in the OPEN-
PROD [11] project. In order to evaluate the im-
provements, the availability of benchmarks and real-
istic test cases is a natural and essential first need. 
The size and complexity of these benchmark models 
should be easily adaptable. Furthermore, the model 
is desired to be valid in different phase regions, since 
phase transitions are crucial in fluid dynamics. In 
addition, it is useful to build up the model from a set 
of components, which are also well established in 
real technical systems to facilitate the extension of 
the model from a sandbox example to real world ap-
plication.  

 

Figure 1: Heated pipe model  

  
Figure 1 shows a model which can be used as such a 
benchmark. The central part of the model is a heated 
pipe which is connected to a water source and a heat-
ing element. The liquid channel of the pipe is discre-
tized along the flow direction. The connections be-
tween these elements are represented by nodes.  
The left hand node is connected to the water source 
which supplies the liquid flow. The heated metal 
wall of the pipe is modeled as cylindrical tube with 
the number of layers L in radial direction. The con-
stant heat flow is distributed equally over all axial 
elements.  

This quite simple model is very well suited as a 
benchmark model for the following reasons: 
 The problem size can be easily adapted by 

changing the parameters for spatial discretiza-
tion, see Table 1. 

 Dynamic changes in the mass flow, enthalpy and 
pressure boundaries can be utilized to run 
through different phase regions. 

 Based on basic components (i.e. tube plus 
  boundaries) more complex models could be set     
  up easily. 

 
Discretization Parameters: 
 N – number of nodes in flow direction 

 L – number of tube wall layers 

 Continuous    
states 

N =     3, L = 3  13 
N =   10, L = 3  41 
N =   30, L = 3  121 
N = 200, L = 3  801 
N = 100, L = 6  701 

Table 1: Number of states depending on the spatial 
discretization of the heated pipe model 

 
Although this model is very simple, some features of 
Modelica.Media which are not yet implemented in 
OpenModelica 1.6 are needed. To circumvent this 
problem, the model is rewritten such that direct func-
tions compute all water properties without the use of 
the Media package of the Modelica Standard Li-
brary. The necessary water-steam functions have 
been substituted by external function calls of the 
TTSE (Tabular Taylor Series Expansion) [4] library. 
The TTSE uses a table of stored water properties and 
derivatives calculated with IAPWS (International 
Association for the Properties of Water and Steam) 
with pressure and enthalpy (p, h) or density and en-
thalpy (ρ, h) as variables. On each cell, the thermo-
dynamic properties of water and steam are computed 
using the Taylor series expansion. In this way, TTSE 
offers fast computation with an acceptable accuracy 
for dynamic simulation. For the first investigation a 
small model corresponding to the first row in Table 1 
has been used. The results from the well proven 
modeling environment Dymola in version 7.4 have 
been compared to those from OpenModelica version 
1.6. In both tools 'dassl' with a tolerance of 1e-6 was 
used.  
The comparison of the results shows that they are 
nearly identical. This suggests that the solver seems 
to solve an identical problem in both cases. How-
ever, the differences in performance are huge. While 
Dymola solves the problem in some milliseconds, 
OpenModelica spends several minutes to solve the 
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problem. Facing that enormous difference running 
larger models does not make much sense.  
Primary investigations are carried out to identify the 
reasons for the poor performance of OpenModelica 
1.6.0.  
The pipe model was simulated with an increasing 
number of continuous states depending on the nodes 
in flow direction. Different simulation options were 
used to identify the reasons for the poor perform-
ance.  
OpenModelica 1.6.0 uses ‘dassl’ as standard solver.  
Since ‘dassl’ is so slow, ‘dassl2’ has been tried. This 
solver is considerably faster than ‘dassl’, but it still 
takes at least seven times as long as Dymola 7.4 us-
ing ‘dassl’. Table 2 shows the simulation time de-
pending on simulation method. For higher discretiza-
tion in the flow direction ‘dassl2’ is at least 100 
times faster than ‘dassl’ generating the same results. 

N 
(number of nodes) 

solver Simulation time 

3 dassl 289.29 s
3 dassl2 2.52 s
10 dassl 803.81 s
10 dassl2 6.92 s
19 dassl 1523.63 s
19 dassl2 16.04 s
Table 2: Simulation time depending on solver and dis-
cretization 

All test cases use the ‘plt’ output format, which is 
default and currently the only format capable of us-
ing plot functions. For testing it is better to use out-
put format ‘bin’ to speed up calculation. For N>19 
the compilation failed with an internal OpenMode-
lica error. Probably the array sizes are too large.  
We set up a special test case for external function 
calls to find out whether they cause considerable dif-
ference in the simulation time. We can exclude that 
the differences between Dymola 7.4 and OpenMode-
lica 1.6.0 depend on external function calls, sincethe 
simulation time is quite similar for both simulation 
enviroments.  
 

3 Parameter Estimation for a Hybrid 
System using JModelica 

Parameter estimation is an important issue in many 
fields of industrial engineering [1], since it allows 
for efficient adaptation of system models.  
Parameter estimation aims at extracting the best val-
ues of parameters determining the dynamics of the 
system under consideration, based on a series of 
measurements xjℓ

(m) of several state variables xj , j = 

1,…,M at different time points tℓ , ℓ = 1,…,N. Due to 
measurement error, the estimated parameters are 
subject to some uncertainty. Assuming that the 
measurement error is uncorrelated and normally dis-
tributed with variance σj

2, model parameters can be 
estimated by minimizing the weighted least-squares 
function 
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subject to the DAE system representing the system 
dynamics as equality constraints and variable 
boundaries as inequality constraints.  

In this study we consider a parameter estimation 
problem for a hybrid system. Hybrid systems pos-
sess a mixed continuous and discrete behavior due to 
instantaneous mode transitions. In fluid systems the 
latter arises very frequently as a result of  valves 
with discrete behaviour, phase transitions or flow 
reversal. Solving these kinds of optimization prob-
lems remains a challenging task and the use of avail-
able solvers is limited. The major difficulties lie in 
the discontinuous function values and gradients. 

To overcome the difficulties we studied reformula-
tion methods for hybrid systems. In these methods 
the so-called switching condition Ψ determines the 
value of a newly introduced continuous switching 
variable φ(Ψ). In order to force this variable to 
meaningful values to guarantee at least an approxi-
mate instantaneous switch either a relaxation or a 
penalization method can be used. In this study we 
apply the Smooth Step Function (SSF) Approach 
with 
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as a relaxation method with relaxation parameter 
 and the Penalization of Incomplete Switching 
(PICS) as a penalization method [6]. In order to ex-
amine the capabilities of reformulation methods in 
parameter estimation for hybrid systems, we con-
sider a tank system similar to those used in [7], [8], 
and [9]. 

The system consists of three tanks in a row con-
nected to each other (Figure 2). There are inflows 
Qzi, i = 1, 3 to the left and the right tank. The pa-
rameter estimation problem can be stated as: 
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Figure 2: Three-tank system 
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The objective function (Eq. (2a)) is to be minimized 
subject to the dynamic model equations and bounds 
of the switching variable φ (Eq. (2b-d)). The dynam-
ics of the tank levels hi (i = 1, 2, 3) are given by the 
mass balance of the tanks (Eq. (2b)). The outflows 
QLi, Q3 and the flows between the tanks are modeled 
by Torricelli’s law (Eq. (2c)). In the original formu-
lation, a sign function switches the direction of the 
flow between two tanks abruptly from +1 to −1 or 
vice versa, when the condition Ψij = hi−hj = 0 is 
passed. Since the gradient of the flow diverges to 
infinity at this point, in our reformulation the sign 
function in Eq. (2c) is replaced by the switching 
variable φ. The correct switching behavior should be 
ensured by the relaxation or penalization methods 
mentioned above.  

We used JModelica for solving the nonlinear opti-
mization problem.  Here we exploit the three-level 
structure of JModelica's front end as described 
above.  JModelica does not allow optimization prob-
lems including instantaneous mode transitions since 
in this case the gradients of the objective function or 
the constraints needed by the optimization algorithm 
are expected to be not well defined. However, the 

relaxation and penalization methods used in this 
study lead to differentiable objective functions and 
constraints. The reformulation method can easily be 
implemented in JModelica.  

Our aim is to estimate via minimization of the objec-
tive function (Eq. (2a)) the flow parameters Aij based 
on (simulated) measurement data hℓ(m), ℓ = 1...10 of 
the tank levels taken equidistantly within the time 
horizon (t0, tf ) = (0, 20) s. The data are generated via 
simulation of the original model with added Gaus-
sian noise. The optimal state trajectories found for 
the parameter estimation problem are shown in 
Figure 3). 
 

 

Figure 3: State trajectories SSF (solid) and PICS 
(dashed) as well as the measurements of h1 (diamonds) 
and h2 (triangles) 

 
 

Figure 4: The corresponding switching variables  φ 12 
(blue) and φ 23 (green)  

They agree quite well with each other. In particular, 
the crossing points of the levels h1 and h2 and the 
levels h2 and h3 nearly coincide. This reflects the fact 
that the correct switching behavior is obtained in 
both cases as shown in Figure 4. It can be seen that 
using the relaxation method the switch is smooth and 
rather slow, which apparently has almost no impact 
on the trajectories. In contrast, when using the pe-
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nalization approach the switch takes place almost 
instantaneously. Table 3compares the optimal pa-
rameter values estimated by the two methods. With 
penalization we obtain a very good value for the pa-
rameter A12, but the deviation of A23 from the exact 
value is considerable. This is mainly due to the fact 
that the objective function is much more sensitive to 
A12 than to A23. The relaxation method results in 
moderate deviations for both parameters. In sum-
mary, both approaches provide reasonably accurate 
results. 

 exact Relaxation Penalization 

A12 [10-5m2] 6.0 6.51 6.06 

A23 [10-5m2] 2.0 2.29 2.98 

Table 3: Optimal parameter values 

We also studied the ability of the SSF algorithm to 
cope with random errors in the data set, which is in-
evitable in real data acquisition. The variance of the 
measurement is varied in the range σM = [0.5, 10] · 
10−4 m. The parameter estimation is carried out for 
50 series of h2 for each σM and the mean parameter 
values as well as their variance σp are achieved (see  
Figure 5).  

It can be seen that the mean values of the parameter 
stay constant over a wide range of random errors. 
Obviously, a higher variance of measured data leads 
to a higher variance of the estimated parameter 
value. A strict proportionality of σM and σp is ex-
pected in the case of the measured quantity (here h2) 
linearly depending on the parameter (here A12 ).  

 

Figure 5: Mean parameter value A12 (crosses) and cor-
responding variance σp (diamonds) in dependence on 
the variance of measurement σM. 

4 Nonlinear Model Predictive Con-
trol using JModelica 

Nonlinear model predictive control (NMPC) is an 
advanced technique to solve challenging optimal 
control problems. In this method, the optimal control 
problem is formulated as constrained dynamic opti-
mization problem, where the constraints are given by 
the dynamic model of the plant and the process re-
strictions. This problem is solved for the so-called 
prediction horizon Tp (see Figure 6). The resulting 
optimal controls within the so-called control horizon 
Tc are applied to the plant. At t = Tc, the time horizon 
of the optimal control problem is moved to this new 
initial point. The measurement of the present plant 
state serves as feedback. The initial conditions are 
accordingly updated and the problem is solved again. 
Since the optimal control problem is solved once per 
move of the time horizon, Tc is the CPU time avail-
able to solve the problem. 

 

 
Figure 6: Principle of NMPC [9] 

It is straight forward to carry out the NMPC based on 
power plant models primarily developed for dynamic 
simulation applications. The choice of test cases will 
naturally focus on optimal control problems which 
are difficult to solve by conventional controllers. 
Besides that, one has to take into account the size 
and complexity of the plant model as a limiting fac-
tor with respect to the computational effort.  

In this study, the temperature control of live steam 
with intermediate water injection (see Figure 7) was 
chosen as a test case, since even this system although 
quite simple, is difficult to control.  

The aim of the NMPC is to reach and to hold the set-
point. Thus, the objective function to be imple-
mented in the Optimica class of JModelica 
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contains the squared deviation between the tempera-
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ture set-point Tref and the current temperature Tmix(t) 
of the steam cooled by water. The objective is sub-
ject to the model equations and a maximum con-
straint for the injected water mass flow m(t). The 
dynamic model is composed of proven components 
already existing in the library SiemensPower. To 
meet the model requirements of JModelica, the func-
tions of the water and steam properties have been 
approximated.  

 
Figure 7: Temperature control of live steam with in-
termediate water injection. 

For now, the NMPC problem has been implemented 
off-line. Instead of the real plant, the optimal control 
is applied to the plant model which simulates the 
behavior of the real process. This simulation pro-
vides the “measurements” of the states required for 
the feedback loop as described above.  

Figure 8 shows the temperature profiles Tmix(t) con-
trolled by the NMPC (red) and a conventional con-
troller typically implemented on present-day plants 
(blue). After some seconds the temperature con-
trolled by NMPC reaches the set-point and is capable 
of maintaining this withnegligible deviations. In con-
trast, the classical control is not able to avoid re-
markable deviations from the set-point. Clearly, the 
NMPC is far superior to the conventional control and 
its on-line implementation should be seriously con-
sidered. However, the real time criterion has to be 
met. Running the application on a standard desktop it 
is not yet satisfied in all cases (see Figure 9Figure 8). 

In the example the control horizon is set to  Tc = 1s, 
but the computation of the control profiles for one 
step needs more than one second, in particular for the 
former time horizons up to n = 27. As can be seen 
the computational effort for these early time horizons 
is higher than that of subsequent ones. This is pre-
sumably due to the fact that subsequent NMPC steps 
the temperature is already close to the set-point and 
the control input needs only slight modifications. 
Since for this quite simple model the computation 
time already represents a limitation, the computa-
tional effort will presumably be too large for more 
complicated or faster systems. Hence, in many cases 

some performance improvements will be needed to 
run the applications on-line. An efficient algorithm is 
presented in [8] but it requires a more elaborate im-
plementation which may be realized in the future. 

 
Figure 8: Temperature controlled by the NMPC and 
classic temperature control. 

 
Figure 9: CPU time needed to solve the dynamic opti-
mization problem for each moving prediction horizon 
with initial time tinit=nTc. 

5 Conclusions 

 
In order to develop benchmark and realistic test 
cases, we implemented simple models for the sys-
tematic investigation of performance improvements 
of the OpenModelica tool chain. Some primary in-
vestigations have been carried out. Besides that the 
restricted functionality of OpenModelica with re-
spect to water and steam properties has been sup-
plemented by the usage of TTSE. 
Parameter estimation and nonlinear model predictive 
control for fluid systems have been solved. 
In fluid dynamics, we often have to deal with valves 
with discrete behaviour, flow reversal and phase 
transitions which considerably complicate the opti-
mization of such problems. To overcome these diffi-
culties we studied reformulation methods for hybrid 
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systems and showed their capability of tackling the 
problem of discontinuity of  state trajectories and 
gradients which occur due to instantaneous transi-
tions. 
For nonlinear model predictive control a simple off-
line example has been implemented.  The model-
based control proved to be superior to the recently 
applied classic control. Thus, the online application 
of the described solution should be seriously consid-
ered. 
The support by German Ministry BMBF (BMBF 
Förderkennzeichen: 01IS09029C) within the ITEA 
project OPENPROD is gratefully acknowledged. 
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