
Implementation of

Modelisar Functional Mock-up Interfaces

in SimulationX

Christian Noll, Torsten Blochwitz, Thomas Neidhold, Christian Kehrer

ITI GmbH

Webergasse 1, 01067 Dresden, Germany

noll@iti.de, blochwitz@iti.de, neidhold@iti.de, kehrer@iti.de

Abstract

This document describes the implementation of the

Modelisar Functional Mock-up Interfaces (FMI) in

SimulationX. It presents the code generation of

Functional Mock-up Units (FMU) for Model Ex-

change and Co-Simulation as well as the import of

an FMU into SimulationX.

Keywords: Simulation; Modelisar; Functional

Mock-up Unit (FMU); Functional Mock-up Inter-

face (FMI)

1 Introduction

FMI stands for “Functional Mock-up Interface” [1]

and was specified in the ITEA2 Modelisar project

[2]. The intention is that dynamic system models of

different software systems can be used together for

software/model/hardware-in-the-loop simulation and

for embedded systems. Using SimulationX Code

Export, the functionality of a complete simulation

model can be transformed into an FMU (Functional

Mock-up Unit), which implements the FMI (Func-

tional Mock-up Interface). A so created FMU can be

instantiated by SimulationX or another simulation

tool and accessed via the FMI functions. An FMU

may either be self-integrating (Co-Simulation) or

require the simulator to perform the numerical inte-

gration (Model Exchange).

2 FMU Support in SimulationX

There are two different FMI specifications (see Fig-

ure 1: FMI specifications), FMI for Model Exchange

and FMI for Co-Simulation. Both are supported by

SimulationX.

Figure 1: FMI specifications

2.1 FMU Code Export

Using SimulationX Code Export, the functionality of

a complete simulation model can be transferred into

an FMU (Functional Mock-up Unit). An FMU is

distributed in the form of a zip File (*.fmu) and con-

sists basically of the following components:

1. Exported Model + Interface

The exported model functionality is accessible

through standardized C-functions (FMI). By us-

ing the programming language C high portabil-

ity is guaranteed. This component can be pre-

sent as pure source code or as a binary (DLL).

The FMI-Interface includes:

 Functions for instantiation, initialization,

termination and destruction.

 Support of Real, Integer, Boolean and

String inputs, outputs and parameters.

 Set and Get functions for each type, e.g.

fmiSetReal(...).

 Functions for exchange of simulation da-

ta, e.g. fmiGetDerivatives(...)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

339

mailto:noll@iti.de
mailto:blochwitz@iti.de
mailto:neidhold@iti.de
mailto:kehrer@iti.de

There is no explicit function call for the compu-

tation of the model algorithm. The FMU de-

cides on its own, depending on which data have

been set and the data being sought, which cal-

culation is initiated. For efficiency it is im-

portant that variables are not newly computed,

if they have been computed already at an earlier

step. Instead they shall be reused. This feature

is called “caching of variables” in the sequel.

2. Model Description Scheme

This scheme is represented by an XML file that

contains the description of the required data for

the information flow between the FMU and the

simulation tool. Through the description of the

model within an XML file, the provider of sim-

ulation tools are not forced to use a specific rep-

resentation of data structures.

3. Data and Documentation (optional)

Additional data and documentation of the mod-

el can be included.

2.1.1 FMI for Model Exchange

The intention of FMI for Model Exchange is to al-

low any modeling tool to generate C code or binaries

representing a model which may then be easily inte-

grated into another simulation environment.

The following illustration (see Figure 2: FMI Code

Export for Model Exchange) shows the schematic

workflow for transferring a SimulationX model into

an FMU for Model Exchange.

After all desired inputs, outputs and parameters have

been defined by the user in the Code Export Wizard,

the code export process starts.

During the code export the following steps are exe-

cuted. At first a special symbolic analysis will trans-

fer the model into ordinary differential equations.

Based on this equations and the defined interface,

the C-code that includes the model functionality and

the specific FMI interface functions, is generated.

Furthermore the XML model description file is gen-

erated. At the end of this process a zip-file (*.fmu),

with all necessary files, is created to distribute the

FMU.

2.1.2 FMI for Co-Simulation

The FMI for Co-Simulation is an interface standard

for the solution of time dependent coupled systems

consisting of subsystems that are continuous in time

Figure 2: FMI Code Export for Model Exchange

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

340

(model components that are described by differential

equations) or time-discrete (model components that

are described by difference equations like, e.g. dis-

crete controllers).

The FMI for Co-Simulation defines interface rou-

tines for the communication between a master and

the individual simulation tools (slaves) in the co-

simulation environment. The data exchange is re-

stricted to discrete communication points in time and

the subsystems are solved independently between

these communication points.

The following illustration (see Figure 3: FMI Code

Export for Co-Simulation) shows the schematic

workflow to transfer a SimulationX model into an

FMU for Co-Simulation.

After all desired inputs, outputs and parameters have

been defined by the user in the Code Export Wizard

the code export process starts. During the Code Ex-

port the following steps are executed: At first a spe-

cial symbolic analysis will transfer the model into

ordinary differential equations. Based on this equa-

tions and the defined interface, the C code, that in-

cludes the model functionality, the specific FMI in-

terface functions and a Solver (CVODE), is generat-

ed. The Sundials CVODE solver [4] uses a BDF var-

iant and is well suited for stiff models.

Furthermore the XML model description file is gen-

erated, where all information about the slaves, which

is relevant for the communication in the co-

simulation environment, is provided. In particular,

this includes a set of capability flags to characterize

the ability of the slave to support advanced master

algorithms. One of these flags is canHandleVaria-

bleCommunicationStepSize that specifies whether

the slave can handle variable communication step

size. Another flag is canRejectSteps that indicates

the slave’s capability to discard and repeat a com-

munication step. This will be supported in a future

SimulationX release.

The flag canInterpolateInputs defines that the slave

is able to interpolate continuous inputs. In this case,

calling of fmiSetRealInputDerivatives(...) has an ef-

fect for the slave. At the end of the export process a

zip-file (*.fmu) is created to distribute the FMU.

2.2 FMU Import

The SimulationX FMU import consists of unzipping

the *.fmu file and the generation of Modelica code

including the calls of FMI functions based on the

XML model description. A re-export via code export

is supported.

The main idea of embedding a FMU into a Modelica

model is to construct an external object and some

external functions to interact with that model.

The automatic import process is started by selecting

the menu Insert/Functional Mockup Unit….

Thereupon the following dialog (see Figure 4: FMU

Import Dialog) for importing a FMU appears.

Figure 3: FMI Code Export for Co-Simulation

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

341

Figure 4: FMU Import Dialog

During the import process the DLL and Lib files (if

any exist) are copied to the External Function folder.

To link an FMU with a Modelica model Simula-

tionX uses an External Object. The fmiInstantiate-

Model(…)/ fmiInstantiateSlave(…) and fmiFree-

ModelInstance(…)/ fmiFreeSlaveInstance(…) func-

tions are called as constructor and destructor, respec-

tively. All other functions are called as external

functions with an external object as first parameter.

Because the fmiInitialize(…) function has to forward

function pointers for several purposes, this function

is redirected through a special built-in function.

2.3 Tool Coupling

The current version 1.0 of the FMI for Co-

Simulation standard not only allows the coupling of

specially prepared software modules (FMU), but can

also be used for direct coupling of CAE tools.

Thereto the particular application with its proprie-

tary interfaces is made available via a special wrap-

per (see Figure 5: Tool coupling via wrapper DLL)

that implements the standardized Functional Mock-

up Interface and provides it for other applications.

From the outside, the particular application behaves

like a Functional Mock-up Unit.

For SimulationX such a wrapper will be available.

The implementation is based on the existing COM

interface of SimulationX. For integrating a Modelica

model in such a co-simulation an adequate prepara-

tion is necessary. Especially the inputs, outputs and

parameters of the model have to be defined. All this

information is stored as a "real FMU" in a zip ar-

chive. The model itself or a link to this model in the

local file system or on the network must also be

stored in this file.

3 Implementation Difficulties

During the implementation of the FMU import into

SimulationX as a Modelica simulator a few difficul-

ties had to be overcome.

The first problem is related to a type mismatch be-

tween fmiBoolean and Modelica Boolean, which

leads to a type cast for scalar fmiBoolean variables

and the necessity of restoring fmiBoolean arrays.

Figure 5: Tool coupling via wrapper DLL

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

342

Further, there is an issue concerning the fmiInstanti-

ateModel function, because the argument

fmiCallbackFunctions is a struct that holds function

pointers. In Modelica there is no possibility to gen-

erate such a record.

Also, it is not easy to implement that the function

fmiInitialize is called only once, because according

to Modelica language specification the body of a

when initial() clause may be traversed several times

during initialization.

Changing of discrete variables is only allowed in

Modelica at event steps, not during continuous inte-

gration, but the fmiSetXxx functions returns fmiS-

tatus as a Modelica integer variable, which is a dis-

crete variable. Hence a Modelica compiler may call

such functions only at event time instances. But the

fmiSetXxx functions have to be called during contin-

uous integration too.

The functions fmiCompletedIntegratorStep,

fmiEventUpdate, and fmiTerminate are impure and

thus may not be treated like constant functions. But,

there is no possibility in Modelica to mark a function

as impure.

There are two difficulties related to the FMI calling

sequence. First, there is no possibility in Modelica to

be informed about the reason for a model computa-

tion. But, it is relevant to distinguish between calling

for instance fmiEventUpdate or fmiCompletedInte-

grationStep. Secondly, Modelica does not provide

the functionality to trigger an event step and call

fmiEventUpdate.

Modelica has no functionality to provide event indi-

cators (evi) directly. According to FMI specification

FMUs have to add a small hysteresis to the evi. A

Modelica tool may do the same with its internal root

functions. Hence the hysteresis is added twice and

events caused by the FMU are located a little bit in-

accurately.

We solved these problems by using some internal

Modelica extensions in SimulationX, which we also

proposed to the Modelica Language Design Group

and accordingly to the FMI standard committee.

4 Conclusions

With the Modelisar FMI standard exists a vendor-

neutral interface that allows the exchange of simula-

tion models between different tools and platforms.

The chances to establish FMI as a standard are pretty

good, because software vendors and users were in-

volved right from the start. At the end, the success of

this interface is measured by how the tool vendors

will integrate FMI into their products. In addition to

reliability and numerical stability the ease of use will

determine this success.

References

[1] Functional Mock-up Interface:

http://www.functional-mockup-

interface.org/index.html

[2] ITEA2 Modelisar Project:

http://www.modelisar.com

[3] Arnold M., Blochwitz T., Clauß C., Neid-

hold T., Schierz T., Wolf S., FMI for Co-

Simulation: Multiphysics Simulation - Ad-

vanced Methods for Industrial Engineering.

Bonn, June 2010.

[4] M. Otter, T. Blochwitz, H. Elmqvist, A.

Junghanns, J. Mauss, H. Olsson: Das Functi-

onal Mockup Interface zum Austausch Dy-

namischer Modelle. Plenary talk at the

ASIM workshop. Ulm, 4. - 5. March 2010.

[5] Neidhold T. Tool Independent Model Ex-

change Based on Modelisar FMI. Indus-

trietag Informationstechnologie. Hal-

le(Saale), May 2010.

[6] SUNDIALS:

https://computation.llnl.gov/casc/sundials/ma

in.html.

[7] FMI for Model Exchange v1.0:

http://www.functional-mockup-

inter-

face.org/specifications/FMI_for_ModelExch

ange_v1.0.pdf

[8] FMI for Co-Simulation v1.0:

http://www.functional-mockup-

inter-

face.org/specifications/FMI_for_CoSimulati

on_v1.0.pdf

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

343

http://www.functional-mockup-interface.org/index.html
http://www.functional-mockup-interface.org/index.html
http://www.modelisar.com/
https://computation.llnl.gov/casc/sundials/main.html
https://computation.llnl.gov/casc/sundials/main.html
http://www.functional-mockup-interface.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_ModelExchange_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_CoSimulation_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_CoSimulation_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_CoSimulation_v1.0.pdf
http://www.functional-mockup-interface.org/specifications/FMI_for_CoSimulation_v1.0.pdf

