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Abstract gearboxes [1]. One might also find several other inter-
esting examples of the machinery applications includ-

A procedure to build up a dynamical model of thiag gearboxes models on Modelica [2, 3].

gearbox with spur involute mesh is being described.It is important to us to consider models incorporat-

The main attention is paid to the design technologyy both the rigid body dynamics sufficiently effective

of the cylindrical bodies elastic contact models. Teom the computational viewpoint and more detailed

track geometry of contact implicit equations of algenesh models with different types of compliant con-

braic/transcendental or differential-algebraic type agcts between teeth of gearwheels. The simplest prob-

being used. At the same time dynamical models lein in this way is the spur involute gear model imple-

the bodies involved, gearwheels and gearbox housingsntation.

continue to be three-dimensional. Analytical compu-

tational procedures to obtain gradients and Hessians ) ) )

are constructed for implementing the contact trackifg  CYlindrical symmetry of 3D-bodies

algorithm for the involute guided cylindrical surfaces. contact

The known Johnson model is applied for computing

the contact elastic normal force. This force is defin&laying in frame of the spatial multibody dynamics

as an implicit function of the mutual penetration depthlasses previously developed [4, 5] it is quite natural

at contact. Regular algorithm to compute the norntal use additional rigid bod§ playing the role of plat-

elastic force is built up. This algorithm is proved tform, for implementing a relative planar motion of the

be convergent. A detailed analysis of the virtual setbpdies, two gearwheels denotedfesndB in our case.

dynamic model is carried out. These bodies assumed to have cylindrical shapes and
Keywords: spur gear; involute; Johnson modefre able to move in the plane orthogonal to their gen-
mesh properties; tracking algorithm eratrix. LetOcxyzbe a coordinate system rigidly con-

nected with the bod@¢, and for definiteness I€c be

its center of mass. Assume the generatrix is always
1 Introduction collinear to the axiDcz which can be expressed by

the geometrical conditioky = k¢ (a = A, B), where
Computer modeling and simulation of dynamics fdt, are the axi®Oqzy unit vectors andkc is the unit
gearboxes of different kinds is a wide spread engineeector of the bod{C axisOcz. To keep bodies’ motion
ing task. One might highlight here two extreme polggrallel to the coordinate plai®:xyone has to require
of approaches for models constructing. Firstly, the fiwo algebraic conditions for the bodidsandB mass
nite element method can be used for building up suffentersz-coordinateszo, = const,zo, = const to be
ciently detailed dynamical models. It is clear that treatisfied. All coordinates are assumed with respect to
models created using such an approach consume gfwitet.) the frameOcxyz.
significant amount of computational resources. Sec-Algebraic equations mentioned can be easily imple-
ondly, on the other pole of models range one mightented in implicit form if one uses, for instance, con-
find simplified models of gearboxes dynamics allovgtraints of the joint type [4] to fix the bodidsandB in
ing a very fast models for machines and their unitise bodyC. In this case, the body itself can perform
to develop. Examples of such models are presentadjitrary spatial motions. We consider its movement
for instance, in the Modelica Standard Library. In ads being convective in compound motions of the bod-
dition, there exist well developed models taking inies A andB w.r.t. certain inertial frame of reference.
account friction forces during the mesh processesThus it is quite natural to call the body as a gear

315



Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

housing,andthe bodiesA andB are supposed to playOcz-axis. Note that the point®a, Og might be lo-

the role of gearwheels. cated at different levels of th@cz-axis of the gearbox
One might build up mechanical tools for the cylinhousing. But nevertheless one should regard the equa-

drical bodies contact using 2D-geometry techniquisns (2), (3) in their planar version as being projected

with aid of the above reduction to the pla@exy. For onto the plan€®cxy.

instance, the cylinders contact tracking model mightin this case, for complete implementation of the

be written, similarly to [6], in the form of six, alge-contact model, we need to compute the gradients

braic or transcendental, equations as follows gradfy and Hessians Hegg at opposing point®y in

bodies own coordinates.
gradga(re,) = Agradgs(res),

ey, —Tfp = MOradgs(re), @ _
ga(rp,) =0, gs(rp) =0, 3 Geometry of the spur involute gear

whererp, = (Xp,,Yp,)" (o = A, B) are the radius vec-One has to consider the involute equation in the plane
tors for the point$,, Ps under tracking w.r.t. the hous-Oyx, Y4 of the gearwheel coordinate Syst€gxq Yo Zq
ing coordinate systercxy; functionsgy(r) express for resolving the problem which has been formulated
equations for the curves bounding planar figures of thBove for the case of the spur involute meshing. For
bodiesA andB w.r.t. the axe€cxy; A, pare the aux- this one has to apply polar coordinafg 8, defined
iliary scalar variables. Totally the system (1) has sisr each bodya in the following known way:xq =
scalar equations w.r.t. six scalar variabtgs yr,, Xp;, Ry C0SBq, Vg = Ry SinBy. For the involute unwinding
Yprs, Ay W counterclockwise an equation for the polar coordinates
To complete classes corresponding to models gafn be deduced from the known relations [8] in the
contact one has to define contacting curves in the bégkm
ies own planar coordinate systef@gxqYq in the form
fa (Xa,Ya) = 0. If Ty is an orthogonal X 2-matrix \/RE—r2,
defining current orientation of the bodyplanar figure —
then obviously the relatiorgy (r) = fq [Ty (r —ro,)].
gradge(r) = Tagradfe [Tg (r —ro,)] ought to take whererqp is the involute base circle radius. To com-
place. pute grady, and Hess, one has to use formulae of the
Similarly, following the paper [7] one might easilyiransformatior{xa, Ya) — (R, 6q) and apply an auxil-
construct a model to track the cylindrical contact by if@ry Jacobi matrices arising in the process of analytical
troducing a system of differential-algebraic equatiofglculations.

Fab
—arccos— — 064 =0, 4
Fab Ra : @

of the form The contact tracking algorithm developed requires
_ _ _ _ equation of a curve in the formi(x,y) = 0 instead of
FRa=Up,, R =Um, A=¢&, [=n, (2) equation (4). Introducing the notation
[wa, gradga] + TaHessfaT,y (up, —Vp,) — e 2
§gradgg— p(RO) = Vo ® arccos®-_ (5)
A (Jws, gradgs] + Tg HessfgTg (Up, —Vp,)) =0, Mo R
Up, — UPBT_ ngradgs— onecansee easily that
u([wB,grang]+TB HESSfBTB (UpB—VpB)) :O,
(gradga,up,) — (gradfa, Tave,) =0, p(R,6) = f(Rcosd, Rsing). (6)

(gradgg, up,) — (gradfs, Tg vp,) =0,
(3) This equation is a starting point for producing all the
where the vectorsp,, vp, are relative, w. r. t. the bodyformulae for gradients and Hessians. Indeed by virtue
C, velocities of the bodies physical points currently lof (6) we have

cated at the geometrical poir®s, Ps. One might cal-

culate them according to the Euler formula gradp= (fy, fy) [ & X ) = gradf o(xy) @)
YR (R 0)
VPa:VOa—i_[u)a’rPa_roa] (G:A,B),
since grag = (pr, Pe). Therefore
whereQO,, Og are the bodies mass-centers mentioned
above,wa, wg are relative w. r. t. the housing angu- a(x,y) -1
lar velocities of the bodies, always directed along the gradf = gradp [B(R, 9)] : (8)
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Onecansee from (5) that 4 Contact force model
R2_ 2 The geometrical properties have been implemented as
gradp = 7b, -1, (9) a class parameter for the base template described in [5]
rbR for the model outlined above with contact of involutes.

Along with the geometrical properties model, the con-

andfrom the polar coordinates definition the relationtact elastic normal force model plays a key role as well.
According to the results of [9] the Johnson contact
axy) < cos®d —Rsind > model [10] seems to be the most acceptable one for

0(R,06) sin@ Rcoso the case of the cylindrical bodies contact. The model
can be expressed as an equation written for the case of
follows. Hence, so-called external contact
dxy)]L [ cos  sind h= = In 7" (ﬁl”pB) ~1, @9
= sin@ cosB |. (20)
aws "R OR

representin@nimplicit function N(h) for the specific
normal elastic force, per unit of length along the cylin-
der generatrix, depending on the depthf mutual ap-
proach (penetration). Here in equation (E3)is the

To complete the computation of grdds a function of
X, y one can remark that

X . y composite modulus of elasticity for the contact. It sat-
— /22 _ _
R X2 +y?, cosB= R(X,y)’ sing = R(x,y)" isfies the equation
(11)
- : 1 1-vi 1-v3
From(7) for the Hessian computation note that = = A B
E* Ea Eg ’
Hessp axy)\" Hessf a(x,y) N whereE,, Eg areYoung’s moduli of bodies’ material,
0(R,8) 0(R 9) (12) vp, vg are Poisson ratios. Valugs, pg are radii of
fyHesx+ fyHessy, curvature for involutes in the mesh each computed at

current positions of the point, Pg respectively.
wherethefollowing notation has been used
Remark 1 Staying in frame of the Hertz model con-

Mo 0 ditions, we assume the contact area dimensions small
Hessp = ( PrRR  PRe > - | rR,/R2_ rg ., as compared with the sizes of contacting bodies. Thus,
Per  Pee 0 0 the cylindrical involute surfaces in vicinities of points

Pa, Ps are approximated by the circular cylinders

_ with an accuracy of order higher than two. Appli-

Hess — < XRR  XRe > _ < 0 —sin6 > cation of equation (13) means that we virtually re-
XoR  Xoo —sin® —RcosB /" piace the cylindrical surfaces with involutes as guides

Hess/ — ( YRR YRO ) — ( 0 cosd ) by the circular cylinders with the same radii of cur-
Yor Yes cos® —Rsin@ /- vature at any current instant of simulation time. Evi-

ently these cylindrical surfaces, involutive and circu-

Now one can obtain from equation (12) a formul%
. lar ones, have mutual tangency of the second order.
for the Hessian we sought

Computational implementation of formula (13) in-

-1
Hessf — a(X,y) T version reduces to an equation w.r.t. dimensionless
esst = (R, 0) variablesx, y defined in the following way:
a(x,y) )‘1 e e
Hesg — fyHesx— fyHes . X=-———h, =—— N
(Hes— & yresy) <O(R79) 4(patpe) " 7T amE (patpe)

All the objects included here on the right hand sid@en(m) becomes equivalent to the equation

have explicit express'ions in polar coordinates. Itis ev- y-Iny = —x (14)
ident, these expressions can be resolved w. r. t. coor-
dinatesx, y with aid of transformation (11). defining the implicit functiory(x).
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To resolve equation (14) correctly in vicinity of itanore suitable for investigating and computing the so-
evident solutionx = 0, y = 0 one has to find a seg{ution for the given value o¥.
ment of monotonicity of the left hand side of (14). The To overcome the problem we need in an algorithm
zero solution corresponds to the case of beginningwaith the behavior regular enough in vicinity of zero.
the contacting process. In this case, a contact patithurned out equation (17) delivers also an iteration
generically rectangular area, degenerates into the Hbecess in the explicit form
line segment along the cylindrical surfaces generatrix.
It is easy to see that the segment soughfOis~?]. Nnyr =V (1+nnlnng), n=0,1,... (18)
Within this segment the left hand side function of (14) One might set any valugp satisfying the condition

decreases monotonically from zero t&e 1. Thus ] . .
. T 0 < no <e ~asaaguess value of iteration process (18).
one can define an area of applicability of the Johnsgn . m .
- . IS easy to see the numeric sequeRog},_, built
model by the following inequalities

up using process (18) is strictly positive and bounded:
* 0 < nn < v. Therefore, this sequence has at least one
h< 4(pAez+pB), N < 4T[E(22A+p8)- (15) limit point n,. It is equivalent to an existence of the
subsequencfnn, }_, converging to this limif, —

Fromtheinvolute properties and using Figure 1 thg, ask — oo.
relation pa + pg = |[KaKg| is satisfied to within the This limit is unique. Indeed, by virtue of (18) the
(small enough) valub. For this reason, if the materialimit satisfies equation (17). If there would be another
stiffness is sufficiently large then the deftlis small different limit n,.. then equation (17) should have at
enough, and then the left condition of (15) is alwaysast two different solutions on the §6t1). Then as
satisfied. Here, the point§a, Kg are the points of a a consequence equation (14) should have two different
tangency between the line of action and base circlessofutions on the sé0,e1) what is impossible because
gearwheels. it has exactly one solution on this set.

For real materials even the condititn< |KaKg| Computations show that iteration process (18) con-
is satisfied. Then for Young’s moduli large enougverges fast enough. Merit of the process is that it
the Johnson model is surely valid on the segmemerks equally well for all admissible values gf If
y € [0,e71] of monotonicity for the left side of equax becomes close to zero then the valug 0 is also
tion (14). Since the derivative for the left side of equ&mall. Besides, for any arbitrarily smaijl > 0 the
tion (14) aty = e ! is equal to zero then we mayfunctionnInn always stays uniformly bounded. Thus
furthermore restrict ourselves by set of strict monthe iteration operator conserves its regularity for any
tonicity corresponding to the conditionOx < e~%, admissiblex.
or equivalently to 6< y < e~ 2, Other class parameters of the contact model tem-

Moreover, equation (14) has a singularity at zerplate in our case are following: (a) normal viscous
Therefore, we shall construct an algorithm for contlerm was selected similar to the implementation de-
puting the functiony(x) taking into account that & scribed in [7]; (b) tangent friction force model for defi-
x < 1. To proceed with the algorithm replace an uriteness and simplicity, similar, for example, to the pa-
known functiony(x) in equation (14) by the functionper [11], was selected as a regularized Coulomb fric-
n(x) according to the formulg(x) = xn(x). Then a tion law having a shape of the piecewise linear func-

new equation has the form tion of relative velocity at contact [6]. There are no
difficulties for changing the corresponding class pa-
n(inx+Inn)+1=0. (16) rameter and for applying any different model, more

complicated than ones mentioned above.
Let us introduce here a new known independent
variable p instead of the old on& according to the : : TN
equation 5 Algorithm of teeth pairs switching

V= 1 To describe the algorithm we assume gearwheels in

Inx rotational motion each such that the pinion, whael
Thevaluev is small and positive if the valueis small rotates clockwise, and the ged)(does it counter-
and positive. Then equation (16) is transformed to thRckwise. We consider a process of initial data gener-
form ation later. When boosting the pinion tooth in generic
n=v(l+nlinn) (17) case starts to penetrate the corresponding gear tooth
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Figurel: The mesh scheme

because of the compliance at contact. Suppose riext teeth pair may already be existed. But require-
simplicity this penetration continues during the manents of the Johnson model will be implemented only
tion without any backlash. The backlash possibiligfter the pointPg of the next pair contact will pass
requires additional complications of the model. through the positiom.

Remind the point&®, andP; of involutes are oppos- Thus in case of the compliant contact one cannot
ing each other at contact. Then using known propert@gid a presence of two simultaneous contacts: (a)
of an involute one can prove the following “decreasing” contact in vicinity of the positidmex-

isting at this position after the poiRa had passed
Assertion 1 The points R and B always lie on the throughb; (b) “increasing” contact in vicinity of the
line of action K\Kg, see Figure 1. positiona arising ata before the poinP; will pass

, through it. Remind that all these stages of transition
Generally, due to the compliance of contact thgica simultaneously.

point Ps will be located on the lin&aKg to leftfrom o simplified approximate contact model we

the pointPa and above it, see Figure 1. Thus while thesgme that exactly at the moment when the point
pinion rotates by a pitch anglya, and the poinPa  p, nasses through the posititnthe Johnson contact
reaches the positidm(starting _from its initial position 1,5 4el instantly switches from the poibtof the cur-
aof the mesh cycle), contact itself does not really vapsy teeth pair to the poiratof the next one. Exactly at
ish. This may happen only after the po had also {his moment the poirfe, passes the positican Denote

passed the position. . . this time instant as..
On time interval, while the geometrical poinbhad  First of all one should set that

been passed initially by the poiRs and then byPg,
contact model has to be more complicated than the rey (t) =Ta

Johnson one being applied here. This model stronglyro define the vectorp, (t,) it is sufficient to find
depends on the tooth tip relief had been implementgdjistance between poir andPj of the new teeth
in the gearbox. The tip may be assumed sharp, aga&. It is not difficult to check that this distance is
point of the involute and addendum circle intersectioggual exactly to the one between poiRisand Ps at
or curved with smoothed edges. For instance, it mgje same instant. Note that simultaneously poRits
have circular profile of the radius small enough bgndpé should lie on the lin&aKsg, first Py thenPy if
tween the involute and the addendum circle. counting fromKa to Kg. Thus one can also set that
Exactly at the instance of the poifa passing
through the positio, the similar poinPs of the next ey () = Vea (8) + Ry (L) — Ty (L)
teeth pair, denote it by prime,, passes through the To obtain starting valuej (t.), H(t.) for the next
positiona. Really to this time, contact between thmesh cycle one has to compute norms of gradients
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|gradgal, |gradgs| (co)vectorsand then use the firstAssertion 2 In case of involutes the equation
and the second equations of the system (1). Gradients rBb
are to be computed at poini, and P; respectively. A=

l'Ab
Since we always suppose that gradients are directed

“outside” the bodies at contact, we have to assume t %;‘t)resents an integral of motion for the contact track-
INg system of DAEs (2), (3).

A(t) <0, M(t,) <O. Indeed, one can see from above that the variable

_ _ _ keeps its initial value all time of simulation
Furthermore, since functiorga, gg are derived from

r
the functionsfa, fg by translatory and rotary motions A =A(to)=A(t) = —rib.
of the three dimensional spa& then the following A
condition is satisfied This propertymay be very useful to control an accu-

racy of computations during the simulation process.
|gradgq| = |gradfy| (o =A,B).

To compute the valuégradfy| let us apply equa—6 Some details of |mplementat|on
tions (8), (9), (10) from above in the following way  aq it was already mentioned the template

ContactConstraintBaseTemplate

R2 — rgb cosea SinBy
gradfq = T rRa -1 _SinBg  cosBy developed earlier [5] has been applied for implement-
@b Ra Ra ing the contact model of two gearwheels with spur in-
volute gearing. The template has four class parameters
R2 —rgb 1 cosBy  sind, defining models of: _(a) the no_rmal elastic force, (b)
= T twRa | Ry ( —sinBy  coshy ) ) the normal force of viscous resistance, (c) the tangent

force of resistance for relative slipping at contact, (d)

whereRy, 64 arethe polar coordinates in the body geometry of surfaces in vicinity of contact, in our case
coordinate systeraXqya. One can see easily fromfhey are the cylinders guided by an involute.
last equation that the (co)vector gridis a result of ~ Asitwas already noted we guess approximately that

the (co)vector a contact patch is the rectangular strip, in general thin
enough. The normal elastic force is assumed to be uni-
2 _ 2 formly distributed in one dimension along the genera-
R& —Tab 1 . .
4 trix of cylinder over the patch.
FabRa Ra Let us consider in more details an implementation

of the class parameter responsible for geometry prop-
rotationby the angleBy. Then one can write down theerties of the contact. This class is implemented as a

norm sought as four-level hierarchy of inheritance for the properties
and behavior:
\gradgy | = |gradfq| = ri (a =AB). CylindricCompIianthonstraint
ab
i i i CylindricCompliantConstraintAddOn
Thusthe gradient (co)vector of the function defin- !
ing the involute has a constant norm inversely prop®jtindricSurfacesOfConstraintDifferential
tional to the base circle radius. Now from the first and !

the second equations of the system (1) we have respec- InvoluteAndinvoluteDifferential

tively A differential-algebraic equations are applied here for

implementing the contact tracking algorithm.

At) = M:ZSSA; = —g, A base class for all geometry classes implement-
?PB (I*E)—rpA/??*—)\ ing cylindrical contact is the modeCylindric-
Ht) = - [grados| = CompliantConstraint. This class is responsible
—rBb|rps (t—) —rp, (t—)]. for computation of geometric and kinematic proper-

ties of the point$, andPg under tracking w. r. t. the
And usefulin all aspects result was obtained by thiird bodyC, the gearbox housing. These properties
way: are described in particular by the following variables:
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e rAr, rBr arethepointsPa andPs relative posi-
tions;

e gradgAr, gradgBr are the cylindrical surfaces
gradient vectors computed at poirg, Ps re-
spectively in the frame of coordinat&gxyz;

e normAr is the unit vector normal to an outer sur-
face of the bodyA computed at the poirfRa w. r. t.
the coordinate syste@cxyz

e vrAr, vrBr are relative velocities of bodie#, B

points currently occupying the geometric poinﬁ%I

Pa, Ps locations;

e kappa is the contact indicator which is: (a) equal
to zero for the case of the surfaces touching each
other by segment of strait line, (b) positive and
equals to the distance between the surfaces for the
case of contact absence, (c) negative and charac-
terizes depth of mutual penetration for the case of
contact, contact patch has a rectangular shape;

e kappaA, kappaB are the parameters defining
elastic properties of bodigsandB respectively.

Section of equations/behavior for this model has the
lowing code

Modelica code of the current class under descrigfuation

tion, its section of equations, reads

equation
rA = InPortC.r + InPortC.T*rAr;
rB = InPortC.r + InPortC.T*rBr;
gradgA = InPortA.T*gradfA;

gradgB = InPortB.T*gradfB;

normA = gradgA/ sqrt(gradgA*gradgA);

gradgAr = (transpose (InPortC.T)*
InPortA.T)*gradfA,

gradgBr = (transpose (InPortC.T)*
InPortB.T)*gradfB;

normAr =
gradgAr/sqgrt(gradgAr*gradgAr);

VA = InPortA.v + cross(InPortA.omega,
rA - InPortA.r);

vrB = InPortB.v + cross(InPortB.omega,
rB - InPortB.r);

vrAe = InPortC.v +

cross(InPortC.omega,
rA - InPortC.r);
vrBe = InPortC.v +
cross(InPortC.omega,
rB - InPortC.r);
vrAr = transpose(InPortC.T)*
(vrA - vrAe);
vrBr = transpose(InPortC.T)*
(vrB - vrBe);
end CylindricCompliantConstraint;

In the derived clas€ylindricCompliantCon-
straintAddOn:

ConstraintDifferential

kappa = sqrt (gradgBr*gradgBr)*mu;
if noEvent (kappa <= 0) then
PA = kappaA*rB + kappaB*rA;
PB = PA;
else
PA = rA;
PB = rB;
end if;
VvPA = transpose (InPortC.T)*
(InPortA.v + cross(InPortA.omega,

PA - InPortA.r));
vPB = transpose (InPortC.T)*

(InPortB.v + cross(InPortB.omega,
PB - InPortB.r));
relv = vPA - VPB;
relvnr = relv*normaAr;
relvn = InPortC.T*relv*normaAr;
VvPANn = vPA*normAr;
vPBn = vPB*normAr;
vPAt = vPA - vPANn*normaAr;
vPBt = vPB - vPBn*normaAr,
relvtir = vPAt - vPBf;

relvt = InPortC.T*(vPAt - vPBt);

relvtsqrt = sqrt (relvt*relvt);
OutPortA.F = Forcet +

Forcen*normA + Forcev*normaA,;
OutPortA.P = PA;

OutPortB.P = PB;

end CylindricCompliantConstraintAddOn;

The next derived clasSylindricSurfacesOf-
implements the DAE

e PA,PBare variables for coordinates of the pointsystem (2), (3). Its Modelica code is similar to one of
where a resultant contact forces are applied, tife classSurfacesOfConstraintDifferential

directions of bodie#&\ andB respectively;

e relvnr is the normal component, in case A
= PB, of the velocity for the poinPA of the body
Acrelative to the bodyg;

described in [7] for the generic case of the Hertz-point
model.
cylindrical symmetry for the current case.

The difference concerns an account of the

Finally, the contact surfaces, rather curves bounding

planar figures of bodies, specifications are defined in

o relvtr

nate systen®Ocxyz;
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an algorithm described in Section 3 for computing of



Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011

gradientsandHessians in bodies’ coordinates systemgriables having derivatives defined asomponents
As one can see from Section 3 corresponding Modef- the wheels relative angular velocities vectors
ica code has to be bulky enough. omegarel A andomegarel_B.

It is clear that when working two teeth of gear- In the code fragment above, variablé®, rBO, in
wheelsA and B cannot stay in the meshing processddition to ones already described, correspond to the
during long time. One can see in Figure 1 that in cageintsP,, Ps initial position, at the poinain Figure 1,
of the pinion rotation clockwise the contact point (segectors in the contact tracking algorithm. Relative,
ment of line), or rather contact patch small enough, r. t. Pa, position of the poinBs for the new teeth
moves from the poina to the pointb of the line of pair being directed, as we know, along the line of ac-
actionKaKg. At the very moment of contact loss fotion KaKg, has to be equal, because of rigidity, to the
the current pair of teeth at the poimthe next pair ar- similar position for the previous pair losing contact at
rives at contact, the poiat and new “point” of contact the event. This relative position is tracked by the vari-
starts its motion along the meshing strait line of actioableDelta.

One has to note here that for simplicity we consider The variablesnu, lambda correspond to the vari-

a mesh process without overlapping of time intervad®lesy, A in equations (2), (3)tambda0 correspond
for the teeth pairs contacting. If they are overlapped the A initial value at the positiora; gamma_A,
then one should create at least two contact objegésnma_Bare the variables for the gearwheels angles
“connecting” the objects of bodigsandB. These ob- of rotation changing by the pitch valudya, Ayg be-
jects are to be activated/deactivated alternatively whieg stored in variablegamma_Astep , gamma_Bstep.
arriving at/departing from the poiatb. Note that for correct handling of the switching pro-

While the contact patch moves from its positian cess it is sufficient to track only the pinion, body
to the positionb each of gearwheeld, B rotates by A, angle of rotation and use only the variabtgsn-
the pitch anglé\ya, Ays respectively. The last class ofna_A,gamma_Astep, phirel_ A, omegarel_A. Ini-
the inheritance line considered above besides the caialdepth of penetration, just after the contact switch,
putation of gradients and Hessians implements alsfpathe new pair is defined by the variabteiremains
switching process for the pairs of gearwheels thus syhe same as for the previous pair of teeth in contact.
chronizing this switching with the corresponding ar¥his is because the gradient, from the right hand side
gles of rotation for the bodie& andB. of the second equation in system (1), norm stays con-

This mechanism for discontinuous jumps of th&ant in case of the involute. This constant is equal to

contact points is implemented by the Modelica evegie value 1 /g,. For definiteness the whegkupposed
handling facility. Code of the clagavoluteAnd- to rotate monotonically clockwise

InvoluteDifferential fragment concerning re-
quired switching reads

7 Computational experiments

der(phirel_A) = Active*omegarel_A[3];

der(phirel_B) = Active*omegarel_BJ[3]; To perform a computational testing program for the
Deltar = rBr - rAr, gearbox model one builds up a virtual setup consisting
when abs (phirel_A) > gamma_A + of two gearwheels: the pinioAand the driven geds.

gamma_Astep then
reinit(gamma_B, abs (phirel_B));
reinit(rAr[1], rAO[1]);

For simplicity one assumes the gearbox housinge
fixed w. r. t. inertial frame of reference, and the ori-

reinit(rAr[2], rA0[2]): gin Oc of its coordinate syster®cxyzcoincides with
reinit(rBr[1], rAO[1] + Deltar[1]); the pinion geometrical cent@a. Cylindrical revolute
reinit(rBr[2], rBO[2] + Deltar[2]); joint connecting the bodiea andC is also located at
reinit(lambda, lambda0); the pointOc. The gearwheeB centerOg is located
reinit(gamma_A, gamma_A + on the horizontal axi©cx. Here, atOg, a cylindrical
end V%ﬁ;"nma—AStep); revolute joint connecting the bodyand the auxiliary

slider Sis located. The slide®is in turn able to slip

freely w. r. t. the bodyC along the axigOcX, though

this sliding performs with a resistance of the spring of
Here the variableghirel_A, phirel B are to ac- high stiffness with the damper. This spring connects

cumulate an angles of rotation for the bodiksB bodiesC andSbetween one another.

w. r. t. the housingC. They are the model state We introduced in the current experimental setup un-
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Platform

Figure2: The Virtual Setup Visual Model

der description a compliance between the boBiead where ayin = infay, is the lower bound for all the

C. This compliance is implemented by the auxiliargressure angles permissible by the parameters above.
slider mentioned and is directed along the liBgOg Its value is defined by the formula

connecting the wheels centers and lying on the axis o

Ocx. Such a construct prevents the static indefinite- Owinf = arctanﬂ.

ness in the model for the case of rigid contact at the Za(1+

mesh point of gearwheefsandB. A visual model of For definiteness we will use the following value

the setup is shown in Figure 2. oty = 1.05Ckyirt.
7.1 Parameters of the model Furthermore, using the pressure angle and transmis-
sion ratio one cam compute sequentially all geomet-
rlBal parameters needed which are shown in Figure 1.
First the base circles radii can be found as

The following independent parameters are defined
the mesh model:

e 7y = 20 is number of teeth for the pinion; fab = I« COSOw (0 = A, B).

* ZAh: ?0 is number of teeth for the driven gearrhen one can compute a full length of the line of action
wheel;

as follows
e rp = 0.2mis the pinion pitch circle radius. |m| = ra(14n)sinay,.

After that the remaining geometry parameters of the zt the same time a length of any segméatb]
mesh are computed as follows: along this line is exactly the length of arc for any of
e N=17g/7, is the transmission ratio; the base circles corresponding to the pitch adyle

or Ays
e g = nra is the pitch circle radius of the driven ab|=rolye (0 =A,B).
gearwheel;

Initial distance between the gearwheels centers is

o Aya=2T11/25, Ayg = 211/ 73 are the gearwheels anequal to the valué =ra +rg. To compute initial con-
gular pitches; ditions for the contact tracking system of DAEs (2), (3)

we need in additional computations. From the descrip-

To define the mesh further it is essential tq Set tHSn above we have for absolute initial coordinates of
pressure angley, value. It can be chosen using thgne pointsOc andO,

condition
Ow > Olwinf, roc =ro, = (0,0,0)".
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Thusaninitial position of the gear center is defined by Thuswe can define an initial values for the angles
the equation of rotation of bodie#\ andB in the form
T
rog = (L,0,0)" .

Initial positions of the point&, andKg can be com-
puted easily, see Figure 1, with use of the followinghere complex numbets, (g are defined via the vec-

¢ (to) =argla —6q (a0 =AB),

vector formulae torsra, —ro, components as
. T .
Min = 10y +Tap(COS, SINAW,0) {a = (Xa—Xo,) +i(Ya—Yo,) (a=AB).
ke = rog—IBb(COSO,SiNG,0) .

Note that the function arg of complex argument has a
After that the line of action directing vector can be olgomputer implementation as a standard library func-
tained aKaKg = rg; —rk,. And now one can definetion atan2.

a position of the poind, where the contact process be- Initial quaternions of bodie& andB orientation are

gins, in the form defined using known formulae
L an) KaK da (to) da (to)\"
_ - _ ATNB . a\lo . Qalo .
ra="rk,+ 5 (\KAKB| \ab\) \K«A—K_B)I’ Ja (to) = <cos > ,0,0,sin > > (a =A,B).

and also an initial position of the poifit, where the ~ Statevariables of the DAE system (2), (3) tracking

contact losses, has the representation contact are to satisfy the following initial conditions
I'sb
ab| - e, (to) =Ry (to) =Ta, H(to) =0, A(to) = ——.
rp =ra+ ——KaKsg. Fab
KaKsl|

Noteherethat in case of the involute the state vari-
After the endpoints, b of an active segment of theable)(t) turned out to be constant value
line of action have been defined it is time to compute
the addendum radiug, of the gear as a distance be- A(t) = const=(to) .

tween the poing and the initial position oDg, see Thus this equation represents exactly integral of mo-

Figure 1. The addendum radiug, of the pinionisin . . .
. o o tion, and it can be used effectively to control an accu-
turn a distance between an initial position of the poin .
racy of computations.

bandOx. These radii are defined by the equations Finally, in the example under consideration the con-

stant driving torqueMa = (0,0,—1N-m)T assumed
being applied to the pinioA while the viscous torque

To compute initial angles of rotation for the piniowf resistanceMg = (0,0,—10pg)" is applied to the
and gear we assume that at an initial instant of singearB. Gearwheels themselves assumed made of steel
lation teeth of an initial pair are touching each oth&ith Young's modulus€Ea = Eg = 2- 10'!Pa and Pois-
geometrically without any pressure, and, as a ression ratiova = vg = 0.3, and have the same width,
mutual penetration is absent. An initial angular veloalong the axis of rotation, of Om.
ities of the gearwheels assumed equal to zero. For defi-
niteness we also assume that the &iga of the body 7.2  Dynamic transmission error

A crosses the base circle exactly at a root point of the

involute. This involute defines a surface of the tooth value of the dynamic transmission error (DTE) has
contacting with its mate exactly at the poet Sim- been chosen for the computational verification. If

ilarly, the bodyB axis Ogxg passes through the rooforce of friction exists at contact then DTE is not con-
point of the contact involute of the body at initial stant. First of all let us introduce the auxiliary variable

instant.
. A=—r —r . 19
One can compute the polar angles of each the invo- AodA — renfe (19)

lute mentioned above using the equations (4) with tirgis value characterizes a mismatch for the base cir-

raa=|[fb—rox, rfBa=|fa—Trogl-

following equations¢ = A, B) cles arc lengths. If teeth in pairs contacting have
an ideal “rigid” unilateral constraints without compli-
\/\ra—roalz— rap Fab ance, and switching between teeth pairs is also ideal
B = Fob - arccom, then the value of\ has to be an identical zero.
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Figure3: Comparison of the discrepancy (Delta) and the depth of penetration (Depth)

To undertake an analysis more detailed let us con-An effect obtained in an angular displacements due
sider the results of numeric experiments. Firstly, on@ pressing and subsequent penetrating in the John-
can remark that in case of the involute mesh a d&sosn contact model is certainly like one derived due to
crepancyA(t) from (19) has to be identical with thetorsional deformations of elastic gearwheels [12, 13].
depth of mutual penetration of rigid teeth in vicinityMoreover, finite element modeling do not disturb in
of contact point. Indeed, the discrepancy (19) is eany essential degree the whole dynamical picture if
actly the difference between the arc distances of based to simulate teeth bending when contacting [14].
circles while each of the wheefsandB rotates. This  Indeed, one can compute the DTE according to the
difference is accumulated from the very initial instafidrmula
of simulation. _

On the other hand it is known that the segmieiRs 0 "antba — Teolbs (20)
is a perpendicular common to the teeth involutes pegimilar to (19). Here the valuafa, Yg are the angular
etrating each other, and simultaneouBiP; lies ex- displacements of the pinion and gear from their mean
actly on the lineKaKg and its length is exactly thenominal positionsba(t), ®g(t) such that the following
depth of teeth mutual penetration. Then there exigtguations fulfill
the only geometric possibility: the condition

IPaPs| = K(t) = A(t)

has to be satisfied. The functionst), k(t) derived  These nominal value®q(t) correspond just to the
independently in the model are compared in Figure 8ase of rigid contact satisfying evidently the following

da(t) = Pq(t) +Wa(t) (a=A,B).
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kinematicidentity

—rAquA(t) — I’BbCDB(t) =0.

Table 1: Comparative efficiency

Typeofthe | Coeficient| CPU

Hence, it turns out in frame of our considerations that contactmodel | of friction | time
the identity Johnsors 0.3 20.4
At) = a(t) Johnsors 0 16.1

takes place. rigid 0.3 13
Let us investigate now sources of the DTE presented rigid 0 11.4

in Figure 3. If one eliminates completely in the model

the friction between teeth surfaces then the vali¢

will grow asymptotically to its limit value thus provid-¢qgjderin our model the case of mesh ratio which is
ing a systematic error of transmission, see Figureeéhual io one.

blue curve. The reason for this error is evidently a

mutual penetration of the compliant contact model of ) ) ..
7.3 Comparison with a rigid contact

Johnson.
o _ A goal of our further numerical experiments is to com-
contactOfinvalutesDitferentiallohnzonCompliance Deltta .
e pare two contact models when meshing: (a) the John-
i son model, (b) the rigid contact model without com-
9| [ 1L I i pliance. The results of models under comparison sim-
f:ﬂ'“*d I ] ] ulation run showed for illustration in Figure 5. The

normal contact force is counted along thaxis of the
plot. Case of the Johnson model corresponds to the
blue curve while the red one is for the case of rigid
contact model.

Comparison of the simulation results shows in Fig-
ure 5 that both contact models, the Johnson one and the
on T e T T T T rigid contact, bring the same dynamic result. The only

difference is that the Johnson model generates addi-
Figure4: The DTE without (blue) and with (red) fric-tional oscillations of the normal contact force being su-
tion perimposed on the normal force behavior for the rigid
case. Moreover, one can see from detailing shown in

If one introduces to the whole gearbox model, tlggure 5 that rigid contact model looks like a result of
simplest model of the Coulomb friction with the coefthe procedure of averaging for the dynamics with the
ficient f = 0.3 then the systematic error will be supecompliant contact, Johnson, model.
imposed by the periodic one, see Figure 4, red curveAn advantage of the latter case is that this case of
This latter error has discontinuities at instants of tiiee contact model makes it possible to apply an arbi-
contact teeth pair changes and at the instant when titagy number of contacts for the body in the multibody
contact patch passes through the pitch pBjrstee Fig- system dynamics model without any restrictions. At
ure 1. The periodic DTE almost completely coinciddébe same time the rigid contact model does not allow
with similar curves presented in papers [12, 13]. In tiseich a possibility.
graphs of these papers one can note only small varia©n the other hand, any contact model based on the
tions from exact curves of our Figures 3,4. An origiREM code application requires much more computa-
of these variations is evidently additional small deviional resources than in case of the “simple” compli-
ation derived due to more exact account of the elastist model analysed above. To compare an effective-
torsion oscillations considered in [12, 13]. Additionaiess of the Johnson contact model and the model using
splash of weak torsional oscillations one can obsere rigid unilateral contact constraint consider Table 1
in [12, 13] exists because of the multiplicity of teettvith preliminary relative estimations of the CPU time,
contacts in that model: time segments overlap for threseconds, needed for both cases with addition of the
mesh cycles of the nearby pairs. So when contactfotion force influence. Here the results of the simu-
the previous teeth pair vanishes then additional el#sion run are presented, without any optimization, for
tic disturbance arises. Remind that for simplicity wéhe model time of 5 seconds.

2E-9 4

1E-3

0ED
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Figure5: Comparison of the models with (blue) and without (red) compliance at contact

One can note easily from Table 1 that the Johnsone involute meshing requires additional analytic ef-
model increases computational time in some degree, forts causing additional computational complex-
not larger than twice, in compare with the fastest case ity increase;
of the rigid contact. And simultaneously this model
with compliance increases considerably the flexibility ®
and universality of simulation tools in a wide range of
applied problems.

compliant models create an effect similar to one
generated by the torsional elastic deformations of
gearwheels;

e compliant model built up showed an efficiency
8 Conclusions high enough comparable with the fastest case of
geometrically rigid constraint;

Comparing our previous results with the above ones,

th mputer model built up makes it ible in
we can conclude that: e computer model built up makes it possible

an evident way to construct models of gearboxes
e since cylindrical contact models are restricted to  of any complexity for the spur involute type of
the 2D-geometrical considerations they are sim- meshing.
pler in a certain sense than the 3D-models;

e on the contrary, dynamical models became moge  Acknowledgements
complex in some degree because the Johnson

model forces us to deal with the transcendentBhe paper was prepared with partial support of Rus-
eqguation having a singularity at zero; sian Foundation for Basic Research, projects 08-01-
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