
Improving Newton's method for Initialization

of Modelica models

Johan Ylikiiskilä†

Johan Åkesson∗†, Claus Führer∗∗

∗ Departement of Automatic Control, Lund University

∗∗ Departement of Numerical Analysis, Lund University

† Modelon AB ∗/∗∗ Lund University
Ideon Science Park Sölvegatan 18

SE-22370, Lund, Sweden SE-22100, Lund, Sweden
E-mail: info@modelon.se E-mail:claus@maths.lth.se

Abstract

Initializing a model written in Modelica translates
to �nding consistent initial values to the underly-
ing DAE. Adding initial equations and conditions
creates a system of non-linear equations that can
be solved for the initial con�guration. This paper
reports an implementation of Newton's method to
solve the non-linear initialization system. This
implementation also uses a regularization method
to deal with singular Jacobians as well as sparse
solvers to exploit the sparsity structure of the Ja-
cobian. The implementation is based on the open-
source projects JModelica.org and Assimulo, KIN-
SOL from the SUNDIALS suite and SuperLU.
Keywords: initialization; Newton's method; reg-

ularization; JModelica.org; Assimulo; KINSOL;

SuperLU

1 Introduction

The initialization of a Modelica model is equiva-
lent to �nding consistant intial values to the un-
derlying DAE:

F (ẋ,x,w, t) = 0 (1)

Here x ∈ Rnx are the states and ẋ ∈ Rnx their
time derivatives. w ∈ Rnw are the algebraic vari-
ables and t is the time.
In JModelica.org, initialization is performed by

creating a system of, often non-linear, equations

called the initialization system:

F0 (ẋ,x,w, t) = 0 (2)

The system F0 consists of the equations describ-
ing the derivatives and algebraic variables in (1),
and in addition, F0 also contains information such
as initial equations and �xed start values. How
F0 is formed is explained in Section 2. The non-
linear system of equations (2) can be solved in a
multitude of ways. This paper focuses on one of
the most common, Newton's method.
To simplify notation the three vectors solved for,

ẋ, x and w, are grouped together by the notation
u = [ẋ;x;w] with u

(k)
0 being the values of ẋ, x

and w at time t = 0 and iteration k.
Being initialized by an initial guess u0, Newton's

method is basically an iteration over the following
three steps:

1. Calculate a direction u
(0)
0 by solving

J
(
u
(k)
0

)
∆u = −F0

(
u
(k)
0

)
(3)

where J
(
u
(k)
0

)
and F0

(
u
(k)
0

)
are the Jaco-

bian and the residual calculated at the current
iterate k.

2. Update u
(k+1)
0 :

u
(k+1)
0 = u

(k)
0 + µ∆u (4)

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

97



where 0 < µ ≤ 1 is a parameter that is used to
increase the convergence radius, for example
using linesearch [5]. If µ = 1 then the method
is Newton's classical method.

3. Check for convergence, and if the stopping cri-
teria are ful�lled, return the result.

This paper will, as the title suggests, improve
Newton's method to suit it better to initializing
models written in Modelica. The improvement is
focused on the �rst of the three steps constituting
Newton's method, the solving of equation (3). Two
issues are treated:

• An initial guess sometimes results in a sin-
gular Jacobian, so that the linear equation
system no longer has a unique solution or a
solution at all. In these cases a special regu-
larization procedure has to be applied before
the linear system can be numerically solved by
e.g. LU factorization. This will be discussed
in this paper.

• For large Modelica models the matrix
J
(
u
(k)
0

)
is sparse, a justi�cation for this will

be given later. In this case it is interesting to
look at representing the matrix J

(
u
(k)
0

)
in a

sparse format and using a sparse linear solver
such as SuperLU [12]. This paper will discuss
whether, or when, such an implementation is
advantageous or not.

2 JModelica.org and initializa-

tion

The initialization problem is generated in JModel-
ica.org upon compilation. The system to be solved
at initialization is (1) with additional initial equa-
tions supplied by the user. The functions associ-
ated with the initialization system, such as F0 and
its Jacobian, are supplied by the JMI interface [14].
JModelica.org sets up the DAE system in its

index-1 form, a form in which di�erential variables,
x and algebraic variables w can be clearly distin-
guished. The system contains equations describing
all derivatives and algebraic variables. It will then
have nx+nw equations resulting in an underdeter-
mined system. Thus nx additional equations are
needed [17].
The assumption of (1) being of index 1 can be

justi�ed by saying that if a DAE of higher index

is encountered, an algorithm such as the one de-
scribed in [18] is applied to reduce the problem
back to a DAE of index 1.
The additional nx equations can be supplied by

the user as �xed start values and initial equa-
tions. Adding this information to the System
(1), the initilization System (2) is obtained. This
is done by adding all equations de�ned as ini-
tial equations as well as an equation of the kind
(5) for each variable xi with a modi�er such as
(start = x_0, fixed = True).

0 = xi − x0 (5)

If the user has supplied enough additional data,
the System (2) can be generated. If, however
the user supplies too much information the sys-
tem becomes overdetermined and the compiler will
give an error message. If, on the other hand,
not enough information is supplied the system be-
comes underdetermined. In this case the com-
piler will try to add information, such as setting
some variables to fixed = true, making the sys-
tem well de�ned. This is accomplished by applying
an algorithm to compute a maximal matching be-
tween variables and equations. For this purpose,
an implementation of the Hopcroft Karp match-
ing algorithm, [11], is employed. If unmatched
variables are detected, the corresponding fixed

attributes are set to true, and thereby balancing
the system.

3 Implementation

3.1 Overview

The implementation of the algorithm reported
spans multiple packages, written in two di�erent
programming languages: Python and C. A third
language, Cython [4], is used so packages written
in the two di�erent languages can communicate
with each other. The algorithm basicly consists
of four packages, JModelica.org, Assimulo, KIN-
SOL and an external linear solver (cf. Section 3.2)
implementing a regularization method and using
SuperLU.
The JModelica.org project is the biggest part

and consists of code written in multiple languages,
the part of JModelica.org used in this thesis is
however entirely coded in Python
Assimulo is a package written in Python using

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

98



Cython to interface functionality from the SUN-
DIALS suite, for example KINSOL [4, 1].
Finally KINSOL and SuperLU are two packages

entirely written in C. An overview of how these
packages interact is presented in Figure 1.

Figure 1: Overview of the packages involved in this
paper and how they interact.

Model data, such as evaluation of F0 and its
Jacobian, are obtained by the JMI interface in the
JModelica.org part of Figure 1. The data is passed
to Assimulo who calls KINSOL using Cython. In
KINSOL the data is used to create the system (3)
which is solved by the external linear solver, called
SuperLU in Figure 1.

3.2 KINSOL

The non-linear solver implemented in the initial-
ization algorithm reported is based on KINSOL
from the SUNDIALS suite [5]. Although this re-
port focuses on regularization and sparse solvers,
some necessary theory on KINSOL has to be re-
viewed to allow discussion of the implementation
of regularization and SuperLU.
KINSOL is a solver of systems of non-linear

equations which implements a modi�ed Newton
method where the Jacobian is only evaluated when
the solution progresses to slow or a certain num-
ber of iterations is exceeded [5]. This is to speed
up the solution of the nonlinear system since Jaco-
bian evaluations are expensive. The Jacobian can
either be calculated by �nite di�erences or have to
be supplied as a function by the user.
A regularization method and SuperLU are im-

plemented in KINSOL as an external linear solver.
An external linear solver is called by KINSOL to
solve (3) and must implement a set of functions.

The two functions that are of interest in the imple-
mentation discussed here are the setup and solve

functions.

• The setup function is called whenever KIN-
SOL needs to (re)evaluate the Jacobian. LU
factorization is preferably performed in this
function.

• The solve function uses the data from the last
call to setup to solve the linear system.

4 Regularization

When in a step, say in the kth step and the
Jacobian is singular, the linear system (3) has
no solution or its solution is not unique. Thus a
di�erent algorithm for determining the Newton
increment ∆u has to be used.

We require that ∆u is a descent direction and a
solution of the following regularized normal equa-
tions

(
J
(
u
(k)
0

)T
J
(
u
(k)
0

)
+ λkI

)
∆u (h)

= −J
(
u
(k)
0

)T
F0

(
u
(k)
0

) (6)

with λk > 0.

Here, the matrix
(
J
(
u
(k)
0

)T
J
(
u
(k)
0

)
+ λkI

)
is positive de�nite with eigenvalues in[
λk, λk +

∥∥∥J(u(k)
0

)∥∥∥
2

]
⊂ R, [19].

We select λk in accordance to a strategy used,
when implementing the Levenberg-Marquardt
method (LM) for solving an overdetermined non-
linear equations systems [7, Ch. 10], by setting

λk := min
(

1,
∥∥∥J (uk)T F0 (uk)

∥∥∥) (7)

Note, in the DAE initialization process this reg-
ularization technique is required in a single, exep-
tional step only, while the overall process remains
classical Newton iteration, based on solving regu-
lar linear systems.

4.1 Implementation

As mentioned in Section 3, regularization is im-
plemented in an external linear solver to KINSOL.
This is done so that when the LU factorization in

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

99



the setup function fails due to the Jacobian being
singular, the regularization algorithm is called.
When the regularization is called, the regular-

ization parameter λk is given by (7). Secondly, the

regularized matrix
(
J
(
u
(k)
0

)T
J
(
u
(k)
0

)
+ λkI

)
is

calculated and stored as the problem Jacobian. A
�ag is also set telling the linear solver that the
problem is currently regularized.
When the solve function is called it will continue

as usual if the regularization �ag is not set. If the
�ag is set however, a new right hand side corre-
sponding to the right hand side of (6) is calculated

and solved for instead of the ordinary −F0

(
u
(k)
0

)
.

With the regularization parameter calculated as
described, there is still a problem of the Jacobian
being singular at the solution. The strategy cho-
sen is only valid for overdetermined systems if the
Jacobian is regular at the solution [7, Ch. 10].
To see what e�ects this presents on the DAE ini-
tialization, the algorithm has been tested on the
following problem (8).

0 = x2

0 = y2
(8)

Problem (8) has the solution x = y = 0 where
its Jacobian (9) is singular.[

2x 0
0 2y

]
(9)

The algorithm converges, albeit slowly (29 itera-
tion when starting at x = y = 1.0), to the solution
x = y = 0.0018. The stopping criteria attained in
this case is the norm of the residual being smaller
than a given tolerance ε, in this case set to 6 ·10−6.
Hence the problem of a singular Jacobian at the

solution slows down the algorithm but it does not
cause it to crash, as long as the tolerance is not
set too small. There are methods discussed in [10]
handling this problem which may be included in a
later implementation.

4.2 A simple example

To test if regularization indeed works, a simply
constructed system with poorly chosen initial val-
ues is initialized. The example contains two states
x, and y as well as an algebraic variable w and is
written as follows:

model SingularTest

Real x ;

Real y (start = 1, fixed = true);

Real w (start = 2, fixed = true);

equation

der(x) = x^2 - y;

der(y) = x^2 + z^2;

0 = w - x^2 -y;

end SingularTest;

In the initialization problem, the consistent val-
ues of the two states y and x, their derivatives
and the algebraic variable w are solved for. The
sought DAE equations are the three equations in
the equation block. Added to these are the two
equations corresponding to �xed start values. Five
variables and �ve equations make up the well de-
�ned initialization system (10).

0 = x2 − y − ẋ
0 = x2 − z2 − ẏ
0 = w − x2y − y
0 = y − 1
0 = w − 2

(10)

At the initial guess given in the Modelica code
(the variable x is without a start guess and is given
the default guess zero), the system (10) has the
Jacobian (11):

1 0 0 −1 0
0 1 0 0 4
0 0 0 −1 1
0 0 0 1 0
0 0 0 0 1

 (11)

(11) is singular and so is JTJ, JTJ+h2I is how-
ever regular.
Trying to initialize this model in JModelica.org

yields the regularization algorithm to be called fol-
lowed by the Jacobian becoming regular and New-
ton's method proceeding as usual. Hence the reg-
ularization implemented succeeds in handling the
singular Jacobian.

5 Sparse solvers

Another aspect taken into account when solving
(3) is the structural properties if the Jacobian.
When solving large systems, the solution of the
system (3) can become very costly and slow due
to the size of the Jacobian. But although the Ja-
cobian is big in size it is not necessarily dense.
A matrix, and the corresponding linear system, is

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

100



said to be sparse if there are many zero entries and
only a few entries di�erent from zero and this is
something that can be exploited.
Another approach to exploiting model structure

commonly employed in Modelica tools is based on
the Block Lower Triangular (BLT) transformation,
in which the system of equations is decomposed
into a sequence of smaller equation systems, see
e.g. [8, 9].

5.1 Sparse Jacobians in Modelica mod-

els

In the case of a Jacobian, the number of non-zero
entries in row i corresponds to the number of vari-
ables upon which the function i in the system (2)
is dependent. Since each function in a Modelica
model of size n normally depends on about �ve
to ten variables, the number of non-zero entries
will grow linearly while the size of the Jacobian
will grow quadraticaly for each added function. In
addition, many equations in (2) come from initial
values set by a fixed = true which only depend
on one variable. The hypothesis stated here is that
the Jacobian will get more sparse as the Modelica
model itself gets bigger.

5.2 SuperLU

Since the Jacobians are sparse, it is interesting to
look at sparse solvers for solving (3). The solver
investigated in this paper is SuperLU, a fast LU-
factorization algorithm optimizing memory usage
[12]. The SuperLU solver will also be coupled with
regularization to be able to handle singular Jaco-
bians.
SuperLU is implemented, similar to the regular-

ization method, as an external linear solver. Since
JModelica.org has support for sparse Jacobians
through the JMI interface [14], the implementa-
tion is similar to the dense case. The function cal-
culating the sparse Jacobian is wrapped in Cython
[4] and passed to KINSOL instead of the dense Ja-
cobian. In this case the Jacobian given by the JMI
interface is given in coordinate or triplet format,
each non zero element is stored as the value along
with the row and column number. The format re-
quired by SuperLU is Compressed Column format

or Harwell-Boeing format where the columns are
stored in one array, their row numbers in one ar-
ray and the index of when the column changes in
a third array [13]. This requires the Jacobian to

be reformated before passing to SuperLU, which is
performed by scipy. The computational e�ort for
this transformation grows linearly with the size of
the problem [6].
In the external linear solver, the methods used

for LU factorization are called in the setup and
the solving routines are called in the solve func-
tion. Regularization is also implemented in the
same fashion as in the dense solver but with sparse
matrices.

6 Results

6.1 Regularization

As mentioned brie�y in the end of Sec-
tion 4.2, the regularization algorithm suc-
ceeds with the constructed example presented
there. A model of a distillation column,
jmodelica.examples.distillation, from the
JModelica.org distribution, is a model with a sin-
gular Jacobian at the initial guess supplied in
the Modelica �le. When solving the initialization
problem with KINSOL coupled with an ordinary
linear solver, the solver fails, stating that the Ja-
cobian could not be LU-factorized. When a reg-
ularized linear solver, like the ones described in
Sections 4.1 and 5.2, are used however, one regu-
larized step is taken and KINSOL then converges
to the solution without having to perform another
regularization step.

6.2 SuperLU

To test the e�ency of the initialization algorithm
with SuperLU, several Modelica models have been
initialized with the sparse and the dense initializa-
tion algorithm. The initialization has been timed
multiple times and a mean value is calculated. The
mean values and medians of the times are later
compared to decide which algorithm is faster. The
tests have been performed on a Intel Core 2 Duo
T5870 processor under 32 bit Windows 7 Profes-
sional.
To test if the initialization algorithm is faster

using SuperLU instead of a dense linear solver
two series of non-linear systems have been com-
pared. From [2] the problem series Broyden and
Moraeux are problems concerning constrained op-
timization but can be seen as a non linear root
�nding problem. A simple script AtoM.py is im-
plemented to translate the models, supplied in the

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

101



AMPL format .mod, to Modelica for later treat-
ment by JModelica.org. These problem series of-
fer similar systems of di�erent size. In Figures
2 and 3 the speedups of both the Broyden and
Moreaux problems are plotted against the num-
ber of variables of the systems. In Figure 2 the
speedup of the total time is plotted while Fig-
ure 3 plots the speedup of the total time except
the time spent evaluating system functions and
Jacobians. Here speedup means the time mea-
sured with dense solver divided by time measured
with sparse solver, ei.e. how many times faster the
sparse solver is than the dense solver. It should be
noticed that computation of Jacobians in JMod-
elica.org used for the benchmarks is slow, due to
limitations in the CppAD package, [3], with re-
gards to sparse Jacobians. Therefore, we focus on
comparison of the time spent in KINSOL in the
cases of sparse versus dense linear solvers.

0 100 200 300 400 500
Size of system

0.6

0.8

1.0

1.2

1.4

1.6

1.8

S
p
e
e
d
u
p
 [

D
e
n
se

 t
im

e
 /

 S
p
a
rs

e
 t

im
e
]

Broyden
Moreaux

Figure 2: Speedup of the total times for the Broy-
den and Moreaux problems.

0 100 200 300 400 500
Size of system

0

5

10

15

20

25

30

35

40

45

S
p
e
e
d
u
p
 [

D
e
n
se

 t
im

e
 /

 S
p
a
rs

e
 t

im
e
]

Broyden
Moreaux

Figure 3: Speedup of the Broyden and Moreaux
problems not counting time in fevals and jevals.

In Tables 1 and 2 the data from the test runs
on the Broyden and Moreaux preoblems are pre-
sented. The data consists of the time spent in to-
tal is presented (tot) along the time spent in KIN-
SOL and linear solver without evaluations of Jaco-
bians and system functions (KIN), the time spent
on evaluating the residual and Jacobian (Evals)
and the number of non-linear iterations required
(iters). The data is scaled by the total time of the
dense solver to simplify comparison.

Table 1: Times measured for the Broyden prob-
lems.

Broyden 10 40 80 320
size 10 40 80 320

tot
Dense 1.0 1.0 1.0 1.0
Sparse 1.530 0.880 0.787 0.738

KIN
Dense 0.452 0.249 0.244 0.243
Sparse 0.425 0.060 0.019 0.006

Evals
Dense 0.548 0.751 0.756 0.757
Sparse 1.105 0.820 0.768 0.732

iters
Dense 17 60 112 137
Sparse 17 60 112 137

Table 2: Times measured for the Moreaux prob-
lems.

Moreaux 10 40 80 160
size 32 122 242 482

tot
Dense 1.0 1.0 1.0 1.0
Sparse 1.010 0.734 0.645 0.584

KIN
Dense 0.666 0.495 0.457 0.435
Sparse 0.580 0.218 0.121 0.062

Evals
Dense 0.334 0.505 0.543 0.565
Sparse 0.430 0.516 0.524 0.522

iters
Dense 38 112 123 137
Sparse 38 112 123 137

The models tested in Tables 1 and 2 are not
models originally written in Modelica but rather
optimization benchmarks. To test how the ini-
tialization algorithm using a sparse solver behaves
when used on 'real' Modelica models, the same
test performed in Tables 1 and 2 are performed on
some models with di�erent sizes in Table 3.

• CSTR: an example from the JModelica.org
package describing two continously stirred
tank reactors in series.

• DIST: an example from the JModelica.org
package already mentioned in Section 6.1.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

102



• CoCy: a Modelica model describing a com-
bined cycle power plant initialized at full load.

Table 3: Times measured for the Modelica models.
Model CSTR Dist CoCy
size 15 99 150

tot
Dense 1.0 1.0 1.0
Sparse 1.112 0.599 0.635

KIN
Dense 0.645 0.552 0.426
Sparse 0.610 0.115 0.112

Evals
Dense 0.355 0.448 0.574
Sparse 0.502 0.484 0.523

iters
Dense 10 24 34
Sparse 10 24 34

6.3 Sparsity of Jacobians

It is also interesting to take a look at the sparsity of
the systems to put the results obtained in Section
6.2. In Table 4 the sparsity of the systems, that
is the sparsity of the system Jacobian, timed in
Table 1 and 2, are presented.

Table 4: Sparsity measured in the percentage of
elements di�ernet from zero in the Jacobian.
Model 10 20 40 80 160 320
Broyden 54.0 31.0 16.5 8.5 4.31 2.17
Moreaux 8.98 4.73 2.43 1.23 0.62 -

In Table 5 the sparsity of the Modelica mod-
els timed in Table 3 are presented supporting the
hypothesis of bigger models being more sparse..

Table 5: Sparsity measured in the percentage of
elements di�ernet from zero in the Jacobian.
Model Size Sparisty
CSTR 15 24.0
DIST 99 2.67
CoCy 150 1.75

7 Conclusions

The regularization method is handling singular Ja-
cobians at initialization. So far, no models, sup-
ported by JModelica.org, have caused the initial-
ization algorithm based on regularization to stop
due to a singular Jacobian. A problem with a sin-
gular Jacobian at the solution is however solved

slower, as shown in the end of Section 4.1. Pan
and Fan [10] proposes techniques to handle this
problem that may be used in a later implementa-
tions.
Table 5 imply that larger Modelica models are

more sparse than smaller Modelica models, thus
supporting the hypothesis stated in section 5.1 of
Modelica models getting more sparse as they grow
in size.
Regarding sparsity, Figures 2, 3 and Tables 1,

2 and 3 imply that the problems are initialized
faster with the sparse version of the initialization
algorithm. Due to CppAD slowing down the eval-
uations of Jacobian, the times spent in KINSOL
are compared instead of the total time.
When applied to the Modelica models in Ta-

ble 3, the sparse version solves the bigger prob-
lems (of size n ≈ 100 or bigger) around 4-5 times
faster than the dense version. The bigger bench-
marks from the Broyden and Moreaux series show
an even bigger speedup, Broyden320 is for example
solved 40 times faster. For smaller model, like the
model of the two stirred tank reactors, the orga-
nizational e�ort of SuperLU and the model being
less sparse, outweighs the advantages and the two
methods are equal.
In the benchmarks presented here, the time for

evaluating Jacobians outweights the time spent in
KINSOL, especially if SuperLU is employed. This
is due to the fact that the package used for gener-
ation of Jacobians has weak support for computa-
tion of sparse deriviatives. This de�ciency will be
adressed in future versions of JModelica.org.
In conclusion, the sparse version of the initial-

ization algorithm is advantageous when applied
to bigger models. For smaller models however,
the two version performs equally. However, the
slow evaluation of sparse Jacobians make the dense
solver a better choice for smaller models.

References

[1] The assimulo homepage. http://www.

jmodelica.org/page/199.

[2] The coconut benchmark: Library 3 constraint
satisfaction test problems. http://www.mat.
univie.ac.at/~neum/glopt/coconut/

Benchmark/Library3_new_v1.html.

[3] The cppad webpage. http://www.coin-or.

org/CppAD/.

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

103



[4] Stefan Behnel, Robert Bradshaw, Dag Sverre
Seljebotn, and other contributors. Cython c-
extensions for python - homepage. http://

www.cython.org/.

[5] Aaron M. Collier, Alan C. Hindmars-
hand Radu Serban, and Carol S. Woodward.
User Documentation for kinsol v2.6.0. Center
for Applied Scienti�c Computing, Lawrence
Livermore National Laboratory, May 2009.

[6] The SciPy community. SciPy Reference

Guide, 0.9.0.dev6665 edition, October 2010.

[7] J.E. Dennis and R.B. Schnabel. Numerical

methods for unconstrained optimization and

nonlinear equations. Prentice Hall, 1983.

[8] Hilding Elmqvist. A Structured Model Lan-

guage for Large Continuous Systems. PhD
thesis, Department of Automatic Control,
Lund University, Sweden, may 1978. TFRT-
1015.

[9] Jan Eriksson. A note on the decomposition of
systems of sparse non-linear equations. BIT

Numerical Mathematics, 16(4):462�465, 1976.
10.1007/BF01932730.

[10] Jinyan Fan and Jianyu Pan. A note on
the levenberg-marquardt parameter. Applied
Mathematics and Computation, 207:351�359,
2009.

[11] John E. Hopcroft and Richard M. Karp. An
2/5 algorithm for maximum matchings in bi-
partite graphs. SIAM Journal on Computing,
2(4):225�231, 1973.

[12] X. S. L. W. Demmel James W. Demmel, John
R. Gilbert, Stanley C. Eisenstat, John R.
Gilbert, Xiaoye S. Li, and Joseph W. H. Liu.
A supernodal approach to sparse partial piv-
oting. SIAM J. MATRIX ANAL. APPL,
20(3):720�755, 1999.

[13] Xiaoye S. Li James W. Demmel, John
R. Gilbert. SuperLU Users Guide.

[14] Johan Åkesson, Karl-Erik Årzén, Mag-
nus Gäfvert, Tove Bergdahl, and Hubertus
Tummescheit. Modeling and optimization
with optimica and jmodelica.org - languages
and tools for solving large-scale dynamic op-
timization problem. Computers and Chemical
Engineering, 34(11):1737�1749, nov 2010.

[15] K. Levenberg. A method for the solution of
certain nonlinear problems in least squares.
Quart. Appl. Math., 2:164�166, 1944.

[16] D.W. Marquardt. An algorithm for least-
squares estimation of nonlinear inequalities.
SIAM J. Appl. Math., 11:431�441, 1963.

[17] S.E Mattson, H. Elmqvist, M. Otter, and
H. Olsson. Initialization of hybrid di�erential-
algebraic equations in modelica 2.0. In
Second International Modelica Conferencem,

Proceedings, pages 9�15. The Modelica Asso-
ciation, March 2002.

[18] Sven Erik Mattsson and Gustaf Söderlind. In-
dex reduction in di�erential-algebraic equa-
tions using dummy derivatives. SIAM J. Sci.

Comput, 14(3):677�692, May 1993.

[19] Arnold Neumaier. Solving ill-conditioned and
singular linear systems: A tutorial on reg-
ularization. SIAM Review, 40(3):636�666,
September 1998.

[20] Jorge Nocedal and Stephen J. Wright. Nu-

merical Optimization. Springer, 2006.

Acknowledgements

The authors would like to acknowledge the kind
assistance from Francesco Casella in providing the
Combined Cycle benchmark model used in the
paper. This work was partially funded by the
Swedish funding agency Vinnova under the grant
program "Forska and Väx".

Proceedings 8th Modelica Conference, Dresden, Germany, March 20-22, 2011 

104




