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Abstract: The purpose of this paper is to clarify the effects of a combination of electricity rates, the price of the 
electricity generated with a photovoltaic (PV) system, and a subsidy when a government aims at achieving a 
certain level of PV-system adoption. A microeconomic model based on classical demand theory is made. The 
case is mainly analyzed where the amount of PV-generated electricity is different from household to household 
while the amounts of electricity consumption and budget as well as utility functions are identical. Other cases are 
also mentioned. It is shown that a household prefers a higher PV-generated electricity price with a higher 
electricity rate to a higher subsidy if any one of the following conditions is satisfied with other things being 
equal: (1) it will have a relatively large amount of PV-generated electricity if it installs; (2) it has a relatively 
large amount of budget; or (3) it has a relatively small amount of electricity consumption. Furthermore, other 
things being equal, the difference in utility functions has no effect on the preference. This suggests, though the 
mixed effects of these conditions are not examined, that a combination optimal for a household does not always 
optimal for another. 
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1. Introduction 
There will be several measures to promote adoption of residential photovoltaic (PV) systems. 
One is that a government subsidizes a household to install the system. Another one is that the 
electricity generated by a PV system is purchased by an electric utility. Moreover, the retail 
rate of electricity will influence a household’s economic situation and affect the decision to 
install the system. Accordingly, three parameters, an electricity rate, a price at which the PV-
generated electricity is purchased by a utility, and a subsidy for installation, play a role in 
increasing the number of system-installed households. A government generally has control 
over these parameters. The purpose of this study is to obtain information available when a 
government sets them.  
 
Most of existing studies addressing relevant issues are empirical or simulation ones 
calculating the value of PV systems or a break-even point, a combination of the parameters 
that makes it pay a household to install the system. For example, Mills et al. (2008) examine 
empirically the impact of electricity rate design on the economic value of PV systems for 
commercial customers in California. Carley (2009) shows using a two-part probit model that 
interconnection standards and RPS policies significantly increase the likelihood that a 
customer will adopt distributed generation capacity in the U.S. Rigter et al. (2010) determine 
the cost of PV system and obtain the optimal feed-in tariff by net present value analysis with 
Chinese data. Black (2004) shows that PV system installation is financially feasible under 
government incentives, net metering, high electricity rates, and other conditions in terms of 
rate of return, increase in property value, and cash flow. 
 
These studies show the three parameters play an important role but do not deal with 
interrelations among them explicitly. This paper aims at filling this gap. I employ a different 
approach based on classical demand theory, in which consumers make decisions about 
purchases of goods by maximizing utility subject to budget constraints. Interestingly, to the 
best of my knowledge, the problem has not been investigated this way. I make a 
microeconomic model, examine efficient combinations of the parameters when a government 
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intends to make a given number of households install the system, and analyze the payoffs of 
the relevant parties such as system-installed households, no-system households, and an 
electric utility. 
 
I identify the locus of an electricity rate, a PV-generated electricity price, and a subsidy on 
which a government can make a given number of households install the system. The utility 
levels of a system-installed household and a no-system household are calculated and the 
utility maximization point for each household is identified. This will make some contribution 
to the discussion on how the electricity rate, the PV-generated electricity price, and the 
subsidy should be set from an equity point of view. 
 
2. Methodology 
A microeconomic model is set up. Since rational consumers will optimize decisions on 
purchasing PV systems based on their usual lifespan of 10-20 years, all quantities and 
monetary values employed in the model are set forth in terms of a fixed system lifespan. 
 
Consider N households with a market consisting of three goods: electricity, PV systems, and a 
composite of conventional goods. N is sufficiently large. The government has a target of 
installed systems in n of N households.  
 
Since the price elasticity of demand for electricity may be very low, we assume that if 
electricity rates change, household electricity consumption, x, will remain constant. Each 
installed PV system produces e units of electricity. It is assumed that ex > .  
 
All monetary value is normalized without loss of generality such that the price of the 
composite good is 1. The price of a PV system, which includes the prices of PV generation 
equipment and installation, is denoted by K and is constant.  
 
In the model, a single electric utility, a government-regulated monopoly, supplies electricity 
to all households. Electricity rates may therefore be understood to be set by the government. 
For analytical simplicity, we assume the electricity rate to be a single, variable rate. Let c 
represent the cost of generating a unit of electricity for the electric utility. Suppose the 
conventional electricity rate is set at c. 
 
Let y represent the budget of a household. The sum of the budgets of all households is 
denoted by Y. Funds for the subsidy are raised by taxation. It is assumed that a household 
must pay a tax according to its income, that is, the budget. Let S be a subsidy for a household 
with an installed system. Then the tax rate for each household should be YnS . 
 
Let the quantities of PV systems and composite goods purchased by a household be denoted 
by q1 and q2, respectively, with q1 taking one of two values, 0 (no PV system installed) or 1 
(PV system installed). Let the utility function be denoted by ),( 21 qqu . We exclude utility 
obtained from electricity consumption. A household can do without a PV system since it can 
purchase all the electricity it consumes from the electric utility. Hence, it is plausible that the 
installation of a PV system can be valued in terms of finite quantities of the composite good. 
Thus, we define a function )( 2qv  such that the utility level at point ( )2,0 q  is equal to that at 
point ( ))(,1 22 qvq −  on the r-p plane, i.e., ( ))(,1),0( 222 qvququ −= . In other words, function 

)( 2qv  indicates the opportunity cost of installing the system in terms of the quantity of the 
composite good. It is reasonable to assume that )( 2qv  should satisfy 22 )(0 qqv ≤≤ . )( 2qv  is 
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twice differentiable and that it holds that 1)(0 2 <′< qv  and 0)( 2 <′′ qv . This implies that the 
larger the budget of a household, the higher the value of a PV system to that household, but 
the smaller the incremental value. 
 
3. Results 

There are many variables to be considered, e, x and y as well as ),( 21 qqu  and )( 2qv . It is 
difficult to deal with them simultaneously, so we focus on e in subsection 3.1 and then 
mention how to deal with the other variables in subsection 3.2. 
 
3.1. Different amounts of PV-generated electricity 
Suppose that household i’s amount of PV-generated electricity is ei. It is assumed that ji ee >  
for all i and j such that ji < . It holds nn i eeN ∑>  since N is sufficiently large. It is assumed 
that for any household i, iceKcxyv −<− )(  and ierKxryv 00 )( −≥−  for some sufficiently large 
r0. The meaning of this assumption, as shall become clear, is that if the electricity rate and 
PV-generated electricity price are both c when 0=S , no household will install PV systems, 
and that if both are r0, all households will install systems. 
 
The budget of household i increases practically from ( ) rxyYnS −−1  to 
( ) ipeSrxyYnS ++−−1  if it installs a PV system. This is equivalent to the situation in which 
the budget remains at the same level ( ) rxyYnS −−1  while the price of PV systems decreases 
by ipeS + . Hence, the budget constraint of household i is ( ) ( ) rxyYnSqqpeSK i −−≤+−− 121 . 
 
Since households maximize utility subject to the budget constraint, household i installs the 
system if ( ) ipeSKrxyYnSv −−≥−− )1(  and does not if ( ) ipeSKrxyYnSv −−<−− )1( . 
Therefore, the necessary and sufficient condition for exactly n households to install the 
system is that the two inequalities ( ) npeSKrxyYnSv −−≥−− )1(  and 
( ) 1)1( +−−<−− npeSKrxyYnSv  hold simultaneously. It will be shown step by step that there 

exists a combination ( )Spr ,,  that satisfies the following equation: 
 

npeSKrxy
Y
nSv −−=








−






 −1 . (1) 

 
Eq. (1) guarantees that exactly n households install the system. 
 
3.1.1. Controls of price and rates 
We first analyze a special case, where 0=S . Let us make the arguable assumption that as the 
electricity rate rises, it becomes more favorable for a household to install a system and 
generate electricity itself, rather than purchase it if the PV-generated electricity is purchased 
at the electricity rate. In other words, it holds that ( )ireKrxyv −−− )(  is increasing in r, i.e., 

ierxyvx <−′ )( . 
 
Lemma 1. There exist r1 and p1 that uniquely satisfy Eqs. (2) and (3), respectively. 
 

nerKxryv 11 )( −=− , (2) 
 

nepKcxyv 1)( −=− . (3) 
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Proof. These are shown from the assumptions iceKcxyv −<− )( , ierxyvx <−′ )( , and 

ierKxryv 00 )( −≥− . 
 
Suppose the government chooses the lowest r for any p or the lowest p for any r to make 
exactly n households install systems.  
 
Lemma 2. The r and p set by the government must satisfy the following equation:  
 

npeKrxyv −=− )( . (4) 
 
Proof. The curve defined by Eq. (4) on the r-p plane connects points ( )1, pc  and ( )11, rr , and is 
strictly upward-sloping (Fig. 1). Hence, there exists a unique solution r for any p that satisfies 
Eq. (4), and vice versa. A point on the curve represents the lowest r for any p or the lowest p 
for any r that satisfies the two inequalities. 
 

p

r

S

c
0

r2 r1

c

p1
p2

r1

S1

θ−

 
Fig. 1.  The curves guaranteeing that exactly n households install the PV system in the r-p-S space. 
The dashed curve corresponds to the case where there is no subsidy. The solid curve corresponds to 
the case where a subsidy is introduced with the electric utility being compensated for the costs of 
purchasing PV-generated electricity. 
 
The utility levels of system-installed household i and a no-system household, and the profit of 
the electric utility, are as follows, respectively: 
 
( ))(,1 ipeKrxyu −−−  ( )ni ,,1= , (5) 

 
),0( rxyu − , (6) 

 
( ) ( )∑−−− n iecpNxcr . (7) 
 
The government may make its decisions in determining r and p that the electric utility should 
be compensated for the costs of purchasing PV-generated electricity. Namely, the profit of the 
utility (7) is set at zero: 
 
( ) ( ) 0=−−− ∑n iecpNxcr . (8) 
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This forms a straight line containing point ( )cc,  on the r-p plane. Solving simultaneous 
equations (4) and (8) for r and p we obtain the solution ( )22 , pr  shown in Fig. 1. 
 
3.1.2. Controls of subsidy for households 
Next we analyze another special case, where cpr == .  
 
Lemma 4. There exists a unique solution, S1, that satisfies Eq. (1) when cpr == . The 
government chooses S1. 
 
Proof. ( ) ( )nceSKcxyYnSv −−−−− )1(  is strictly increasing in S, and negative if 0=S  and 
positive if ( ) ( )nnyYxcrS −= 0 . Therefore, there exists a unique solution S1.  
 
3.1.3. Controls of price, rates, and subsidy 
Now we return to a general case. Suppose that the electric utility is compensated for the costs 
of purchasing PV-generated electricity, that is, Eq. (8) holds. 
 
Proposition 1. The curve defined by simultaneous Eqs. (1) and (8) is convex and connects 
points ( )0,, 22 pr  and ( )1,, Scc  in the r-p-S space (Fig. 1). The government chooses the r, p, and 
S on the curve. 
 
Proof. See Appendix 1. 
 
The utility levels of system-installed household i and a no-system household are as follows, 
respectively:  
 









−−−−






 − )(1,1 ipeSKrxy

Y
nSu   ( )ni ,,1= , (9) 

 









−






 − rxy

Y
nSu 1,0 . (10) 

 
The combination ( )Spr ,,  that maximizes the utility of each household is obtained by 
maximizing the quantity of q2 subject to simultaneous Eqs. (1) and (8). Let us investigate 
such a combination.  
 
Proposition 2. For system-installed household i, the optimal combination is ( )0,, 22 pr  if 

nee n ii ∑≥ . Specifically, the optimal combination is ( )0,, 22 pr  for household 1. On the other 
hand, for system-installed household n and no-system households, the optimal combination is 
( )1,, Scc .  
 
Proof. See Appendix 2. 
 
Proposition 2 implies that if a household will have a relatively large amount of PV-generated 
electricity with a PV system, it prefers ( )0,, 22 pr , while if it will have a relatively small 
amount of PV-generated electricity, it prefers ( )1,, Scc . 
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3.2. Modeling differences in budgets, electricity consumption, or utility functions 
First, suppose the amount of budget of household i is yi while x and e are constant. To take 
into account that as a budget increases, installing a PV system becomes easier, we assume that 

ji yy >  for all i and j such that ji < . We can then do an analysis similar to the case 
considered above and show if a household has a relatively large budget, it prefers ( )0,, 22 pr , 
while if it has a relatively small budget, it prefers ( )1,, Scc . 
 
Next, suppose the amount of electricity consumed in household i is xi, where exi > , while e 
and y are constant. As the amount of electricity consumption increases, the budget for 
purchasing a PV system and the composite good decreases, and therefore installing a system 
becomes more difficult; to take this into account, we assume that ji xx <  for all i and j such 
that ji < . Then a similar analysis can be done and it is shown if a household has a relatively 
small amount of electricity consumption, it prefers ( )0,, 22 pr , while if it has a relatively large 
amount of electricity consumption, it prefers ( )1,, Scc .  
 
Lastly, we consider the case in which utility functions are different from household to 
household. Suppose household i has a utility function ),( 21 qqui , while e, x, and y are constant. 
Assume ),(),( 2121 qquqqu ji >  for all i and j such that ji <  for any ( )21,qq  and define a function 

)( 2qvi  such that ( ))(,1),0( 222 qvququ iii −=  and )()( 22 qvqv ji > . The analysis in this case can 
also be done in the same way. In this case, it is shown that any combination ( )Spr ,,  
guaranteeing exactly n households install the PV system bring about the same level of utility 
to each household regardless of PV system installation. 
 
4. Conclusions 
In this paper, I have analyzed the relationship between an electricity rate, a PV-generated 
electricity price, and a subsidy to achieve a certain level of PV system installation, and 
examined the impact on the utility of households.  
 
I found that a household prefers a higher PV-generated electricity price with a higher 
electricity rate to a higher subsidy if any one of the following conditions is satisfied with other 
things being equal: (1) it will have a relatively large amount of PV-generated electricity if it 
installs a PV system; (2) it has a relatively large amount of budget; or (3) it has a relatively 
small amount of electricity consumption. Furthermore, other things being equal, the 
difference in utility functions of households has no effect on the preference. 
 
The results imply that welfare distribution varies depending on the parameter settings even if 
a fixed number of households install PV systems. This is because each household has its own 
amounts of PV-generated electricity, budget, and electricity consumption and utility function. 
Hence, it will be difficult to set parameters with which every household is satisfied. It then 
may be a policy option that a menu consisting of a combination of an electricity rate, a PV-
generated electricity price, and a subsidy for installation is offered to households. This may 
relieve unfairness to some extent. 
 
In the model, each effect of the amounts of PV-generated electricity, budget, and electricity 
consumption and utility functions was investigated separately but the mixed effect of them 
was not. Investigating the mixed effects is very important particularly when a government 
practically determines the value of each parameter. An analytical approach used in this paper 
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may be difficult to apply directly but the formulation can be used if, for example, a simulation 
method is used.  
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Appendix 1: Proof of Proposition 1 

The curve defined by simultaneous equations (1) and (8) connects ( )0,, 22 pr  and ( )1,, Scc  in the 
r-p-S space. First, we show the curve is strictly downward-sloping. Define θ  as the angle 
formed by the line (8) and the r-axis on the r-p plane (Fig. 1). Then it follows that 

Aen i∑=θcos  and ANx=θsin , where ( ) ( )22 NxeA n i += ∑ . We are allowed to show the 
proposition with respect to the curve obtained by rotating the original curve define by (1) and 
(8) around the S-axis by θ− . The obtained curve is on the r-S plane: 
 

( ) ( ) n
n i ecr

A
NxcSKx

A
ecrcy

Y
nSv 



 −+−−=












 −+−






 − ∑1 . (A1) 

 
The slope of the tangent is as follows: 
 

( )[ ]
( ) ( )SrvNn

AxeSrvNe
dr
dS n in

,1
,

′−
′−

−= ∑ , (A2) 

 
where ( ) ( )[ ]( )xAecrcyYnSvSrv n i∑−+−−′≡′ )1(, . 
 
This is strictly negative due to the assumption ∑> n in eNe , and thus the curve is strictly 
downward-sloping. Hence, there exists a unique solution r for S and vice versa that satisfies 
simultaneous equations (1) and (8). The government will choose a point on the curve since 
points on the curve represent the lowest r for S or the lowest S for r that satisfies the two 
inequalities.  
 
It can be verified that the second-order differential 22 drSd  is always positive since 

0)( 2 <′′ qv . Hence, the curve is convex in the r-p-S space. 
 
Appendix 2: Proof of Proposition 2 
We are allowed to prove Proposition 2 with respect to the rotated curve around the S-axis by 
θ− . First, I deal with system-installed household i. The quantity of q2 when 11 =q  is as 

follows: 
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( ) ( ) ( )cexKycr

A
xeNeS

N
n

i
n ii −−−+−

−
+






 − ∑1  ( )ni ,,1= . (A3) 

 
The points giving a fixed amount of q2 form a straight line on the r-S plane. The quantity of 
q2 is always increasing in r due to the assumption ∑> n in eNe  and in S, too. The slope of the 
line giving a fixed amount of q2 is obtained from (A3).  
 

( )
Nn

AxeNe
dr
dS n ii

−
−

−= ∑
1

  ( )ni ,,1= . (A4) 

 
This is strictly negative due to the assumption ∑> n in eNe . The difference of the absolute 
values of slopes (A4) and (A2), which is denoted by ),( SrFi , follows: 
 

( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( ) ( )[ ]SrvNnNn

SrveneenNeNe
A
x

SrvNn
AxeSrvNe

Nn
AxeNeSrF

n iinn ii

n inn ii
i

,11
,

,1
),(

1
),(

′−−
′−−−−−

⋅=









′−

′−
−








−
−

≡

∑∑

∑∑

. (A5) 

 
The sign of ),( SrFi  is positive if nee n ii ∑≥ . Then, the optimal point is ( )0,, 22 pr  for 
household i since the utility is increasing both in r and S. For household n, the optimal point is 
( )1,, Scc  since ( ) 0, <SrFn . Note that if ji < , i.e., ji ee > , the absolute value of drdS  of 
household i is larger than that of household j from Eq. (4). 
 
The proof for a no-system household is done similarly. We obtain the quantity of q2 when 

01 =q  as a function of r and S: 
 

( ) cxyS
N
ncr

A
ex n i −+−−− ∑ . (A6) 

 
This is always decreasing both in r and S. The slope of the line giving a fixed amount of q2 
for a no-system household is obtained from (A6):  
 

Nn
Aex

dr
ds n i∑−= . (A7) 

 
This is negative. The difference of the absolute values of slopes (A7) and (A2), which is 
denoted by ),( SrG , is as follows: 
 

( )
( ) ( )

( ) ( ) ( )[ ]SrvNnNn
nee

A
x

SrvNn
AxeSrvNe

Nn
AexsrG

nn i

n inn i

,1

,1
),(),(

′−
−

⋅=









′−

′−
−








≡

∑

∑∑

. (A8) 

 
This is always positive. Therefore, the optimal point is ( )1,, Scc  since the utility is decreasing 
both in r and S. 
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