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Abstract

This paper presents a practical case where parallelization
for multi-core processors can be exploited in Modelica
models using OpenMP. Although this parallelization is ap-
plied to a particular case and to a particular section in the
code, the parallel implementation is straightforward and a
gain in speed of around 11% is obtained. The particular sec-
tion in the code is the initial section and the particular case
is to consider that the initial section is time consuming and
the operations are independent from each other. The par-
ticular case is tested in a real dynamic model during the
simulation and calibration processes. The most appealing
feature of this method is that it is straightforward to imple-
ment and that it could be easily adopted by equation-based
modelling languages. On the other hand, the process is not
automatically performed and the modeller needs to have a
minimum knowledge about parallel computing.

Keywords Modelica, OpenMP, parallelization, initial sec-
tion, multi-core processors

1. Introduction

Nowadays, modern equation-based object-oriented (EOO)
modelling languages are continuously increasing their ex-
pressiveness to describe and model complex systems. How-
ever, there is an important drawback of having large and
complex system models, the required computational effort
to simulate is very high.

Commonly, EOO models are compiled as single-threaded
executables not taking advantage of the newest multi-core
processors available even on desktop computers. Moreover,
and considering the particular case of Modelica [13], the
extension of the language to consider multi-core proces-
sors is not easy due to the flattening of the equation-based
object-oriented Modelica code into C code.
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With regard to parallelization in EOO modelling lan-
guages it is worth mentioning [3, 4, 12, 19]. This paper does
not pretend to be a meticulous study about parallelization
in EOO modelling languages, it just describes a straight-
forward parallelization method in the initial section of the
resulting C source code obtained from the Modelica model,
and not considering the parallelization in the numerical in-
tegration process.

2. OpenMP

OpenMP (Open Multi-Processing) [2] is an application
programming interface (API) for multi-platform (Unix and
Microsoft Windows platforms) shared-memory parallel
programming in C/C++ and Fortran. It provides a sim-
ple and flexible interface to develop parallel applications
by means of a set of compiler directives, library routines,
and environment variables. Its applicability ranges from
desktop computers to clusters and supercomputers.

OpenMP is maintained by the OpenMP Architecture
Review Board (ARB). The first OpenMP API specifica-
tions was released in 1997 for Fortran 1.0 whereas for the
C/C++ languages was released the following year, in 1998.
The OpenMP version 2.0 was released in 2000 and 2002
for Fortran and C/C++ respectively. In 2005, both versions
were unified in version 2.5. Version 3.0 was released in
2008. The current version, version 3.1, has been recently
released in June, 2011.

The key concept in OpenMP is multithreading, in this
method of parallelization the master thread forks a series
of slave threads for particular parallel tasks, the run-time
environment is responsible of allocating the threads to dif-
ferent processors or cores. Figure 1 illustrates this concept,
where the master thread forks 2 additional threads for tasks
I, 3 additional threads for task II and 1 additional thread for
task III.

The core elements of the OpenMP API are summarized
and briefly explained in the following list.

• Parallel control directives. They control the flow exe-
cution of the program (i.e. parallel directive).

• Work sharing. They distribute the execution of instruc-
tion among the processors or cores (i.e. parallel for or
section structures).
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Figure 1. OpenMP multithreading concept [1].

• Data environment. It is defined by the scope variables,
shared and private.

• Synchronization. It is controlled by the critical, atomic

and barrier directives.

• Run-time functions. Set and provide run-time informa-
tion (i.e. omp_set_num_thread()and omp_get_num_thread()

which set and obtain the maximum number of threads
that can be allocated).

3. Real System Under Study

This section explains briefly the facility under study, the de-
veloped Modelica model and the defined simulator scheme
to facilitate the simulation, calibration and validation pro-
cesses.

3.1 DISS facility: Direct Steam Generation

Parabolic-Trough Solar Thermal Power Plant

The real system under study is the CIEMAT-PSA (Centro
de Investigaciones Energéticas Medioambientales y Tec-
nológicas - Plataforma Solar de Almería, a Spanish govern-
ment research and test center) DISS (DIrect Solar Steam)
test facility, a parabolic-trough solar thermal power plant.
A general view of this facility is shown in Figure 2.

The parabolic-trough technology is one of the several
different solar thermal concentrating technologies avail-
able. Parabolic-Trough Collectors (PTCs) are solar concen-
trators which convert the direct solar radiation into thermal
energy, heating a heat transfer fluid (HTF) up to around
675K. Their high working temperature makes PTCs suit-
able for supplying heat to industrial processes, replacing
traditional fossil fuels [11] [18].

The HTF used in the DISS test facility is the two-phase-
flow steam-water, which circulates in three different states,
subcooled liquid, steam-water mixture and superheated
steam.The aim of the DISS facility is to develop a new
generation of solar thermal power plants using parabolic-
trough collectors to produce high pressure steam in the
absorber tubes, thus eliminating the oil commonly used as
a heat transfer medium between the solar field and the con-
ventional power block. This kind of technology is known

as Direct Steam Generation (DSG), it increases overall sys-
tem efficiency while reducing investment costs.

3.2 Modelica model

A DISS solar thermal power plant equation-based object-
oriented dynamic model was developed to study the behav-
ior of the real plant [17]. An EOO methodology was chosen
in order to describe the system as a set of equations which
are acausal, maintaining it mathematical meaning. More-
over, a object-oriented methodology allows to define basic
models which can be reused to develop new complex mod-
els without additional effort [5]. This methodology allows
to develop reusable and easy to maintain components.

The modelling language chosen was Modelica. Model-
ica is developed and maintained by the Modelica Associa-
tion. Modelica is a suitable modelling language to develop
complex mathematical models of physical systems. Mod-
elica also has useful libraries to develop thermo-hydraulic
systems. Modelica Media [14] is a thermodynamic proper-
ties computation library, which follows IAPWS (the Inter-
national Association for the Properties of Water and Steam)
recommendations in its latest IF97 formulation, (Industrial
Formulation 1997) [10]. This formulation is optimised for
short computing times and low CPU load. Furthermore, the
ThermoFluid library [16, 8] provides a framework and ba-
sic components for modelling thermo-hydraulic and pro-

Figure 2. General view of the DISS test facility owned by
Plataforma Solar de Almería (CIEMAT).
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cess systems in Modelica. The Integrated Development En-
vironment (IDE) chosen, which supports the Modelica lan-
guage, has been Dymola [7].

Figure 3 shows the DISS test facility Modelica compo-
nent diagram which has 11 PTC components. The model
inputs are: the ambient temperature (Tamb), the solar ra-
diation (Rad), regarding the HTF, the inlet temperature
(inletT emp), the inlet pressure (inletPres) and the mass
flow (mdot_ws) of the fluid, the three last inputs are also
provided for the last PTC injector.

3.3 Simulator scheme

With the aim of facilitating the settlement of the initial
conditions for the simulation, the calibration and validation
processes, a simulator scheme was developed. Figure 4
shows the DISS facility simulator scheme which is not
only the model itself but a series of tools to facilitate the
simulation.

Among the developed tools in the simulator scheme, it
is worth mentioning the following.

• A web application to easily access the real data from the
data acquisition system (DAS) with the aim of compar-
ing the real data with the simulation results and also to
obtain the initial conditions for the dynamic simulation.

• A computer program to convert the real data obtained
from the web application to a input trajectory file used
in the Dymola IDE.

• A Modelica library to retrieve the initial values from the
trajectory file and solve the initial condition problem.
This Modelica library reads the input trajectory file to
set values to certain parameters which are used to solve
the initial condition problem. These reading operations
are time consuming and they can be easily parallelized.

The calibration process has been performed using Mat-
lab/Simulink [15]. Dymola includes mechanisms to ex-
port Modelica models to Simulink in a easy and direct
way using a Simulink block where parameters and inputs
can be defined. The Matlab Genetic Algorithm Toolbox
[6] has been used to calibrate the DISS model, a multi-
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Figure 3. DISS test facility Modelica model.

objective approach was selected in order to minimize the
absolute value of the percentage relative error between the
real and simulated output temperatures for each PTC. Fig-
ure 5 shows the DISS Simulink block in Matlab. More in-
formation about calibration of Modelica models in Matlab
together with a practical example can be found in [9].

4. Initial Section Parallelization

As previously explained in section 3.3, a Modelica library
was developed to retrieve real data from the input trajec-
tory file with the aim of setting several parameters to solve
the initial condition problem. Reading from a text file is a
time consuming operation. Some data must be read from
this input file, including the initial inlet and outlet pressure,
temperature, mass flow of the HTF, etc. These reading op-
erations can be easily parallelized because they are inde-
pendent from each other.

The procedure to parallelize the initial section in the re-
sulting C code, obtained from the translation of the Model-
ica model by the Dymola tool, is the following.

1. In the resulting C source code generated by the Dymola
tool (dsmodel.c), it has been included a reference to the
OpenMP header (omp.h), as shown in Listing 1, in order
to use in the source code, the OpenMP API, directives
and functions.

1 # i n c l u d e <omp . h>

Listing 1. OpenMP header inclusion

2. Set the maximum number of threads to be executed
using the omp_set_num_threads() function as shown
in Listing 2. In our particular case this value was set
considering the number of the processor cores, 4 cores.

1 c o n s t a n t i n t NCores = 4 ;
omp_se t_num_threads ( NCores ) ;

Listing 2. Setting the maximum number of threads

Figure 5. DISS Simulink block.
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Figure 4. DISS simulator scheme.

# pragma omp p a r a l l e l
2 {

# pragma omp s e c t i o n s
4 {

# pragma omp s e c t i o n
6 {

. . . . . . . .
8 . . . . . . . .

T [ 0 ] = g e t I n i V a l u e ( in iT ime , "Tem PTC1" ) ;
10 T [ 1 ] = g e t I n i V a l u e ( in iT ime , "Tem PTC2" ) ;

. . . . . . . .
12 . . . . . . . .

}
14 # pragma omp s e c t i o n

{
16 . . . . . . . .

. . . . . . . .
18 p [ 0 ] = g e t I n i V a l u e ( in iT ime , " P r e s PTC1" ) ;

p [ 1 ] = g e t I n i V a l u e ( in iT ime , " P r e s PTC2" ) ;
20 . . . . . . . .

. . . . . . . .
22 }

# pragma omp s e c t i o n
24 {

. . . . . . . .
26 . . . . . . . .

r [ 0 ] = g e t I n i V a l u e ( in iT ime , " Rad PTC1" ) ;
28 r [ 1 ] = g e t I n i V a l u e ( in iT ime , " Rad PTC2" ) ;

. . . . . . . .
30 . . . . . . . .

}
32 # pragma omp s e c t i o n

{
34 . . . . . . . .

. . . . . . . .
36 m[ 0 ] = g e t I n i V a l u e ( in iT ime , " Mflow PTC1" ) ;

m[ 1 ] = g e t I n i V a l u e ( in iT ime , " Mflow PTC2" ) ;
38 . . . . . . . .

. . . . . . . .
40 }

}
42 }

Listing 3. OpenMP parallel sections

3. Locate the initial section/s in the dsmodel.c file which
can be identified in the C source code by the InitialSec-

tion identifier.

After that, the sentences in the initial section must be
manually distributed between the different threads to
balance the computational load between cores. For that
purpose the OpenMP sections directives were used, the
source code is shown in Listing 3.

First, the parallel directive was used to indicate that
the following sentences must be executed in parallel,
then the sections and section directives were used to
define 4 sections which correspond with 4 threads. The
reading operations were equally distributed between the
4 sections, each one executed by a different thread in
each available processor core.

4. Compile the dsmodel.c including the OpenMP library.
For the GNU Compiler Collection (GCC) in Linux op-
erating systems, only the -fopenmp modifier is nec-
essary to compile the dsmodel.c source code with
OpenMP support. For that purpose, a script file, com-

pile.sh, was created to include the previously mentioned
modifier in the compilation script. The default compi-
lation script for the Dymola tool in Linux operating
systems is dsbuild.sh.

The previously described procedure to parallelize the
initial section of Modelica models must be done manually.
It could be worth studying how this procedure could be
performed directly in the Modelica code and not in the
resulting C source code. However, this is not easy, only
constant and parameter values can be paralellized with this
approach. Obviously, time consuming operation must be
involved in the computation of these values because in
other case no performance improvement in simulation will
be obtained. It must be also taken into consideration the
dependencies between these values to properly distribute
their calculation between the different threads.
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Figure 6. Real and simulated output DISS field temperature in the calibration process.
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Figure 7. Real and simulated output DISS field temperature in the validation process.

5. Simulation Results

The tests presented in this section were performed using
a Intelr CoreTM i5 CPU M540, 2.53 GHz. Several tests
using different input trajectory files from several operation
days were performed and a mean execution time has been
calculated. It is important to note that the parallelization
is only considered in the initial section and not during the
numerical integration.

The simulation statistics are summarized in Table 1.
Although the gain in speed is not enormous, just a global
speedup of 1.13 was obtained, the calibration process using
genetic algorithms is time consuming and even a modest
performance improvement is worthwhile. Moreover, if it
is considered that the parallelization was only performed
in the initial section and not in the whole simulation, the
speedup obtained is considerably high, 2.80, because the
mean initial section secuential and parallel execution times
are 31.231 and 11.127 seconds respectively.

With respect to the calibration process using genetic al-
gorithms, if 20 elements in the population and 100 itera-
tions are considered, the calibration execution time is re-
duced in 4.5 hours. Although it keeps being time consum-
ing, because it lasted 3 days and 4.5 hours in being per-
formed.

As an example, Figures 6 and 7 show the real DISS test
field output temperature (solid line) and the simulated DISS
test field output temperature (dashed line) for two different
operation days. Figure 6 corresponds to a day used in the
calibration process whereas Figure 7 corresponds to a day
used in the validation process. The x axis represents the
time in seconds from the beginning of the day and the y

axis shows the real and simulated DISS test field output
temperatures in kelvin.

6. Conclusions and Future Work

The most remarkable conclusions are the following.

• OpenMP can be easily used to parallelize the initial
section in the resulting C source code obtained from
Modelica models when necessary.

• To take advantage of the parallelization in the initial sec-
tion of Modelica models it is required time consuming
calculations in the initial section.

• The proposed approach has been tested in a dynamic
model, which has been validated by experimental data,
obtaining a mean speedup of 1.13 in the whole simula-
tion and a mean speedup of 2.80 in the initial section
where the parallelization takes place.

• The gain in speed is worth not only in simulation but
also in the calibration process where the simulation time
is a critical aspect.

Kind of model Original Parallelized
Execution time (s) 170.727 151.415
Execution time speedup 1 1.13
Initialization section time (s) 31.231 11.127
Initialization section speedup 1 2.80
Calibration execution time 3 d 9 h 3 d 4.5 h

Table 1. Simulation statistics
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As future work it would be useful to study and tackle
the following open issues.

• Study how to include mechanisms to describe the use of
the OpenMP API directly in the Modelica code instead
of using it in the resulting C source code.

• Study how to take advantage of the OpenMP API dur-
ing the whole simulation, specially in the numerical in-
tegration process, and not only in the initial section of
Modelica models.

• Take advantage of a 13-node cluster and consider the
parallelization not only in the simulation but also in the
genetic algorithm calibration method by evaluating con-
currently members of the population in each cluster’s
node.
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