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Abstract
We present a framework for tangible user interfaces on handheld devices through the use of augmented reality,
where virtual objects can be manipulated and arranged using physical objects in the real world. Visual feedback
is provided in the high-resolution handheld display, where virtual objects are overlaid onto live video from the
camera. The virtual objects are registered and tracked in real-time relative to the physical environment using the
device’s camera. Realistic lighting and rendering of high-resolution virtual models is achieved through hardware-
accelerated graphics and shadow mapping. The user can interact with the virtual objects and system parameters
both through an overlaid menu interface and through direct touch-screen interaction. We describe our frame-
work, our adaptation of the ARToolKitPlus tracking library for a mobile platform, and a number of interaction
techniques that we implemented for a prototype urban planning application.

Categories and Subject Descriptors (according to ACM CCS): H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems—Artificial, augmented, and virtual realities; I.3.6 [Computer Graphics]: Methodol-
ogy and techniques—Interaction techniques.

1. Introduction

An important task in authoring 3D scenes is the navigation
of the 3D space. This is necessary to, for example, position
objects in the space, but it is also critical to many other tasks.
For example, before one can select and change the color of
an object, one often has to find a perspective such that the
object is visible. Positioning the virtual camera, however, re-
quires similar navigation as for placing an arbitrary object.
(See Figure 1.) Placing an object in 3D space not only con-
sists of choosing a 3D vector that represents its position, but
also choosing a 3D orientation. Summed up, one has 6 de-
grees of freedom (DOF) for placing the object. In the best
case one would change all 6 DOFs simultaneously for fast
placements. (See Figure 2.)

One challenge is that this type of input on desktop sys-
tems is typically controlled with a mouse and keyboard. The
mouse provides relative 2D input, while the keyboard’s mod-
ifier keys are used to switch between which 2D dimensions
the mouse is controlling at a given time. This, however,
means that the user can only manipulate 2 dimensions si-
multaneously, which in theory could take 3 times longer for
getting 6 DOFs due to the implicit temporal sampling.

Figure 1: An augmented reality scene, viewed through the
screen of a mobile device that is running our framework.
The scene contains virtual buildings that the user can posi-
tion through the tangible manipulation of multiple camera-
tracked markers in the real world.

However, often only either the orientation or the position
of an object has to be changed, which requires only 3DOF.
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Figure 2: A typical scene for 3D authoring. The camera and
the object require 6DOF input and the omnidirectional light
requires at least 3DOF to be positioned in space.

In these cases one can try to map the 2D input to 3D to speed
up the task. A widely used technique called ArcBall rotation
maps 2D movements to 3D rotations [Sho92]. It works by
projecting the user’s input onto a virtual sphere around the
object. The projected 2D movement results in a 3D arc on the
sphere. The object is then rotated in 3D along the trajectory
of the arc. While this is generally considered a reasonable
mapping of 2D movements to 3D rotations, it is not very in-
tuitive, as the user has to know how the mapping works to
perform a predictable rotation. But even then, predicting the
projection is not trivial. For certain scenarios it might instead
be more appropriate to use 6DOF input devices. Tangibles
are particularly interesting, as they support physical manip-
ulation and naturally offer 6DOFs. One might consider using
a device with embedded sensors (e.g., accelerometers, gyro-
scopes and magnetometers†) to create the tangible objects,
but the use of such sensors on a larger scale is limited by
issues like performance, resolution, power requirements and
cost.

Figure 3: Camera-based marker tracking provides the rota-
tion and translation of the camera relative to marker.

Marker-based augmented reality (AR), on the other hand,

† http://www.xsens.com/en/general/mti

uses 6DOF tracking of the camera to register rendered com-
puter graphics overlaid on a live video stream of the real
world. This allows the use of marker-based AR as a cheap
6DOF input device, as it only requires a camera and printed
markers, as shown in Figure 3. Using the position and ori-
entation of the markers as input allows direct positioning of
an object in the 3D scene. This interaction can be extended
to multiple objects by tracking multiple markers simultane-
ously and mapping one marker to each virtual object.

Using this approach we create a tangible interface for
3D authoring which makes most of the necessary opera-
tions spatially seamless [BKP08]. Furthermore, the one-to-
one mapping gives us spatial references in the real world
[HPGK94].

This speeds up the operations for arranging the scene and
is generally a natural choice for interacting with AR envi-
ronments. There are, however, still operations where 6DOF
input is counterproductive. Consider the fine arrangement of
a scene where only a small rotation along one axis has to
be performed. In this situation only one dimension has to be
changed and the involuntarily control of free-hand 6DOF in-
put would most likely affect all other dimensions. In these
cases one can apply constraints to limit the dimensions that
are affected by the input. While marker-based AR interaction
has a number of advantages, as mentioned, most real-world
examples do not go beyond just positioning the camera in-
side a non-interactive scene‡,§.

2. Related Work

Rekimoto and Nagao used the term “augmented interaction”
already in 1995, when they presented their NaviCam system
[RN95]. Their goals were to move from human-computer
interaction to human-real-world interaction as this is where
the user’s focus actually lies (Figure 4). Furthermore, they
wanted to make the interface context-sensitive and narrow
the gap between the computer and the real world by mak-
ing the computer understand real-world events. The Navi-
Cam concept envisioned using handheld devices for interac-
tion and presentation. Due to the limited processing and ren-
dering capabilities on handhelds at the time, the video from
the handheld camera was fed to a workstation that did the
marker recognition and added the overlays onto the video
stream, which was sent back to the handheld display. This
still allowed the system to pioneer the proof-of-concept of
using a handheld that recognized color codes attached to ob-
jects and then displayed a context-sensitive 2D overlay with
additional information. It is, however, worth noting that any

‡ http://www.bmw.co.uk/bmwuk/augmented_
reality/homepage
§ http://ge.ecomagination.com/smartgrid/#/
video
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further interactions happen on the human-computer interac-
tion side, which does not affect the real world.

Our system, in contrast, puts a stronger emphasis on
the human-real-world interaction as the primary interactions
happen in the real world and the human-computer interac-
tion is mainly used for providing feedback.

Figure 4: Augmented Reality emphasizes interactions hap-
pening in the real-world

Poupyrev et al. [PTW98] presented a virtual notepad as
an intuitive method for creating annotations in Virtual Real-
ity (VR) environments. Their application tracked a pen and
a paper in the real world and transferred the input to the
VR environment. As this is a straightforward and easy-to-
implement method for mapping pen-interaction in the real
world into a VR environment, we used it to enhance our AR
scenario. The touchscreen on the handheld device serves as
the notepad and the stylus as the pen.

In recent years, research also started to use mobile phones
and PDAs with cameras, as handheld AR devices. As the
computational capabilities of these devices improved, it be-
came possible to create self-contained AR applications for
large-scale deployment. But the computing power was still
limited; although Wagner and Schmalstieg [WS03] pre-
sented the first self-contained AR client running on a PDA,
the system’s 3 frames per second (fps) update rate prohib-
ited interactive applications. They managed to increase the
frame rate to 5 fps after outsourcing the tracking computa-
tions to a server. The performance was limited in part be-
cause they had to use a software pipeline for 3D rendering
as the devices did not support hardware-accelerated graph-
ics at the time. The limited hardware also made it necessary
to use an optimized fixed-point implementation of the algo-
rithms. Mohring et al. [MLB04] faced the same problem, but
achieved 5 fps without server assistance by using a simpler
marker detection algorithm where they used special 3D pa-
per markers. While these projects provided 6DOF input by
marker tracking, the motivation behind them was to over-
come the technical limitations of their platforms. AR was
still primarily used for displaying overlays without further
interactions with the real world.

Henrysson and Ollila [HO04] worked around the perfor-
mance problem by using 3DOF tracking and 2D rendering,
which was sufficient in their specific scenario of augment-
ing a 2D paper map. The motivation here was to use context

information from carrier cells to localize the phone and dis-
play context-aware content, but the augmented interactions
were still limited to panning on the augmented map.

Lee et al. [LNBK04] focused on interaction and combined
AR with a tangible interface to create an immersive envi-
ronment for authoring. They modeled behaviors and interac-
tions of a scene rather than modeling geometry. The markers
in their system were used to represent:

• Workspaces where objects can be placed
• Virtual paddles that act as a 6DOF cursors
• Buttons that change object properties

Generally, our application follows their approach, as we
also focus on the relations between objects and their behav-
ior. Instead of a virtual paddle, however, we use the markers
as direct 6DOF input for the virtual objects and the handheld
device as a 6DOF cursor and viewport.

Henrysson [Hen07] evaluated the use of mobile phones as
6DOF input devices and implemented a multi-player game
as an example application. The two-player AR tennis game
has a virtual court that is overlaid on a real table and the
players’ mobile phones are used as rackets to hit a simulated
ball. The work was supplemented by a comparison of differ-
ent input methods:

• Isometric input: value controlled by buttons
• Isotonic input: relative phone movement controls object
• ArcBall rotation

Henrysson also reports on users’ subjective feedback re-
garding the performance of rotation and translation with the
different methods. While ArcBall and isometric input were
the fastest methods with only 1DOF, isotonic input was the
best for translation and the second best for rotation with
3DOF. Unfortunately, the use of a physical marker for input
was excluded as it was occupying too much of the camera’s
field-of-view. We, however, find it interesting to explore the
use of direct manipulation with markers as it enables tangi-
ble interaction.

Recent work by Wagner et al. [WLS08] focuses on re-
placing the obtrusive binary marker patterns with different
designs that range from "split markers" (markers that al-
low any content in their center) to arbitrary images that are
tracked using Natural Feature Tracking (NFT) [WRM∗08].
They demonstrate that these techniques can be run on hand-
held devices. NFT makes it possible to use images of the
virtual objects as markers, which is not only less obtrusive,
but could also be used for a more intuitive representation and
indication of the marker that controls the virtual object.

In this work, we focus on general interaction techniques
that are independent of the marker tracking used. While the
library our work is based on (ARToolKitPlus) only sup-
ports binary markers, more meaningful image-based mark-
ers would not have changed the general way of interaction.
We are, however, interested to explore the use of NFT for
more compelling tangibles in the future.
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3. Combining Tangible Interfaces and Handheld AR

Using handheld AR for creating a tangible interface has sev-
eral advantages, where the explicit camera control is perhaps
the most important one. While head-worn displays implic-
itly place the camera at the users’ point-of-view, the hand-
held device can be placed independently. This allows con-
scious placing of the camera when a specific perspective is
desired. The explicit placement also allows using the hand-
held device as a 6DOF cursor in the scene. Generally speak-
ing, the 6DOF input from the handheld device is always used
to place the camera but can optionally also control other pa-
rameters. The effect of this could be previewed in real-time
as the camera is at the cursor position. Furthermore, there is
a one-to-one mapping between the markers and the virtual
objects. (See Figures 5 and 6.) This makes it possible to use
the marker as a direct and tangible input device for the cor-
responding virtual object, which avoids the input indirection
that is necessary when using, e.g., a virtual paddle.

By choosing the corresponding marker for moving a vir-
tual object, object picking becomes implicit. This is an ad-
vantage over isotonic input when working with multiple ob-
jects. Additionally, the touchscreen of the handheld device
can be used as a freely positionable plane for 2D authoring
inside the 3D scene.

Figure 5: A marker-based handheld AR configuration. The
handheld device controls the camera, while printed paper
markers control the position and orientation of virtual ob-
jects that can be seen through the device’s display.

The approach provides 6DOF input for the corresponding
virtual object, such that moving a marker in the real world
directly corresponds to the movement of the virtual object.
We thus shift the focus from human-computer interaction to
human-real-world interaction (See Figure 4), which allows
an easy-to-use 3D authoring interface. But as the scene is
perceived on the screen of the mobile device and not directly
from the user’s point of view, the output may be redirected.

Using a handheld device has the above-mentioned advan-
tages, while still using widely available and easily deploy-
able techniques. One major drawback of a handheld device

Figure 6: A virtual house model is assigned to a marker.
Shadow-mapping helps blending the virtual object with the
video of the real-world environment.

is, however, that one hand is occupied by holding the de-
vice. This restricts the possible interactions as only the free
hand can be used to interact with the scene, while the hand
holding the device can only control the camera. A possibil-
ity to overcome this limitation is to create the scene without
the help of the device, purely relying on manipulating mark-
ers. Then one would use the handheld device only for a fi-
nal visualization and simulation of the scene. This requires
meaningful markers in order to be practical. Still, one would
obviously loose the AR feedback during this “offline” au-
thoring step. Any operations, which require interactive feed-
back, like scaling or changing the geometry of the virtual ob-
ject, would be difficult to perform. Because of this limitation
and since the underlying library did not allow sufficiently
meaningful markers, this work only focuses on one-handed
interaction.

4. Urban Planning Scenario

As we wanted to demonstrate the advantages of tangible in-
terfaces for 6DOF input, we chose a scenario in which the
primary task is to arrange rigid objects in 3D space. This
constitutes the final step in 3D authoring, where the individ-
ual objects are composed to a scene.

An applicable scenario can be found in architecture and
urban planning, where a common task is to examine how a
new building would fit into an existing environment. Dur-
ing the placement of a new building, one has to, for ex-
ample, consider the impact on lighting. A new residential
building that is added to a group of existing residential build-
ings should avoid shading the previously lit apartments. (See
Figure 1.) This scenario was also explored in the Luminous
Planning Table project [UI99], which used augmented re-
ality and tangible interfaces, but using interactive surfaces
rather than handheld devices. The particular task would be
to move the building in the terrain and examine the lighting
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conditions for different times of the day. While this task can
still be performed using traditional input methods, the input
method will become the limiting factor when the simulta-
neous manipulation and adjustment of multiple residential
buildings has to be made.

In this scenario, a spatially seamless method like the pro-
posed tangible marker-based interface, has the potential to
be more intuitive. This motivated our implementation to tar-
get this use case.

The use case is, of course, not limited to city planning or
the arrangements of static objects. It may also be interest-
ing to include dynamic objects, such as trees, and take their
growth over time into into account, as the trees may shade
buildings after they exceed a certain size. Such scenarios
are supported in our implementation through mechanisms
to modify geometry at runtime, e.g., by scaling them. This
can of course also be applied to any geometry, for example,
when modeling houses of different sizes.

Figure 7: Our framework allows the user to enter an annota-
tion mode, which freezes the video view. The user’s annota-
tions on the screen plane are then mapped to the correspond-
ing 2D plane in the 3D scene.

As there might be further information one might want to
add to the scene, like wind direction or location of a nearby
highway, we allow annotating the scene by drawing on a
2D plane placed in the 3D space, in the spirit of the Virtual
Notepad [PTW98], as shown in Figures 7 and 8.

In summary, the application enables the following ways
to experience and manipulate the scene:

• Video see-through (6DOF camera positioning and pro-
jected overlay).
• Specify light vector using the current direction of the

handheld (time of day).
• Draw annotations on the 2D plane defined by the handheld

display. (See Figures 7 and 8.)
• Tangible 6DOF manipulation of virtual objects using

physical markers. (See Figure 1.)
• Virtual interaction (scaling).

Figure 8: As the user changes the perspective by moving the
handheld, the 2D annotation plane stay fixed in the 3D scene.

The lighting simulation adds a behaviorist aspect and thus
goes beyond the 3D positioning which most existing AR
interfaces focus on. For realistic lighting simulation with
real-time shadows, we take advantage of the programmable
graphics hardware which has recently become available on
mobile phones.

5. Interactions

In the following we will look at adding an annotation in
more detail, as it shows two different approaches for han-
dling input. Adding an annotation happens in two stages;
first the user puts the device to the desired position and then
the tracking is frozen such that the annotation can be drawn.

5.1. Positioning an Annotation

The annotations are drawn on 2D planes that are positioned
(3DOFs) and oriented (3DOFs) in 3D space. Using the de-
vice as a 6DOF cursor to place this plane is a natural choice
as it is a good real-world representation for the virtual plane
to be created.

5.2. Drawing an Annotation

To provide a stable 2D plane, we pause the tracking dur-
ing the drawing action, such that 6DOF input is temporarily
disabled. The device’s touchscreen is used as a canvas on
which the user’s input is mapped to annotations in the 2D
plane. (See Figure 8.) The resulting scene satisfies the user’s
expectations of interacting with a 2D plane [HPGK94]. If
we would continuously update the position and orientation
of the 2D plane based on the 6DOF tracking, the user would
effectively be drawing a 3D-curve in the annotation volume.
While this might be desirable for authoring a new 3D object,
it is beyond the scope of our scenario, where we want to con-
strain the input to virtual annotations similar to the “virtual
notepad” approach by Poupyrev et al. [PTW98].

21



P. Rojtberg & A. Olwal / Tangible Interfaces using Handheld Augmented Reality

6. Rendering and Object Selection

An enhanced version of ARToolKitPlus is used for tracking
the markers and rendering overlays, where each virtual ob-
ject is represented by an ARToolKit binary marker.

Real-time shadowing is performed using shadow map-
ping, utilizing the programmable OpenGL ES 2.0 pipeline¶.

A permanent on-screen overlay is displayed to provide
functionality for controlling light position and toggling the
annotation mode.

6.1. Nokia N900 as a Handheld AR platform

Previously, the difference between a workstation and a hand-
held device required a different programming approach to
develop AR applications. This often involving special fixed-
point implementations [WS03] and software rendering, but
this is not an issue anymore, thanks to today’s modern mo-
bile platforms.

The Nokia N900 provides a similar software environ-
ment‖ to that found on a Linux workstation. This makes it
possible to use the same APIs for development, testing, and
deployment.

Furthermore, the hardware capabilities are similar to a
workstation – although obviously not quite as fast. There is
no considerable penalty in relying on floating point calcula-
tions and there is dedicated programmable hardware for 3D
rendering. In fact, the OpenGL ES 2.0 API is very similar
to the standard OpenGL 3.2 API, which makes it attractive
to use advanced shader-based rendering techniques on hand-
held devices.

Although the CPU on the N900 is sufficiently fast for real-
time tracking, the fill-rate of the graphics chipset is unfortu-
nately not sufficiently high yet to support the display of mul-
tiple complex objects at high frame rates at the native reso-
lution (800×480). The video is captured at 800×480, and
processed and displayed at 400×240. We found the video
texture upload to be the main bottleneck as it limits the per-
formance to maximum 22 fps in our application. In our cur-
rent application we are rendering two buildings (487 trian-
gles) at 11 fps with shadow mapping and at 19 fps without.
Performance could, however, be increased, for example, by
reducing the video and display resolution, and through the
use of native DEPTH_TEXTURE support.

¶ http://www.khronos.org/opengles/sdk/docs/
man/
‖ http://wiki.maemo.org/Documentation/Maemo_
5_Developer_Guide/Architecture/Top_Level_
Architecture

6.2. Depth Texture Generation

The drivers for the PowerVR SGX530 currently do not sup-
port the DEPTH_TEXTURE texture format, therefore we
instead store the depth information in an ordinary RGBA
texture. Here, it is not sufficient to just store the value in one
of the color channels. The resulting conversion from float to
byte would lead to a significant loss of precision, since the
float is stored using 32 bits and a byte is stored using 8 bits.
We, therefore distribute the floating point number across all
four channels.

6.3. Packing

Storing the depth value in an RGBA texture works by us-
ing the following method in the fragment shader: as the first
step, the packing vector ~p is created. It contains the shifting
factors to break the 32 bit number into 4 bytes:

~p =
[
2563 2562 2561 2560]

The result vector is then computed by the following equa-
tion, where z ∈ [0,1] is the depth value:

~y = mod(~p · z,1)

As the result is not automatically converted to bytes, we need
to manually cut the resulting floats to fit inside 8 bits. The
element-wise modulo cuts off the number to the left.

To cut the number to the right, first a vector ~c is created.
It contains shifting factors to shift the numbers to the right
again:

~c =
[
0 1

256
1

256
1

256

]
A vector~t is created to pick the components from our inter-
mediate result:

~t =
[
y0 y0 y1 y2

]
Finally, the cutoff mask ~c ∗~t is applied, where ∗ denotes
element-wise multiplication:

~r =~y−~c∗~t

As our intermediate result was created by shifting the z value
to the left, the displaced shifting back and subtracting leaves
exactly the range of numbers which can now be safely con-
verted to a byte.

6.4. Unpacking

In contrast to the packing operation, the unpacking is quite
simple. Again we create the shifting vector~u:

~u =
[

1
2563

1
2562

1
2561

1
2560

]
The depth z is then simply z =~r ·~uT . The packing happens
for every pixel in the shadow map and can be limited by
the size of the shadowmap, but the unpacking has to be per-
formed for every pixel in the resulting image and thus intro-
duces the overhead of a floating point vector multiplication
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and 3 additions. The rendering process is thus also affected
by the fragment shader’s performance.

6.5. Object Selection/Picking

OpenGL ES 2.0 does not support selection-buffers and simu-
lating these by using multiple rendering passes would lower
performance even further, as the scenes are already fill-rate
limited. Therefore the selection is implemented by storing
an object identifier in the alpha channel (which can be re-
covered through alpha picking).

6.6. Object Format

The wavefront OBJ format∗∗ was chosen, as it is straight-
forward to parse and supports static objects with textured
geometry. All faces in the OBJ file must be triangles, as this
is the only geometry that OpenGL ES 2.0 supports render-
ing of. Although it would be possible to triangulate the faces
after loading the file, doing so as a preprocessing step saves
startup time on the device. It is, furthermore, assumed that
the models fit inside the unity cube. This simplifies correct
placement of the models on the markers and the positioning
of the light source such that it results in good depth-map res-
olution. Model preparation can be done in most 3D editors,
such as Blender††.

7. Improving ARToolKitPlus

As part of this work the library ARToolKitPlus 2.1.1 was
refactored and its architecture optimized. This lead to the
release of ARToolKitPlus 2.2 which is now usable as a
lightweight library for marker-based AR applications. Al-
though the feature set is small compared to modern AR
libraries that support NFT‡‡, it is still powerful for rapid
prototyping. Its low computational requirements also make
ARToolKitPlus well-suited for handheld devices, where re-
sources are limited. It may be reasonable to at this stage trade
NFT tracking for more advanced graphics or simulation, as
the computation and memory requirements of NFT are much
higher than those for binary marker tracking. In the follow-
ing, the main changes to the library will be motivated and
explained.

7.1. Accessing Multiple Marker Positions

Although the internal marker detection function re-
turned all markers detected in the image, ARToolKit-
Plus::TrackerSingleMarker only returned the best one by
certainty. This class was extended to work in two stages:

• Return the IDs of all detected markers.
• Allow selection of which detected marker to process.

∗∗ http://en.wikipedia.org/wiki/Obj
†† http://www.blender.org
‡‡ http://studierstube.icg.tu-graz.ac.at/

7.2. Building as a Shared Library

The original ARToolKit library used static sized arrays for
loading, e.g., additional markers. Hence the size had to be
defined at compile time using the preprocessor. ARToolKit-
Plus was an advancement in this regard as it was a templated
library, where the template arguments were used for config-
uration. This allowed simultaneous usage of several differ-
ently configured instances. Yet it has the major drawback
that the templated source code has to be available during
compilation, which results in longer compilation time, as no
compilation units can be cached. As there are no shareable
compilation units, one also loses all the advantages of shared
libraries, e.g., updates without recompiling. Therefore, tem-
plated parametrization at compile time was removed in favor
of runtime parametrization and dynamic memory allocation.
This should even allow the framework to completely aban-
don parametrization and manage the memory fully dynami-
cally.

7.3. Architectural Optimization

To reduce the complexity of ARToolKitPlus, its architecture
was restructured and reduced to contain a minimal set of in-
terfaces and classes that support all required functionality.
This included removing some abstractions, fixed-point im-
plementations (no advantages on modern mobile hardware)
and legacy camera calibration files. It was also identified that
the library did not expose the full functionality of the under-
lying ARToolKit library, like the tracking of multiple indi-
vidual markers.

• MemoryManager This class abstracted calls to
malloc/ f ree and new/delete. Although this might
have been useful when running ARToolKit on the first
Windows-based PDAs, many devices today have modern
Linux kernels with better memory management. Further-
more, there was no working alternative memory manager
available and the same functionality can be achieved by
overloading std :: new.

• CameraFactory, CameraImpl, arParam ARToolKit-
Plus supported both old style binary configuration files, as
well as, newer and more precise textfiles from the Camera
Calibration toolbox. As loading the binary files involved
changing the byte order of floating point numbers, which
can not be guaranteed to work correctly, and there was a
better alternative available, the old style CameraImpl was
removed and replaced by CameraAdvImpl. Furthermore,
all abstracting interfaces were removed so Camera could
replace both CameraAdvImpl and arParam.

• Logger This class allowed output redirection, which was
used for error messages and for status output. Error mes-
sages should be printed regardless of a logger being set or
not. Status messages on the other hand can be easily redi-
rected using the shell or overriding std :: cout. Therefore
this class was removed and error messages are printed us-
ing std :: cerr.
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• Profiler This class allowed timing of some selected meth-
ods, but was removed as it is not a very accurate method
for performance evaluation. Bottlenecks can be found us-
ing callgrind and timing information can be obtained us-
ing SystemTap.
• TrackerImpl, TrackerSingleMarkerImpl, Track-

erMultiMarkerImpl These were the only available
implementations for Tracker, TrackerSingleMarker,
TrackerMultipleMarker. Therefore the abstraction was
removed and the implementations were renamed to the
former interfaces names.

8. Conclusions

We have presented an optimized, lightweight framework for
creating tangible user interfaces through AR on commer-
cially available mobile devices. We exploit the capabilities
of modern mobile platforms to blend the boundaries between
real and virtual worlds through rendering with hardware-
accelerated graphics and techniques for realistic shadows.

In our architecture and urban planning scenario, AR is
used for intuitive authoring and interaction with a complex
scene. We demonstrate how a tangible AR interface can en-
able direct manipulations of 3D scenes and a more efficient
workflow with the interactive lighting simulation in our ap-
plication. Moreover, we show how the display’s viewport
can be used as a stable annotation surface in the 3D envi-
ronment.

9. Future Work

As most of the relevant information is already available to
multiple users, as it is simply stored in the topology of
the markers, the next logical step would be to implement
a communication interface between the handheld devices
(similar to what was demonstrated in AR tennis [Hen07]).
This would allow collaboration by sharing annotations and
lighting position between multiple devices. The best way to
achieve this would be to use link-local multicast IP or a peer-
to-peer Bluetooth connection between the devices.

For the chosen architecture scenario it may also be inter-
esting to include sound in the simulation. This could, for in-
stance, allow the simulation of the noise level based on the
distance to the street and intermediate objects, like anti-noise
barriers.

We are also interested in supporting NFT to allow more
meaningful markers like photographs or renderings of the
virtual objects. This would make an “off-line” editing mode
more feasible, where the scene is constructed only using
the real-world objects. The augmented view through the de-
vice would primarily be used to view the simulation results
and for interaction with the virtual content. This separation
would allow two-handed interaction in the authoring pro-
cess, which could increase performance for sorting and ar-
ranging physical objects.

On-board sensors, e.g., accelerometers and gyroscopes,
could be employed for improved tracking robustness and
performance during, e.g., high-speed movement and tempo-
rary marker occlusion.

We also plan to look into how the cursor’s role on the
device could be expanded by allowing direct manipulation of
virtual objects. We are, for example, considering supporting
the dragging of parts on the virtual model using the touch
screen or even with the whole device.

We see our framework being usable for a number of differ-
ent application scenarios, which we plan to explore further,
in future work. Some examples include:

9.1. Interactive Simulation for Museum Exhibitions

The technique can be used in museums to bring exhibi-
tions to life. Consider a ship that sunk because of the wrong
weight distribution. Visitors could experience the physics us-
ing the tangible interface presented in this work together
with the simulation, through a handheld device. One can
use one marker on the blueprint of the ship and another
marker representing the counterweight. While manipulating
the placement of the counterweight on the ship, one could
experience water running inside the ship and see a 3D model
of the ship and how the simulated physics affects its buoy-
ancy. While the same simulation would also be possible only
using VR, the interaction might be more difficult and the us-
age inside the museum could be limited. By using AR on the
other hand, one might also use miniature models of the ship
and the weights to provide real physical sources and only run
the simulation on the device.

9.2. Cannonball Game

Players place markers, which represent castles with cannons,
on a shared surface with the goal to destroy the opponent’s
castle first. The rotation of the marker controls the cannon,
while the handhelds provide feedback of simulated wind and
projectile trajectory. The concept is borrowed from "Baller-
burg", a popular computer game from the 90s. A tangible AR
version could provide an easier-to-use interface for 3DOF
input and be used as a teaching tools for the physics of uni-
form acceleration.

9.3. Sociology simulation

The markers are placed on a city map and represent vacci-
nation centers. The map itself is also tracked using an addi-
tional marker. The device runs a simulation and visualizes
the amount of people that can be reached using the topology
that is controlled by manipulating the position of the differ-
ent centers. This application can be used for education or
for rapid prototyping. It reuses existing data provided by the
map and augments it with distance information to perform a
simulation.
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Appendix A: Preparing geometry, and compiling/running
the application

Model preparation in Blender

• Import the model using File→ Import
• Align the model to the center of the coordinate space us-

ing Space→ Trans f orm→ ObData to Center
• Scale the model using Space → Trans f orm →

Properties so that the size along any axis is at most
2 (so the model fits in the unity cube)
• Export the model in the .obj File Format (File →

Export → Wave f ront). It is important that you check
“Triangulate” and “Normals" in the following dialog.

Compilation Instructions

As default the application associates marker-id 0 with
“models/casa/casa.obj” and marker-id 1 with “mod-
els/farm/farm.obj”. These are hardcoded in Scene.cpp and
therefore changing the association or adding further markers
requires recompilation.

Dependencies The application can be compiled on
Ubuntu(≥ 10.04) and on Maemo 5. It has the following de-
pendencies:

• Qt (≥ 4.6)
• gstreamer (≥ 0.10.13)
• ARToolKitPlus (≥ 2.2)
• X11 (only for grabbing volume keys under Maemo 5)
• GLEW (for non GLES 2.0 compilation only)

On Ubuntu this requires an additional PPA§§ and on
Maemo 5, the extras-devel repository has to be enabled.

Compiling QMake is used as the build system. To initiate
the build process first run qmake and then make. The ac-
cording build flags are set automatically depending on the
platform. To configure the build options edit “arapp.pro” in
the source folder.

Maemo specific notes The compilation for the N900
happens inside a cross compilation environment called
Scratchbox. The installation of the Scratchbox environment
and the Maemo 5 SDK are described in the Maemo Wiki¶¶.

To transfer data to/from the device ssh f s‖‖ is recom-
mended, as simply attaching the device over USB does not

§§ https://edge.launchpad.net/~rojtberg/
+archive/ppa
¶¶ http://wiki.maemo.org/Documentation/
Maemo_5_Final_SDK_Installation
‖‖ http://wiki.maemo.org/Documentation/Maemo_
PC_Connectivity_Tutorial/File_Sharing#Using_
SSHFS_mounts

allow copying files outside the home folder, and files inside
the home folder can not be executed. USB networking∗∗∗

also gives much higher transfer rates than WLAN.

Manual for running the Application

The easiest way to install the application is to enable the
extras-devel repository on the N900 and then install it using
the App Manager (ARapp in Section Graphics).

1. Print the two supplied markers SimpleStd_000 and Sim-
pleStd_001 (See previous page).

2. Open the camera to adopt to the ambient light. Close the
camera application, but leave the lens cover open.

3. Start the ARapp.

Figure 9: The AR application with on-screen controls in the
corners. Sun icon sets light to camera position (top-left), X
icon closes the application (top-right), and the Palette icon
enters/exits annotation mode (bottom-left).

• The controls overlay allows fixing the light vector to the
current camera position (Sun icon, top left), closing the
application (X icon, top right) and entering/exiting anno-
tation mode (Palette icon, bottom left). (See Figure 9).

• The display of the annotation plane can be toggled press-
ing “c” on the keyboard (only works for new annotations).

• Once fixed, the light vector can be manually rotated
around the y-axis using the arrow keys.

• Objects can be scaled using the zoom keys of the device.
An object can be selected by tapping on it on screen.

Alternatively the application can be started using the con-
sole, the binary is located in /opt/arapp/arapp and can be
started with the “noshadow” option which disables shadow-
mapping for better performance.

∗∗∗ http://wiki.maemo.org/USB_networking
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