Planning for Loosely Coupled Agents
using Partial Order Forward-Chaining

Jonas Kvarnstrom
Department of Computer and Information Science
Linkoping University, SE-58183 Linkoping, Sweden (jonkv@ida.liu.se)

Abstract

Partially ordered plan structures are highly suitable for cen-
tralized multi-agent planning, where plans should be min-
imally constrained in terms of precedence between actions
performed by different agents. In many cases, however, any
given agent will perform its own actions in strict sequence.
We take advantage of this fact to develop a hybrid of tem-
poral partial order planning and forward-chaining planning.
A sequence of actions is constructed for each agent and
linked to other agents’ actions by a partially ordered prece-
dence relation as required. When agents are not too tightly
coupled, this structure enables the generation of partial but
strong information about the state at the end of each agent’s
action sequence. Such state information can be effectively
exploited during search. A prototype planner within this
framework has been implemented, using precondition con-
trol formulas to guide the search process.

1 Introduction

A major earthquake has struck in the middle of the night,
devastating vast parts of the countryside. Injured people are
requesting medical assistance, but clearing all roadblocks
will take days. There are too few helicopters to immedi-
ately transport medical personnel to all known wounded,
and calling in pilots will take time. Fortunately, we also
have access to a fleet of unmanned aerial vehicles (UAVs)
that can rapidly be deployed to send prepared packages of
medical supplies to those less seriously wounded. Some are
quite small and carry single packages, while others move
carriers containing many packages for subsequent distribu-
tion. In preparation, a set of ground robots can move pack-
ages out of warehouses and possibly onto carriers.

Given the properties of this somewhat dramatic scenario
as well as the robotic agents involved, what types of au-
tomated planning could we use to generate high-quality
plans?

One option would be to rely on distributed cooperative
planning techniques, where each agent is responsible for
its own actions but also coordinates its local plan with other
agents in order to achieve a shared goal.

An alternative is the use of centralized planning, where a

single agent generates a complete plan coordinating activ-
ities at a higher level before distributing subplans to indi-
vidual agents. Plan execution then proceeds in a distributed
manner, with either centralized or distributed synchroniza-
tion between agents. This alternative requires all agents to
be fully cooperative, which appears reasonable to assume
for the application at hand.

Each of these choices has its own advantages. Dis-
tributed planning can for example be more flexible, poten-
tially allowing individual agents to renegotiate parts of the
plan during execution. Furthermore, it does not require full
cooperation between agents. Having a centralized author-
ity can facilitate the generation of high-quality plans and
allows a ground operator to approve or modify a complete
plan before execution, which may be a requirement in some
cases. Thus, each alternative is likely to be better in some
situations and is worth pursuing for its own qualities. For
the purposes of this paper, we will proceed under the as-
sumption that centralized planning has been chosen.

Returning to the scenario, we see that action durations
are not likely to be perfectly predictable, but it is often pos-
sible to specify an approximate expected duration for the
case where no failures occur during execution. This in-
formation should be taken into account during planning by
preferring plans that are expected to require less time to ex-
ecute. We also prefer plans to be minimally constrained in
terms of precedence between actions performed by differ-
ent agents, in order to avoid unnecessary waiting.

To some extent these properties can be treated after
plan generation, for example by inferring less constraining
precedence relations from a sequential plan [3]. However,
this entails hiding important aspects of the domain and of
our concept of plan quality from the planner, which can
decrease the quality of the final plan. For example, a se-
quential planner has no concept of which actions can be
executed in parallel and might therefore assign all actions
to the same agent, as long as this does not lead to using
a greater number of actions. Parallelizing such plans af-
ter the fact is non-trivial: It requires recognizing subplans
that can be assigned to other agents in a meaningful man-
ner, selecting suitable agents for reassignment, and gener-
ally also replanning for the selected agents, which may not
perform tasks in exactly the same manner as the original
agent. Similarly, a non-temporal planner might decide to

45

use as few actions as possible even when these actions are
very time-consuming. Treating this after plan generation
also requires changing the actions in the plan, as opposed
to simply adding temporal durations to each action. We
would therefore prefer to work directly with a plan struc-
ture capable of expressing these aspects, such as a temporal
partial-order plan.

Planners generating such plans do not necessarily have
to be explicitly aware of agents, as long as they can express
mutual exclusion conditions between actions that cannot
be executed concurrently. Indeed, the scenario above is
quite similar to the standard logistics benchmark domain,
where agents are typically modeled as arguments to ac-
tions. Therefore it would be possible to generate the re-
quired plans using temporal versions of standard partial or-
der causal link (POCL') planners, agent-aware or not.

Partial order causal link planning was initially conceived
as a means of increasing the efficiency of plan generation.
Through late commitment, avoiding “premature commit-
ments to a particular [action] order” [10], less backtracking
was required during the search for a plan. Once a solution
was generated, the assumption was that it would be exe-
cuted in sequence by a single agent. Though a number of
POCL planners are also able to generate concurrent plans,
the desire to delay commitments to action precedence for
performance purposes usually remains one of the primary
reasons for the use of partial orders.

However, late commitment is far from the only means
of improving planning performance. For example, many
recent planners build on the use of forward-chaining state-
space search, which generates considerably richer informa-
tion about the state of the world at any given point in a plan
compared to POCL planning. This information can then be
exploited in state-based heuristics [4, 8] or in the evaluation
of domain-specific control formulas [2, 9]. Since the use of
state information has led to a number of very successful
total-order planners, it would be interesting to also investi-
gate to what extent one can generate rich state information
when generating partially ordered plans.

We cannot adopt an unmodified version of forward-
chaining search, since we do desire flexible plan structures.
However, this desire is entirely motivated by the presence
of multiple agents whose capability for concurrent plan ex-
ecution should be utilized to the greatest extent possible.
Therefore, an alternative to POCL planning would be to
retain partial ordering (and temporal flexibility) between
actions executed by different agents, while generating the
actions for each individual agent in sequential temporal or-
der. Each agent-specific action sequence can then be used
to generate partial agent-specific states to be used in heuris-
tics or control formulas.

In this paper, we therefore begin our investigations into
alternative methods for generating partial-order plans by

'We assume a basic familiarity with partial order causal link planning
and refer the reader to Weld [12] for an overview of the associated con-
cepts and terminology.

adopting certain aspects of the standard forward-chaining
paradigm in a hybrid partial order forward-chaining
(POFC) framework that sacrifices some of the positive as-
pects of late commitment in order to gain the benefits of
richer state information.

In Section 2, we discuss the ideas behind the partial order
forward-chaining framework and its applicability to cen-
tralized multi-agent planning. In Section 3, we go on to
present one concrete planner operating within the POFC
framework. We then discuss related work in Section 4 and
present our conclusions in Section 5.

2 Partial Order Forward-Chaining

Our discussion of the fundamental ideas underlying par-
tial order forward-chaining (POFC) begins with an analysis
of common execution constraints for multi-agent plans and
how these constraints affect the desired plan structure. We
then continue by showing how these ideas and structures
allow us to take advantage of richer state information than
is generally available to partial order causal link (POCL)
planners. This results in a hybrid planning framework tak-
ing advantage of certain aspects of forward-chaining in the
generation of partial order plans.

A significant degree of variation is possible in terms
of the exact plan structures and planning algorithms used
within this framework. Consequently, the concepts intro-
duced in this section must be defined at a comparatively
high level of abstraction. In the next section we present
a detailed definition of one concrete POFC planner, which
also provides additional intuitions regarding the high-level
framework.

Plan Structures. As noted in the introduction, our inter-
est in the generation of partial order plans is grounded in
a desire to support the type of concurrency that is inherent
in many execution mechanisms. In particular, centralized
planning for multiple agents yields plans that are naturally
concurrent: Each agent can generally perform its actions
in parallel with other agents, and should not be forced to
wait for other agents unless this is required due to causal
dependencies, resource limitations, or similar constraints.

In Figure 1, for example, the first two actions of uav4
are independent of the actions of the ground robot robot3.
Sequential plans cannot model this fact, since they do not
permit concurrency at all. Temporal plans, where each ac-
tion is assumed to be executed during a specific interval
of time, do allow concurrency but are only guaranteed to
achieve the goal if actions start and end in the predicted or-
der. Partially ordered plans are more complex to handle, as
one must prove during planning that any action order con-
sistent with the partial order will satisfy the goal. On the
other hand, the result is a considerably greater degree of
flexibility during execution.

However, the fact that there exist actions that can be per-
formed concurrently does not mean that arbitrary concur-

46

Go to crate 12

‘ Takeoff ‘
| |

‘ Pick up crate 12 ‘ Fly to carrier 4 ‘
|

|
|
Go to carrier 4 ‘
|

Put crate 12 on carrier 4
T
1

1
‘ Put crate 7 on carrier 4 ‘

Pick up carrier 4 ‘
T

| Flyto(1500,1023) |

Go to crate 5 ‘ ‘

Figure 1: Example POFC plan structure

rency is possible. The actions assigned to any given agent
can often only be performed in sequence, or in some cases,
through a small and fixed number of sequential threads of
execution. For example, a UAV would only be able to per-
form its own flight and package delivery actions in strict se-
quence and not in parallel, as it cannot be in several places
at the same time. Another thread of execution could be used
for camera control actions that are also performed sequen-
tially, but in parallel with the flight actions. It is clear that in
terms of execution flexibility, the greatest gains come from
allowing partial orders across different threads as opposed
to allowing partial orders within a particular thread.

The plan structures used in partial order forward-chain-
ing are directly based on this model of execution. Each ac-
tion is therefore assumed to be explicitly associated with
a specific thread belonging to a specific agent. A plan
structure then corresponds to one totally ordered action se-
quence for each thread, with a partial ordering relation be-
tween actions belonging to different threads.

Figure 1 shows an example for two threads, one for each
of two agents. A UAV flies to a carrier, but is only allowed
to pick it up after a ground robot has loaded a number of
crates. The ground robot can immediately continue to load
another carrier without waiting for the UAV. Depending on
the expressivity of the planner, POFC plan structures may
also include metric temporal relations between actions, mu-
tual exclusion relations, or other similar information. A
concrete plan structure for a specific prototype planner will
be formally defined in Section 3.2.

To simplify the remainder of the presentation, we as-
sume without loss of generality that each agent supports
a single sequential thread of execution. Multiple threads
for each physical agent can be supported either through a
minor extension to these definitions or simply by modeling
each thread as a separate “virtual” agent.

Sequential Search Order. Since actions for any given
agent must be sequentially ordered, it appears natural to
also add these actions in sequential order during search. In
Figure 1, a new action for robot3 would then have to be
added strictly after the action of going to crate 5, while a
new action for uav4 would have to be added after the action

of flying to the position (1500, 1023). Note that this does
not prevent a new action from being added before existing
actions belonging to other agents. For example, the next
action added for robot3 could be constrained to occur be-
fore uav4 picks up carrier 4, or even before it begins flying
to carrier 4.

To some extent this search process results in an earlier
commitment to action orderings than in POCL planning.
However, the precedence between a new action for one
agent and existing actions belonging to other agents only
has to be as strong as is required to ensure that precon-
ditions are satisfied and actions do not interfere. Actions
belonging to distinct agents can therefore be independent
of each other to the same extent as in a standard partial or-
der plan. This allows POFC plans to retain the essential
flexibility that is desired for concurrent execution.

State Generation. The more we know about the execu-
tion order for a plan, the more information we can infer
about the state of the world after any given action in the
plan. For example, standard sequential forward-chaining
yields a completely defined order of execution. In this case,
applying an action in a completely specified world state al-
ways yields a new completely specified state. This is very
useful when determining which actions are applicable in
the next step. Rich state information also facilitates the
use of expressive operator specifications as well as state-
based heuristics or control formulas [2, 9] guiding forward-
chaining search.

Since our plans are partially ordered, we cannot expect
to be able to generate complete state information. For any
given agent, though, actions are generated in sequential or-
der. POFC planning can therefore be seen as performing
a variation of forward-chaining search for each individual
agent. We can take advantage of this to generate consid-
erably more state information than is typically available to
POCL planners, where one typically aims to restrict action
ordering as little as possible and where new actions can be
inserted “between” existing actions.

In particular, many state variables are generally asso-
ciated with a specific agent and are only affected by the
agent itself. For example, this holds for the location of an
agent (unless some agents actively move others) and for
the fact that an ground robot is carrying a particular ob-
ject (unless one agent can place objects in another agent’s
gripper). Similarly, agent-specific resources such as fuel or
energy levels are rarely directly affected by other agents.
Due to the requirement for “local” total ordering, we can
easily generate complete information about such “agent-
specific” state variables at any point along an agent’s ac-
tion sequence. This information is particularly useful for
the agent itself, since actions performed by one agent are
likely to depend largely on its own agent-specific variables:
Whether it is possible for uav1 to fly to a particular location
depends on its own current location, its own fuel level, and
its own altitude.

Not all state variables are completely agent-specific.

47

However, agents are in many cases comparatively loosely
coupled [6]: Direct interactions with other agents are rela-
tively few and occur comparatively rarely. For example, a
ground robot would require a long sequence of actions to
load a set of boxes onto a carrier. Only after this sequence
is completed will there be an interaction with the UAV that
picks up the carrier. This means that for extended periods
of time, agents will mostly act upon and depend upon state
variables that are not currently affected or required by other
agents.

As will be shown in Section 3.5, this also provides op-
portunities for generating strong and useful partial states by
carrying state information from one agent to another along
precedence constraints when interactions do occur. In Fig-
ure 1, for example, the takeoff action will have little infor-
mation about the state of the carrier, as one cannot know in
advance which actions robot3 will have the time to perform
before or during takeoff. However, the action of picking up
carrier 4 must occur after the carrier is fully loaded. This
information can therefore be carried over from robot3 to
uav4 along the cross-agent precedence constraint.

Finally, as in any planner, we also have access to state
variables representing static facts such as the locations of
stationary objects and the capabilities of individual agents.

Thus, POFC planning enables us to generate quite exten-
sive agent-specific information about the state that will hold
after any given action is executed. This information gen-
erally will not be total, but is in many cases sufficient to
determine whether a particular agent can add a particular
action to its sequence. We also expect the information to
be useful for the development of new state-based heuristics
for POFC planning.

In some cases, additional information that is currently
local to another agent will be required in order to determine
the executability of an action. Acquiring such information
involves the addition of precedence constraints to the plan.
Returning once more to Figure 1, picking up a carrier might
only be possible if the carrier is fully loaded. We know
that carrier 4 is fully loaded after robot3 loads crate 7 onto
the carrier. Proving this to be true when uav4 picks up the
carrier requires a cross-agent precedence constraint. In the
following section, we will present one potential mechanism
for generating such constraints.

3 A Prototype POFC Planner

A variety of planning algorithms and search spaces can
be realized within the general framework of partial order
forward-chaining, differing along several dimensions.
Partial order causal link planners allow actions to be in-
serted in arbitrary order, without guaranteeing that their
preconditions are satisfied or that their effects are compat-
ible with existing actions. Such “flaws” in a plan must be
corrected at a later time through the introduction of addi-
tional actions and precedence constraints. For example, the

planner could insert the action of picking up a fully loaded
carrier before adding the actions required for actually load-
ing crates onto the carrier, as long as these actions were
then constrained to be executed in the required order.

Similar methods could be used for partial order forward-
chaining, with one limitation. It is by definition impossible
to insert a new action for one agent before another action
belonging to the same agent. However, as mentioned be-
fore, a new action can be inserted before an action belong-
ing to another agent, allowing previously unsatisfied pre-
conditions of the latter action to be satisfied. For example,
the planner could first insert the action of uav4 picking up a
fully loaded carrier, and then the actions required for robot3
to load the carrier.

In our initial investigations, we have instead chosen to
explore a search space where adding a new action to a plan
with a given set of precedence constraints is only permitted
if this results in an executable plan without flaws. The pre-
conditions of the new action must be satisfied at the point
where it is inserted in the current plan structure, its effects
must not interfere with existing actions in the plan, and mu-
tual exclusion relations must be satisfied. In this sense, the
planner is closer to forward-chaining planning.

We also choose to achieve goal-directedness through
the use of domain-specific precondition control formulas
[1, 2, 9] as explained below. This can be very effective
due to the comparatively rich state information afforded by
the POFC plan structure. Thus, we do not currently make
use of means-ends analysis as in standard POCL planning,
or state-based domain-independent heuristics as in many
forward-chaining planners.

3.1 Domains and Problem Instances

For our first partial order forward-chaining planner, we as-
sume a typed finite-domain state-variable representation of
planning domains. State variables will also be called flu-
ents. For example, loc(package) might be a location-valued
fluent taking a package as its only parameter.

An operator has a list of typed parameters, where the
first parameter always specifies the executing agent. For
example, the act of flying between two locations may be
modeled as the operator fly(uav, from, to), where the uav
is the executing agent. An action is a fully instantiated
(grounded) operator. Since finite domains are assumed, any
operator is associated with a finite set of actions.

Each operator is associated with a precondition formula
and a set of precondition control formulas, both of which
may be disjunctive and quantified. We often use “condi-
tions” to refer to both preconditions and control formulas.

Precondition control represents conditions that are not
“physically” required for execution, but should be satisfied
for an action to be meaningful for the given domain [1, 2].
For example, flying a fully loaded carrier to a location far
from where its packages should be delivered is possible but
pointless, and can be prevented using a suitable control for-

48

mula. Given the search method used in this planner, pre-
condition control will not introduce new subgoals that the
planner will attempt to satisfy. Instead, the formulas will
be used effectively to prune the search space.

An operator has a strictly positive duration, a temporal
expression specifying the expected amount of time required
to execute the action. The duration may be dependent on
the state in which an action is invoked. We currently as-
sume that the true duration of the action is strictly positive
and cannot be controlled directly by the executing agent.
Apart from this, we assume no knowledge of upper or lower
bounds for execution times, though support for such infor-
mation may be added in the future.

A set of mutexes can be associated with every operator.
Mutexes are acquired throughout the duration of an action
to prevent concurrent use of resources. For example, an
action loading a crate onto a carrier may acquire a mutex
associated with that crate to ensure that no other agent is
allowed to use the same crate at the same time. Mutexes
must also be used to prevent actions that are associated with
different agents and that have mutually inconsistent effects
from being executed in parallel. Thus, we do not model
mutual exclusion between actions by deliberately introduc-
ing inconsistent effects, as in some planning formalisms.

For simplicity, we initially assume single-step operators,
where all effects take place in a single effect state. Ef-
fects are conjunctive and unconditional, with the expres-
sion f(v) := v stating that the fluent f(v) has been assigned
the value v when execution ends. Both v and all terms in v
must be either value constants or variables from the for-
mal parameters of the operator. For example, the operator
fly(uav, from, to) may have the effect loc(uav) := fo.

For any given problem instance, the initial state must
provide a complete definition of the values of all fluents.
The goal is typically conjunctive, but may also be disjunc-
tive. The construct goal(¢) can be used in precondition con-
trol formulas to test whether ¢ is entailed by the goal. For
example, we should only load boxes that must be moved
according to the goal.

3.2 Plan Structures

We associate each action a in a plan with an invocation
node inv(a) where conditions must hold and where mutexes
are acquired, and an effect node eff{a) where effects take
place and mutexes are released. All mutexes belonging to
the action are considered to be held by the associated agent
in the entire interval of time between its invocation node
and its effect node®. Invocation nodes and effect nodes are
called plan nodes.

2 A mutex is an object that can only be acquired by a single thread, or
in this case agent, at any given point in time.

3Thus, the planning algorithm must generate a partial order that is suf-
ficiently strong to ensure that no two actions a, a’ belonging to distinct
agents can hold the same mutex at the same time. This is done at the end
of Section 3.6.

A plan is then a tuple (A, N, L, O) whose components are
defined as follows.

e A is the set of actions occurring in the plan.

e N contains one invocation node and one effect node
for every action in A.

. . f= .
e L is a set of ground causal links #; = j representing
the commitment that the effect node n; will achieve the
condition f = v for the invocation node 7;.

e O contains a set of ordering constraints on N whose
transitive closure is a partial order denoted by <,
where we define n; < n;iff n; <njand n; # n;.

For any action a, we implicitly require that inv(a) < eff(a):
An action is always invoked before it has its effects. Ad-
ditionally, given that there are no upper or lower bounds
on action durations, it is not possible to directly control the
time at which an action finishes by any other means than
by delaying its invocation. Therefore, if a plan requires
effla;) < efflay), it is implicitly required that effla;) <
inv(ay). Finally, by the definition of partial order forward-
chaining, the nodes associated with any given agent must
be totally ordered by O.

Similar to standard POCL planning, we assume a spe-
cial initial action ay € A without conditions or mutexes,
whose expected duration is 0 and whose effects provide a
complete definition of the initial state. For all other actions
a; # ap € A, we must have eff(ap) < inv(a;). Due to the
use of forward-chaining techniques instead of means-ends
analysis, there is no need for an action whose preconditions
represent the goal, as in standard POCL planning.

Note that this plan structure is defined for the expressiv-
ity supported by our initial POFC planner. Given differ-
ent levels of expressivity, different structures may be ap-
propriate. For example, if upper and lower bounds on ac-
tion durations are supported, a plan may have to include a
temporal network or a similar structure, thereby allowing
the planner to efficiently query the implicit action prece-
dence constraints that follow from these bounds. As our
initial planner has no bounds on durations, precedence can
be completely determined by the constraints in O.

3.3 Executable Plans and Solutions

If a partially ordered plan will always be executed sequen-
tially, it can be considered executable if and only if all ac-
tion sequences satisfying the partial order are executable.
For POFC planners, as well as some POCL planners, the
assumption of concurrent execution is fundamental. This
leads to the possibility of one agent beginning or finishing
executing an action while another agent is in the process of
executing another action. The need to consider such cases
is the reason why our precedence relation is defined relative
to invocation and effect nodes, not relative to entire actions.
A POFC plan should therefore be considered executable if

49

Inv: Initial Inv: Initial Inv: Initial
Eff: Initial Eff: Initial Eff: Initial

Inv:Gotocl2		Inv:Gotocl2		Inv:Takeoff
Eff:Gotocl2		Inv:Takeoff		Eff: Takeoff
Inv:Pickupcl2		Eff:Gotocl2		Inv:Pickupcl2
Eff:Pickupcl2		Inv:Pickupcl2		Inv:Flytocd
Inv:Takeoff		Eff:Takeoff		Eff:Flytocd

Figure 2: Three node sequences

and only if every node sequence satisfying the associated
partial order is executable. Figure 2 shows three node se-
quences compatible with the plan defined in Figure 1, with
the addition of the special initial action used in this partic-
ular POFC planner.

The executability of a single node sequence is defined
in the standard way. Observe that the first node in such a
sequence must be the invocation node of the initial action
ap, which has no preconditions or effects. The second node
is the effect node of ay, whose effects completely define
the initial state. After this prefix, invocation nodes and ef-
fect nodes may alternate, or many nodes of the same type
may occur in sequence, depending on the order in which
actions are assumed to begin and end. Effect nodes update
the current state. For the plan to be executable, an effect
node must not have internally inconsistent effects. For ex-
ample, it must not assign two different values to the same
fluent. Invocation nodes contain preconditions and precon-
dition control formulas that must be satisfied in the “cur-
rent” state. Finally, executability also requires that no mu-
tex is held by more than one agent in the same interval of
time.

An executable plan is a solution iff every compatible
node sequence results in a final state satisfying the goal.

3.4 Search Space

POCL planners add actions first and resolve unsatisfied
conditions later, thereby searching through the space of par-
tially ordered (and not necessarily executable) sets of ac-
tions. In contrast, forward-chaining planners begin with an
empty executable plan, and actions can only be added af-
ter being proven executable. Forward-chaining can thus be
viewed as searching in the space of executable plans, with a
single plan modification step consisting of adding one new
action at the end of the current plan.

Given the plan structure and expressivity defined above,
a similar search space can be used for POFC planning. The
initial search node then corresponds to the “empty” exe-
cutable plan ({ao}, {inv(ao), efflao)}, @, {inv(ao) < efflao)}),
where qy is the initial action whose effects define the initial
state. Each child of a search node adds a single new action
to the end of one agent’s action sequence, together with a
set of precedence constraints and causal links ensuring that

the plan remains executable.

This claim implies that we do not lose completeness by
requiring every intermediate search node to correspond to
an executable plan, as opposed to an arbitrary action set as
in POCL planning. Intuitively, this holds because there can
be no circular dependencies between actions, where adding
several actions at the same time could lead to a new exe-
cutable plan but adding any single action is insufficient.

More formally, let 71 = (A, N, L, O) be an arbitrary exe-
cutable plan. Let a € A be an action which is not guaran-
teed to precede any other action in the plan (for example,
the action of going to crate 5 in Figure 1). In other words,
let a € A be an action such that there exists no other action
b € A where eff(a) < inv(b). Such an a must exist, or the
precedence relation would be circular and consequently not
a partial order, and 7 would not have been executable.

Since a is not the predecessor of any other action, it can-
not have been used to support the preconditions and control
formulas of other actions in 7. Removing it from the plan
will therefore have no negative effects in this respect. Sim-
ilarly, a cannot be required for mutual exclusion to be sat-
isfied: Removing a can only lead to fewer mutexes being
allocated, which can only improve executability.

Consequently, removing a and the associated plan nodes,
causal links and precedence constraints from 7 must lead to
a new executable plan ’. We see inductively that any finite
executable plan can be reduced to the initial plan through
a sequence of such reduction steps, where each step results
in an executable plan. Conversely, any executable plan can
be constructed from the initial plan through a sequence of
action additions, each step resulting in an executable plan.

Since we assume finite domains, solution plans must be
of finite size and can be constructed from the initial plan
through a finite number of action addition steps.

Given finite domains, the action set must also be finite.
Furthermore, when any particular action is added to a plan,
there must be a finite number of ways to introduce new
precedence constraints and causal links ensuring that the
plan remains executable. Any search node must therefore
have a finite number of children, and the search space can
be searched to any given depth in finite time.

Thus, given a method for generating all valid child nodes
(finding all applicable actions), we can incrementally con-
struct and traverse a search space. Given a method for test-
ing goal satisfaction and a complete search method such
as iterative deepening or depth first search with cycle de-
tection, we have a complete planner. These issues will be
considered in more detail in the following subsections.

3.5 Partial States

Forward-chaining planners find applicable actions by eval-
uating preconditions in the current completely defined
state. For partially ordered plans there is no unique “cur-
rent” state, and we can rarely infer complete information
about the world even for a specific plan node or action.

50

Inv: Takeoff
|

| |

‘ Eff: Takeoff ‘
|

‘ Inv: Fly to carrier 4 ‘

| |

T
Eff: Fly to carrier 4

Figure 3: Example POFC plan structure

However, as discussed previously it is possible to infer and
store partial state information for any plan node.

A variety of structures can be used for this purpose, each
having its own strengths and weaknesses. For example, as-
sociating each plan node with a set of possible states would
allow any fact that can be inferred from the current plan
to be represented, including arbitrary disjunctive facts such
as at(uav4, pos1) V at(uav5, pos1). However, such structures
tend to require considerable space and may take a consider-
able amount of time to update when new actions are added.

Instead, we currently use partial states represented as a
finite set of possible values for each fluent: f € {vy,...,v,}.
The evaluation procedure defined below resolves as many
parts of a formula as possible through this partial state for
efficiency. Should this not be sufficient to completely deter-
mine the truth or falsity of the formula, the procedure falls
back on an explicit traversal of the plan structure for those
parts of the formula that remain unknown. This grounds
evaluation in the initial state and the explicit effects in the
plan for completeness.

The Initial State. The initial plan consists of a single ac-
tion ag, whose invocation node is associated with the empty
state and whose effect node directly and completely defines
the initial state of the planning problem at hand.

Updating States. When a new action is added to a plan,
states associated with existing nodes must be incrementally
updated to reflect the changes that this might have caused.
For example, consider the situation in Figure 3 and assume
that robot3 is initially at depot1. Before we add the action
of going to crate12, the plan includes no movement for the
robot, and the invocation node for takeoff will include the
fact that robot3 remains at depoti. When the new action is
added, it is temporally unconstrained relative to the takeoff
action. Then we only know that when takeoff is invoked,
robot3 will be either at depot1 or at crate12.

State updates must generate “sound” states: When a par-
ticular node is reached during execution, each fluent must
be guaranteed to take on a value included in the state of the
node. However, updates do not have to yield the strongest
information that can be represented in the state structure,
since formula evaluation will be able to fall back on ex-
plicit plan traversal. Thus, a tradeoff can be made between
the strength and the efficiency of the update procedure.

For example, a sound state update procedure could
weaken the states of all existing nodes in the plan: If a
state claims that f € V and the new action has the effects
f := v, the state would be modified to claim f € V U {v}. On
the other hand, it is clear that no effect node can interfere
with the states of its own ancestors. In Figure 1, for exam-
ple, the effect node for the action of picking up carrier 4
has ancestor nodes belonging to robot3 as well as uav4 and
cannot interfere with the states of these nodes. Therefore,
weakening the states of all non-ancestors is sufficient.

Generating New States. When a new plan node n is
added, it always has at least one immediate predecessor —
anode p < n such that there exists no intermediate node
where p < n’ < n. In Figure 3, for example, the invocation
node of going to crate12 has a single immediate predeces-
sor: The effect node of the initial action. If an action is
also constrained to start after an action belonging to an-
other agent, it can have multiple immediate predecessors.

Let n be a new node and p one of its immediate predeces-
sors. Itis clear that the facts that hold in p will still hold in n
except when there is explicit interference from intervening
effects. Therefore, taking the state associated with p and
“weakening” it with all effects that may occur between p
and n, in the same manner as in the state update procedure,
will result in a new partial state that is valid for n.

For example, let n be the invocation node of going to
crate12 in Figure 3, and let p be the effect node of the initial
action. We can then generate a state for n by taking the
state of p and weakening it with the effects associated with
taking off and flying to carrier 4, since these are the only
effect nodes that might intervene between p and n.

Now suppose that we apply this procedure to two im-
mediate predecessors p; and p,, resulting in two states
s1 and s, both describing facts that must hold at the new
node n. If s, claims that f € V| and s, claims that f € V, for
some fluent f, then both of these claims must be true. We
therefore know that f € V| N V,. This can be extended to
an arbitrary number of immediate predecessors, resulting
in stronger state information when a new node is created.
Note that given that agents are loosely coupled, a node gen-
erally has very few immediate predecessors, which limits
the time required for state generation.

Conjoining information from multiple predecessors of-
ten results in gaining “new” information that was not pre-
viously available for the current agent. For example, if
robot3 loads boxes onto a carrier, incrementally updating a
total-weight fluent, other agents will only have partial infor-
mation about this fluent. When uav4 picks up the carrier,
this action must have the last load action of robot3 as an
immediate predecessor. The UAV thereby gains complete
information about weight and can use this efficiently in fu-
ture actions.

Finally, if the new node is an effect node, its own effects
must also be applied to the new state.

51

Inv: Takeoff ‘
|

‘ Eff: Takeoff ‘

Figure 4: A new invocation node is being created

3.6 Searching for Applicable Actions

When searching for applicable actions, we first determine
which agent to use. Several heuristics can be used, such as
reusing agents to the greatest extent possible or distributing
actions evenly across all available agents. In the latter case,
we can calculate the timepoint at which we expect each
agent to finish executing its actions in the current plan and
test agents in this order. This selection must naturally be a
backtrack point, to which the planner can return in order to
try a different choice of agent. The same applies to many
other choices below.

The intention is then to make use of the previously dis-
cussed procedure for generating state information in order
to quickly detect most inapplicable actions for the selected
agent. For some of the remaining actions, we may have to
introduce precedence constraints in order to actively make
the actions applicable. For example, suppose we are testing
whether uav4 can pick up carrier4. This may only be possi-
ble if the pickup action is constrained to occur after robot3
loaded the carrier.

Satisfying Preconditions. When a specific agent has
been chosen, we create a new invocation node » that is not
yet associated with a particular action. This node is ap-
pended to the end of the selected agent’s node sequence, or
after the initial action ay if no agent-specific actions have
been added previously. In Figure 4, for example, a new in-
vocation node for robot3 is being created. At this point, n
will always have a single immediate predecessor.

We then generate a “temporary” partial state s for n ac-
cording to the procedure discussed previously. This state
includes many of the facts that must hold when the new
action is invoked, regardless of which action happens to be
selected. Consequently it can be used to efficiently separate
potential new actions for the current agent into three sets,
where preconditions and precondition control formulas are
definitely satisfied (A,), definitely not satisfied (A_), and
potentially satisfied (A-), respectively.

For actions in A», there is currently insufficient informa-
tion in s to determine whether the required conditions hold.
This may be due to incomplete state updates or because it is
inherently impossible to determine the value of a particular
fluent given the current partial order. For example, robot3
may only be able to move to launchpad1 if uav4 has already
taken off, which requires 7 to be ordered strictly after the ef-
fect node of takeoff. Thus, new precedence constraints may

be required to ensure that an action is executable, which
may give n additional immediate predecessors. This can
only strengthen the information previously provided in s,
never invalidate it.

Given sufficiently loose coupling, together with the ex-
istence of agent-local and static facts, A, will be compara-
tively small. Nevertheless, actions in this set must also be
handled. For this purpose we define the procedure make-
true(a, n,), which recursively determines whether a for-
mula « can be made to hold in n, and if so, which prece-
dence constraints need to be added for this to be the case.
Subformulas are evaluated in the partial state of n whenever
possible.

The procedure returns a set of extensions correspond-
ing to the minimally constraining ways in which the prece-
dence order can be constrained to ensure that @ holds in .
Each extension is a tuple (P, C) where P is a set of prece-
dence constraints to be added to O and C is a set of causal
links to be added to L. Thus, if @ is proven false regardless
of which precedence constraints are added, @ is returned:
There exists no valid extension. If @ is proven true with-
out the addition of new constraints, {{(@, C)} is returned for
some suitable set of causal links L. In this case, the state
of n can be updated accordingly, providing better informa-
tion for future formula evaluation.

We will now describe the make-true procedure. Certain
aspects of the procedure have been simplified below to im-
prove readability while retaining correctness. A number
of optimizations to this basic procedure can and have been
applied, several of which will be discussed below the main
procedure description.

Assume that we call make-true(a,n,n), where 7 =
(A, N, L, O), and let s be the partial state of n.

Let us first consider the base case, where « is the atomic
formula f = v. If this is true according to s, we determine
which node n” generated the supporting value for f and re-

turn (@, {n’ =, n})}. If the formula is false according to s,
we return @. Otherwise, s contains insufficient information
to determine whether the formula holds. We then find all ef-
fect nodes E = {ey,...,e,} in & that assign the value f = v.
This set may be empty, in which case we must return @.
If |E] > 0, then for each effect node ¢; € E, we generate
all sets P; ; of minimally constraining new precedence con-
straints that we could use to ensure that the relevant effect
cannot be interfered with between e; and n. Each set P,
together with the associated causal links, forms one valid
extension. The set of all these extensions is returned.

The case where « has the form f # v is handled similarly.

If @ is a negated formula —f, the negation is pushed
inwards using standard equivalences. For example,
make-true(—=(B A), n, n) = make-true(=8 VvV —y,n, m).

If @ is a conjunction S A 7y, then both conjuncts must be
satisfied. We first determine how 8 can be satisfied by re-
cursively calling E; = make-true(8, n,). If this returns &,
we immediately return @: If we cannot satisfy the first con-
junct, we cannot satisfy the conjunction. Otherwise, we

52

need to determine how the extensions in E; can be further
extended so that y is also satisfied. For every extension
(P;,C;) € E{, weletnr; = (A,N,L U C,0 U P) and call
make-true(y, n, m;). We take the union of all results, remove
all extensions that are not minimal in terms of precedence
constraints, and return the remaining extensions.

If @ is a disjunction 8 V 7y, then it is sufficient
that one disjunct is satisfied. = We therefore calculate
make-true(B, n, m) Umake-true(y, n,), corresponding to all
ways of satisfying either disjunct. We then remove all ex-
tensions that are not minimal in terms of precedence con-
straints and return the remaining extensions.

Finally, if @ is a quantified formula, we iterate over the
finite set of values in the domain of the quantified variable.
Universal quantification can then essentially be considered
equivalent to conjunction, while existential quantification
is equivalent to disjunction.

This procedure may seem quite complex. However, any
POCL planner must also resolve unsupported conditions in
a similar manner, searching for existing actions that support
the conditions or possibly adding new actions for support.
Apart from the order of commitment, the main differences
are that the POFC planner uses a partial state to quickly
filter out most candidate actions and is restricted to search-
ing for existing actions supporting conditions as opposed to
adding new actions.

Similarly, though the evaluation procedure may seem to
lead to a combinatorial explosion, recall that we are essen-
tially doing forward search. We must therefore find existing
support for all conditions in the current plan, which tends
to yield a reasonably sized set of consistent extensions.

A number of optimizations can also be applied.

For example, instead of calculating all possible exten-
sions in a single call, extensions can be returned incremen-
tally as they are found.

It is possible to store and efficiently update a map asso-
ciating each fluent with the nodes affecting it, for efficiency
when searching for support for an atomic condition.

The evaluation order can be altered so that one always
evaluates those parts of a formula that can be resolved in the
current partial state before those parts that require support
from effect nodes. This is useful in cases such as when
the first conjunct in a conjunction is not determined by the
partial state but the second conjunct is definitely false.

As a final example, we can structure the process of find-
ing all applicable instances of a particular operator so that
large sets of instances can be ruled out in a single evalu-
ation. For example, suppose that flying between two lo-
cations is only possible when a UAV is already in the air,
represented as the fluent flying(uav). Whether this condi-
tion holds depends on the agent but is independent of the
locations in question. If a particular UAV is not in the air,
there is therefore no need to iterate over all combinations
of locations.

Once the evaluation procedure has ensured that precondi-
tions and precondition control formulas will hold, we con-

tinue by adding precedence constraints ensuring that no
mutex is used twice concurrently. We then ensure that
the effects of the new action cannot interfere with existing
causal links in the plan. If this entire procedure proceeds,
the action was applicable and one of the possible sets of
precedence constraints and causal links can be added to the
plan.

Finally, we should note that goal satisfaction can be tested
in a manner equivalent to the make-true procedure. The
goal formula is then evaluated in a new node having all
other nodes as ancestors. Any extension returned by
make-true corresponds to one possible way in which the
current plan can be extended with new precedence con-
straints to ensure that the goal is satisfied after the execution
of all actions.

4 Related work

The ability to create temporal partially ordered plans is far
from new. A variety of such planners exist in the literature
and could potentially be applied in multi-agent settings.
Some of these planners also explicitly focus on multi-agent
planning. For example, Boutilier and Brafman [5] focus
on modeling concurrent interacting actions, in a sense the
opposite of the loosely coupled agents we aim at.

However, the main focus of this paper is to investigate
the possibility of taking advantage of certain aspects of
forward-chaining when generating partially ordered plans
for multiple agents. In this area, very little appears to have
been done. An extensive search through the literature re-
veals two primary examples.

First, a multi-agent planner presented by Brenner [7]
does combine partial order planning with forward search.
However, the planner does not explicitly separate actions
by agent and does not keep track of agent-specific states.
Instead, it evaluates conjunctive preconditions relative to
those value assignments that must hold after all actions in
the current plan have finished. This is significantly weaker
than the evaluation procedure defined in this paper. In fact,
as Brenner’s evaluation procedure cannot introduce new
precedence constraints, the planner is incomplete.

Second, the FLECS planner [11] uses means-ends analy-
sis to add relevant actions. A FLExible Commitment Strat-
egy determines when an action should be moved to the end
of a totally ordered plan prefix, allowing its effects to be
determined and increasing the amount of state information
available to the planner. Actions that have not yet been
added to this prefix remain partially ordered.

Though there is some similarity in the combination of
total and partial orders, FLECS uses a completely differ-
ent search space and method for action selection. Also,
whereas we strive to generate the weakest partial order pos-
sible between actions performed by different actions, any
action that FLECS moves to the plan prefix immediately
becomes totally ordered relative relative to all other actions.

53

FLECS therefore does not retain a partial order between ac-
tions belonging to distinct agents.

Thus, we have found no existing planners taking advan-
tage of agent-specific forward-chaining in the manner de-
scribed in this paper.

5 Conclusions

We have presented a hybrid planning framework combin-
ing interesting properties of temporal partial order and
forward-chaining planning. We have also described one of
many possible planners operating within this framework.
We view this as an interesting variation of POCL plan-
ning worthy of further exploration, and believe that future
investigations will show that each framework has its own
strengths and applications.

An early prototype implementation of the suggested
planner has been developed. As we are still in the explo-
ration phase, the current implementation is written for read-
ability and ease of extension rather than for performance.
For example, many data structures can and will be replaced
with considerably more efficient ones. Therefore, standard
benchmark tests would provide no meaningful information
about the strengths of POFC planners as compared to other
temporal partial order planners.

However, the basic structure of this particular POFC
planning method can also be evaluated by observing search
patterns, such as the strength of pruning when precondi-
tion control formulas are used. Though a final judgment
has to await more extensive testing in multiple domains,
initial experiments indicate a pruning strength very simi-
lar to that of standard forward-chaining planners based on
control formulas for pruning, which is very promising.

Several extensions are planned for the near future, in-
cluding support for incompletely specified initial states and
the generation of conformant plans. We are also very
interested in investigating the use of domain-independent
heuristics for the new plan structure. Finally, we may de-
velop alternative search procedures more similar to POCL
planners in the sense that actions with currently unsup-
ported conditions can be added, resulting in flaws that can
be resolved through means-ends analysis.

Acknowledgements

This work is partially supported by grants from the Swedish
Research Council (50405001, 50405002) and CENIIT, the
Center for Industrial Information Technology (06.09).

References

[1] F. Bacchus and M. Ady. Precondition con-
trol. Available at http://www.cs.toronto.
edu/~fbacchus/Papers/BApre.pdf, 1999.

[2] F. Bacchus and F. Kabanza. Using temporal logics to
express search control knowledge for planning. Arti-
ficial Intelligence, 116(1-2):123-191, 2000.

[3] C. Backstrom. Computational aspects of reordering
plans. Journal of Artificial Intelligence Research, 9
(99):137, 1998.

[4] B. Bonet and H. Geffner. HSP: Heuristic search plan-
ner. Al Magazine, 21(2), 2000.

[5] C.Boutilier and R. I. Brafman. Partial-order planning
with concurrent interacting actions. Journal of Artifi-
cial Intelligence Research, 14:105-136, 2001.

[6] R. I. Brafman and C. Domshlak. From one to many:
Planning for loosely coupled multi-agent systems. In
Proceedings of the 18th International Conference on
Automated Planning and Scheduling (ICAPS), pages
28-35, Sydney, Australia, 2008.

[71 M. Brenner. Multiagent planning with partially or-
dered temporal plans. In Proc. IJCAI, 2003.

[8] J. Hoffmann and B. Nebel. The FF planning system:
Fast plan generation through heuristic search. Journal
of Artificial Intelligence Research, 14:253-302, 2001.

[9] J. Kvarnstrom and P. Doherty. TALplanner: A tem-
poral logic based forward chaining planner. Annals of
Mathematics and Artificial Intelligence, 30:119-169,
June 2000.

[10] E.D. Sacerdoti. The nonlinear nature of plans. In Pro-
ceedings of the 4th International Joint Conference on
Artificial Intelligence, pages 206-214. Morgan Kauf-
mann Publishers Inc., 1975.

[11] M. Veloso and P. Stone. FLECS: Planning with a flex-
ible commitment strategy. Journal of Artificial Intel-
ligence Research, 3:25-52, 1995.

[12] D. S. Weld. An introduction to least commitment
planning. Al magazine, 15(4):27, 1994.

 HistoryItem_V1
 AddNumbers

 Range: all pages
 Font: Times-Roman 12.0 point
 Origin: bottom centre
 Offset: horizontal 11.34 points, vertical 36.00 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BC

 45
 TR
 1
 0
 1690
 285

 0
 12.0000

 Both
 10
 1
 AllDoc

 CurrentAVDoc

 11.3386
 36.0000

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 0
 10
 9
 10

 1

 HistoryList_V1
 qi2base

