Model verification and debugging of EOO models aided by model
reduction techniques
* Work in Progress Paper **

Anton Sodja

Borut Zupancic

Fakulteta za elektrotehniko, Univerza v Ljubljani, Slovenia,
{anton.sodja,borut.zupancic}@fe.uni-17j.si

Abstract

Equation-based object-oriented modeling approach signifi-
cantly reduced effort needed for model implementation by
releasing modeler of performing many error-prone tasks.
An increasingly more complex models can be built, prefer-
ably from components of different model libraries. How-
ever, complexity of the models complicate the process of
verification — assuring that the model was implemented cor-
rectly and behaves as expected — and possible subsequent
debugging. A cause of error in a model with over 1000
different equations can be often hard to find by the desk-
checking method. This requires the development of new
modeling environment tools for model understanding and
automated discovery of the fault causes.

The difficulty of designing such tools in EOO modeling
environments is linked to the difficulty of mapping simula-
tion form to the model sources. Furthermore, debugging of
complex models consisting of over thousand equations by
traversing each equation may be very ineffective, especially
when the fault has multiple and not very evident causes.

A model reduction methods is proposed and discussed
as a method of verification. With model reduction meth-
ods it is possible to identify the most important parts of the
model which have contributed to the specific model behav-
ior. Because model reduction can be performed on original
model representation, the difficulty of mapping simulation
form back to model source is avoided.

Keywords verification, debugging of EOO models, veri-
fication by model reduction

1. Introduction

Important step in process of modeling and simulation
is verification of the model. With verification we assure

3rd International Workshop on Equation-Based Object-Oriented

Modeling Languages and Tools. October, 2010, Oslo, Norway.

Copyright is held by the author/owner(s). The proceedings are published by
Linkping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/047/

EOOLT 2010 website:

http://www.eocolt.org/2010/

matching of our conceptual model with the implementa-
tion of the model.

Traditionally models were implemented in imperative
programming languages and verification of the models
could rely heavily to the established software debugging
practices and techniques . However, declarative equation-
based object-oriented modeling languages, like Modelica,
introduced a new abstraction layer in implementation of the
model to improve modeling process. Differential algebraic
equations by which model is described can be entered di-
rectly and further such models can be combined into more
complex models according to the rules defined by their
interfaces. Such implementations of the models preserve
topology of the modeled system and models are thus more
evident and clear, but for simulation purposes such model
must be preprocessed — translated into the simulation form.
Translation is performed automatically.

Since the modeler is no longer acquainted with the sim-
ulation form of the model, the paradigm of the model
verification and debugging has changed and we can no
longer effectively use software debugging tools developed
for imperative programming languages. However, verifica-
tion and debugging of declarative modeling languages is
still not solved adequately and it remains a challenging re-
search topic.

2. Overview of verification techniques

A number of verification techniques have been developed,
spanning from very informal approaches to formal mathe-
matical proofs of correctness. Whitner and Balci [13] cate-
gorized verification methods into six distinct perspectives
based on increasing level of mathematical formality: in-
formal, static, dynamic, symbolic, constraint and formal
analysis. Effectiveness of verification usually increases as
method becomes more formal, but on behalf of increased
complexity.

2.1 Informal analysis

Informal analysis techniques, such as desk checking, are
most commonly used verification strategies where model
is evaluated using the human mind. The evaluations can
be made by mentally exercising the model, reviewing the
logic behind the equations, algorithms and decisions, and

117

examining the effects that the various implementations will
have on the overall outcome of the model.

Declarative modeling languages specifically improve ef-
ficiency of the informal analysis of the model, since imple-
mentation of the model is close to the form of conceptual
model with preserved topology of the modeled system.

However, informal analysis is very time consuming and
its success depends on the level of knowledge and expertise
of the individual, which comes into concern when very
complex models are built with an aid of pre-prepared model
libraries with implementation of the components that may
not be completely known to the user.

2.2 Static analysis

Static analysis is a verification method where only the
source code of the model is analyzed without actually per-
forming simulation.

It is the best supported verification method by EOO
modeling tools. The most important aspect of it is struc-
tural analysis — checking that number of variables match
the number of equations in the model (resulting system of
equations derived from model is well-constrained) and in
case if over- or under-constrained system of equations was
detected, a tool (debugger) must be able to report the loca-
tion of the error consistently with the user’s perception of
the simulation model and possibly suggest the right error-
fixing solution [1]. In Modelica language standard 3.0, re-
strictions have been introduced into the language in order
to force matching of a number of unknowns and equations
on every hierarchical level (in each submodel) [8]. This
has improved efficiency of the debugging over- and under-
constrained models since it is possible to easily determine
a submodel with too many or too few equations.

Object-oriented modeling where variables are also ob-
jects with many additional properties besides value enables
also other kind of static analysis, for example, unit check-
ing [6].

The advantage of static analysis in EOO modeling is that
costly translation and simulation of the model is avoided,
but it can not fully verify that intentions of the modeler are
being met or determine the model’s behavior.

2.3 Dynamic analysis

Verification by dynamic analysis is accomplished by evalu-
ating model’s simulation results. In general this a complex
task since it is not easy to determine what to test and how
to test it. Furthermore, it can be complicated to interpret the
analysis’ results.

The EOO modeling introduce additional difficulties into
verification by dynamic analysis due to optimization per-
formed during translation of the model when a lot of in-
formation about the original model’s structure is lost. Map-
ping the simulation form back to original model is thus a
very challenging task.

Currently, no modeling tool supporting Modelica pro-
vides even the simplest run-time debugging capabilities
that could be used for inspecting of failed tests. However,
there were some prototypes of automated debuggers for
EOO languages developed [1, 9]. They are based on the

principles of debugging of the programming languages.
The debugging strategy is interactive and based on the
user’s choice of the variables which trajectories are wrong
and according to these variables the simulation form of
the model is sliced so that only parts (equations and algo-
rithms) having influence on selected-variables’ calculation
are shown to the user. A dependency graph is built where
nodes represent equations that contributed to the result con-
nected by directed edges labeled by variables or parameters
which are inputs or outputs from or to the equation rep-
resented by the node. Then the user is able to classify a
variable as variable with wrong value or classify an equa-
tion as correct (which results in rebuilding the dependency
graph) and modify some of equations and variables’ values
interactively. Each equation in dependency graph is also
mapped to model source.

Although debugging methods [1, 9] provide significant
advantage over no debugging tools at all, they have some
serious deficiencies. The user is basically still operating on
the level of model’s simulation form, even if mapping to
model code positions is provided. Also scalability, when
dealing with large models with many equations, is prob-
lematic while considering each equation one by one is very
impractical.

A special topic of dynamic analysis is resolving numer-
ical problems that might arise during simulation. However,
this is very advanced topic, while user must posses a good
knowledge of the simulation form to which model was
translated and properties of the numerical solver.

2.4 Symbolic analysis

Verification by symbolic analysis addresses some draw-
backs of the dynamic analysis, namely the inability to ver-
ify all possible test cases. Verification by symbolic analysis
seeks to determine the behavior of the model during simu-
lation by providing symbolic inputs to the model.

2.5 Constraint analysis

Constraint analysis verifies on the basis of comparison be-
tween model assumptions and actual conditions arising
during simulation of the model. The model assumptions
are made already during the development of the concep-
tual model. In Modelica they can be checked by means of
assert statement provided by language standard [7] and are
extensively used in Modelica Standard Library, for exam-
ple, in Modelica.Media it is in that way assured that the
medium equations are never used outside the valid temper-
ature range.

The disadvantage of constraint analysis is reliance on
formal model specifications which is needed to effectively
state and place the assertions. Creating a formal specifica-
tion is a difficult task.

2.6 Formal analysis

Formal analysis is based on formal mathematical proof of
correctness. It usually can not be applied even on the most
simple models and basically it has no practical value so far.

118

3. Problematics of verifying EOO models

Modeling is a process of extraction, organization and rep-
resentation of the knowledge about physical system [2].

The contribution that equation-based object-oriented
modeling approach brought to the process of modeling
is implementation of the model close to the conceptual
model, i.e., model is stated in acausal form and topology
of the system is preserved. In contrast to traditional pro-
cedures where model was implemented in imperative lan-
guages, automatic translation of the model relives the user
of tedious and error-prone task of manual manipulation of
the model’s equations.

EOO modeling approach also enabled truly reusable
models and consequently many model libraries have been
developed. Rich selection of already prepared components
allows building relatively complicated and “error-free”
models with a little effort. However, although once com-
mon errors due to implementation in imperative languages
are no longer an issue, there can be identified three types
of faults emerging in EOO models which can be exposed
in simulation results [1]:

e when parameter values for the model simulation are
incorrect

e when the equations that specify the model behavior are
incorrect (violate physical laws)

e when submodels are used inappropriately (assumptions
about the system are violated)

These faults can be found by either failed assert statement
or by inspection of the simulation results (failed test).

When a fault is found in a model, the cause or several
of them (if the fault have multiple causes) have to be found
and corrected in the model implementation. For example,
if certain quantity in the model increased unbounded, al-
though stable system with bounded input signal have been
simulated, it is a plausible assumption that some equation
is wrong or some parameter has been assigned an unphys-
ical value. A strategy of traversing the equations related
to this quantity will certainly lead to the solution of the
problem, although in a large-size model this procedure is
somehow laborious. A debugger based on interactive de-
pendency graph proposed by [9] may be very useful in such
case.

However, a case when, for example, model’s response
exposes unexpected initial undershoot is much more com-
plicated to resolve. Initial undershoot may be a property
of the system (a nonminimal phase), only property of the
model (introduced by some modeling assumptions and
simplifications) or an error in the implementation. A simple
traversal of the equations related to the trajectory exposing
initial undershoot may not provide a proper insight, espe-
cially if a large-size model built from complicated com-
ponents is under consideration (e.g., component Dynam-
icPipe from the library Modelica.Fluid can consist of over
100 equations distributed to 10 models from which original
component is extended).

Verification of complex EOO models should be sup-
ported by a tool that directs the modeler towards the im-

portant parts of the model regarding a certain behavior of
the model (exposed by trajectories obtained by simulation).

3.1 Model reduction techniques

For some modeling purposes, most notably structural and
control design, large size models that include detailed dy-
namics are undesired, since determining the major design
parameters and their relationship to the system perfor-
mance is difficult [5].

Model reduction techniques represent also an important
aspect of the systems analysis, when a low-dimensional
model can provide qualitative understanding of the phe-
nomena under consideration [4]. An important property of
the model reduction methods when used in system anal-
ysis or for structural design is that it generates a proper
model, i.e. reduced model with the minimum complexity
required to meet the performance specifications and pos-
sessing physically meaningful parameters and states [5].

In attempt to reduce the complexity of the model (and
number of its parameters), a number of mixed numerical-
symbolic model reduction techniques have been developed
and successfully applied [11, 12, 4, 5].

Model order reduction techniques consists of running a
series of simulations, ranking the individual coordinates or
elements by the appropriate metric and removing those that
fall below a certain threshold [3].

The most straightforward metrics for reduction of the
proper models is related to energy or power. Method of
Rosenberg and Zhou [10] removes bonds with low power
from a bond graph model, Luca [5] introduces activity — the
time integral of the absolute value — and Ye and Youcef-
Youmi [14] reduces bond graph models by eliminating
bonds with smallest associated energy in comparison to
its neighbors. Chang e al. [3] eliminate system’s states
with low associated energy in the model comprised of La-
grangian subsystems with force interconnections based on
Lyapunov stability. Metrics related to energy or power re-
quires modeling formalism with clearly defined compo-
nents’ energy and power respectively. Method of Sommer
at al. [12] consists of term substitution and deletion (as
well as on some other simplification) in the equations of the
DAE system derived from the model. The term are ranked
according to their influence on the output error which is de-
fined as a difference of original and reduced model’s out-
put. The resulting simplified system of equations can be
interpreted again in the form of component equations and
can be mapped to a reduced model scheme.

For the simulations that are performed to obtain the error
estimates, excitation of the model must be selected in such
way that a valid model is obtained in a desired frequency
range.

3.2 Verification aided by model reduction techniques

Verification by dynamic analysis as well as subsequent de-
bugging in equation-based object-oriented approach could
be improved substantially by using model reduction tech-
niques.

119

When a behavior of the model obtained by simulation is
not as expected or even erroneous, an explanation is sought.
It is sensible to first look at that components or (terms of)
equations and parameters of the model that have the most
influence on the dominant system dynamics and trajectory
of the model’s variable of interest respectively.

In a large-size models made up of components from var-
ious model libraries which implementation is not precisely
known to the user, it is not apparent which components or
equations of the model have the greatest impact on the re-
sponse of the model, i.e. on selected variable’s trajectory
(or part of it). Determination of the most influential com-
ponents can be automatized by using ranking algorithm
known from the model-reduction methods. The user could
focus only on the few components contributing most sig-
nificantly to the simulation results and potentially extend
his/her search to lower ranked components. Because the
ranking is affected by selected time-window, components
can be separated also according to the impact they have
during different time of simulation. For example, in the
steady-state, dynamic terms (those that include time deriva-
tives) are totally irrelevant, while at the beginning of the
transient, terms of equations describing the fast dynamics
of the system are those which are worth of the most atten-
tion.

Furthermore, on behalf of the user, proper reduced
model could be generated and the user could further ex-
periment on the reduced model which can be much more
easily understand. Because all the parameters and states of
the reduced model are physically meaningful, the changes
of the reduced model could be easily merged with original
model.

An important advantage of the model reduction of EOO
models is also that user never needs to consider the trans-
lated form of the model, while model reduction is per-
formed on the original representation of the model.

However, in general modeling language such as Mod-
elica, models can be implemented in various ways, for ex-
ample, entirely in textual form as a set of equations or by
connecting basic components from the Standard Library in
the graphical interface. That implies using different model
reduction strategies and possibly also different metrics.

4. Conclusions

Use of model reduction techniques for verification and
debugging have been proposed. Methods originated from
model reduction techniques can be used to rank the com-
ponents (equation terms) of the model with greatest impact
on the model behavior (selected trajectory) and proper re-
duced models can be generated on behalf of the user. Re-
duced models are easily to comprehend by the user and
while proper reduced models have physical meaningful pa-
rameters, changes done to the reduced model can be easily
merged to the original model.

The advantage of debugging aided by model reduction
methods over traditional software debugging methods is
that since the user does not need to consider the simula-

tion form of the model anymore, the difficult mapping of
translated equations to model source is not needed.

However, most model reduction methods requires spe-
cific modeling formalism (e.g., bond graphs) and can be
restricted to specific physical domains. The usefulness of
verification and debugging tools based on model reduction
techniques is therefore limited in a general EOO modeling
languages such as Modelica.

References

[1] Peter Bunus. Debugging Techniques for Equation-Based
Languages. PhD thesis, Linkoping University, 2004.

[2] F. E. Cellier and E. Kofman. Continous System Simulation.
Springer Science+Business Media, New York, 2006.

[3] Samuel Y. Chang, Christopher R. Carlson Carlson, and
J. Christian Gerdes. A lyapunov function approach to energy
based model reduction. In Proceedings of the ASME Dy-
namic Systems and Control Division — 2001 IMECE, pages
363-370, New York, USA, 2001.

Sanjay Lall, Petr Krysl, et al. Structure-preserving model
reduction for mechanical systems. Physica D, 284:304-318,
2003.

[4

—_

[5

—

Loucas Sotiri Louca. An Energy-based Model Reduction
Methodology for Automated Modeling. PhD thesis, Univer-
sity of Michigan, 1998.

[6] S. E. Mattsson and H. Elmqvist. Unit checking and quantity
conservation. In Proceedings of the 6th Modelica Confer-
ence, pages 13-20, Bielefeld, Germany, 2008.

[7

—

Modelica Association. Modelica Specification, version 3.1,
2009. http://www.modelica.org/documents/
ModelicaSpec3l.pdf.

[8] H. Olsson et al. Balanced models in modelica 3.0 for in-
creased model quality. In Proceedings of the 6th Modelica
Conference, pages 21-33, Bielefeld, Germany, 2008.

[9

—

A. Pop and P. Fritzson. A portable debugger for algorith-
mic modelica code. In Proceedings of the 4th Internationl
Modelica Conference, pages 435-443, Hamburg, Germany,
2005.

[10] R. Rosenberg and T. Zhou. Power-based model insight. In
Proceedings of the ASME WAM Symposium on Automated
Modeling for Design, pages 1-67, New York, USA, 1988.

[11] P. Schwarz et al. A tool-box approach to computer-aided
generation of reduced-order models. In Proceedings EU-
ROSIM 2007, Ljubljana, Slovenia, 2007.

[12] Ralf Sommer, Thomas Halfmann, and Jochen Broz. Auto-
mated behavioral modeling and analytical model-order re-
duction by application of symbolic circuit analysis for multi-
physical systems. Simulation Modelling Practice and The-
ory, 16:1024-1039, 2008.

[13] R. B. Whitner and O. Balci. Guidelines for selecting and us-
ing simulation model verification techniques. Technical re-
port, Department of Computer Science, Virgina Polytechnic
Institute and State University, Blacksburg, Virginia, 1989.
Technical Report TR-89-17.

[14] Y. Ye and K. Youcef-Youmi. Model reduction in the phys-
ical domain. In Proceedings of the American Control Con-
ference, pages 4486—4490, San Diego, CA, USA, 1999.

120

 HistoryItem_V1
 AddNumbers

 Range: all pages
 Font: Times-Roman 10.0 point
 Origin: bottom centre
 Offset: horizontal 11.34 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BC

 117
 TR
 1
 0
 1690
 285

 0
 10.0000

 Both
 4
 1
 AllDoc

 CurrentAVDoc

 11.3386
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 0
 4
 3
 4

 1

 HistoryList_V1
 qi2base

