
Towards a Computer Algebra System with Automatic
Differentiation for use with Object-Oriented modelling languages

Joel Andersson Boris Houska Moritz Diehl

Department of Electrical Engineering and Optimization in Engineering Center (OPTEC), K.U. Leuven, Belgium,
{joel.andersson,boris.houska,moritz.diehl}@esat.kuleuven.be

Abstract
The Directed Acyclic Graph (DAG), which can be gen-
erated by object oriented modelling languages, is often
the most natural way of representing and manipulating a
dynamic optimization problem. With this representation,
it is possible to step-by-step reformulate an (infinite di-
mensional) dynamic optimization problem into a (finite di-
mensional) non-linear program (NLP) by parametrizing the
state and control trajectories.

We introduce CasADi, a minimalistic computer algebra
system written in completely self-contained C++. The aim
of the tool is to offer the benifits of a computer algebra
to developers of C++ code, without the overhead usually
associated with such systems. In particular, we use the tool
to implement automatic differentiation, AD.

For maximum efficiency, CasADi works with two dif-
ferent graph representations interchangeably: One support-
ing only scalar-valued, built-in unary and binary opera-
tions and no branching, similar to the representation used
by today’s tools for automatic differentiation by operator
overloading. Secondly, a representation supporting matrix-
valued operations, branchings such as if-statements as well
as function calls to arbitrary functions (e.g. ODE/DAE in-
tegrators).

We show that the tool performs favorably compared to
CppAD and ADOL-C, two state-of-the-art tools for AD
by operator overloading. We also show how the tool can
be used to solve a simple optimal control problem, mini-
mal fuel rocket flight, by implementing a simple ODE inte-
grator with sensitivity capabilities and solving the problem
with the NLP solver IPOPT. In the last example, we show
how we can use the tool to couple the modelling tool JMod-
elica with the optimal control software ACADO Toolkit.

Keywords computer algebra system, automatic differen-
tiation, algorithmic differentiation, dynamic optimization,
Modelica

3rd International Workshop on Equation-Based Object-Oriented
Modeling Languages and Tools. October, 2010, Oslo, Norway.

Copyright is held by the author/owner(s). The proceedings are published by
Linköping University Electronic Press. Proceedings available at:
http://www.ep.liu.se/ecp/047/

EOOLT 2010 website:
http://www.eoolt.org/2010/

1. Introduction
Simulation of dynamic systems formulated in languages
for physical modelling in continuous time typically amounts
to solving initial-value problems in ordinary differential
equations. This, in turn, requires the repeated evaluation
of the ODE right-hand-sides, root-finding functions corre-
sponding to hybrid behavior and user output functions.

With the rising interest of employing the developed dy-
namic models not only for simulation purposes, but also for
dynamic optimization (i.e. optimization problems where
the dynamic system enters as a constraint), it becomes crit-
ically important to have efficient ways of accurately evalu-
ating not only the these functions, but also their derivatives.
Gradient information is needed by implicit methods for in-
tegrating ODEs as well as in both simultaneous (e.g. direct
collocation) and sequential methods (single shooting, mul-
tiple shooting) for dynamic optimization, the two families
of methods that have been the most successful in solving
large-scale dynamic optimization problems [4].

While dynamic optimization can certainly be useful for
users of modelling languages, there are also large syner-
gies for developers of optimization routines. The Directed
Acyclic Graph (DAG) representation is used by computer
algebra systems as well as object oriented modelling lan-
guages and is often the most convenient way to represent a
complex non-linear function. The representation provides
more information for the optimization routine than a set
of ”black-box” functions for evaluating nonlinear functions
(objective function, constraints, etc.) and their derivatives
in addition to the sparsity structure of Hessians and Jaco-
bians, which is the representation used in most of today’s
tools for nonlinear optimization.

Optimization routines can benefit from the DAG repre-
sentation since it gives a possibility to manipulate the graph
and replace certain nodes in order to give the (dynamic or
not dynamic) optimization problem a more favorable form.
Examples of this is replacinginternal switchesby exter-
nal switchesto form a mixed-integer optimal control prob-
lem (MIOCP) when dynamic constraints are present or as
a mixed-integer nonlinear problem (MINLP) when this is
not the case. Another example, used by software such as
CVX [8], is the possibility of reformulating a convex op-
timization problem, with an infavorable structure, into an
equivalent convex problem in form required by numerical

99

solvers [7]. Finally, we can also easily parametrize the con-
trol and/or state trajectory, reducing our dynamic optimiza-
tion problem into either a parameter estimation problem or
even a nonlinear program (NLP) [14].

A second way in which optimization routines can use
the DAG representation is throughstructure exploitation.
For example, theLifted Newton method[12] offers a way to
treat the intermediate variables of a nonlinear optimization
problem as degrees of freedom of the problemwithout
increasing the size of the problem. Including intermediate
variables in the problem formulation is known to increase
both the convergence rate and the area of attraction for non-
linear problems. The Lifted Newton method works with a
problem formulation which is easily obtained from a linear
ordering of the nodes of the DAG.

1.1 Automatic differentiation

Automatic differentiation (or, alternatively,algorithmic
differentiation), AD, is a technique for evaluating deriva-
tives of complex functions that has proved very useful in
non-linear optimization.

The technique delivers derivatives, up to machine preci-
sion, of arbitrary differentiable functions for a small mul-
tiple of the cost of evaluating the original function. In the
forward mode, the technique is able to deliver directional
derivatives of an arbitrary vector-valued function with a
cost of the same order as the cost of evaluating the origi-
nal function. In thereverse mode, on the other hand, it is
for the cost of one evaluation possible to get the derivative
in an all directions for a scalar function1.

Efficiently implementing AD, especially in the reverse
mode, is a complex task and it is advisable to use one of the
existing software implementations dedicated for this. These
software tools are typically divided into AD byoperator
overloadingand AD by source code transformation, see
[9] for details.

Since modelling languages such as Modelica typically
involve a step of C-code generation, the natural approach
of using AD has been to apply one of the existing AD tools
to this code.

Automatic differentiation can also be implemented in-
side a computer algebra system (CAS), first demonstrated
by Monagan and Neuenschwander [13].

2. Proposed AD framework for object
oriented modelling tools

The method proposed in this paper follows the CAS/AD
approach, but instead of using an existing computer alge-
bra system, it implements a minimalistic computer algebra
system in C++ using operator overloading. The main differ-
ence from the conventional operator overloading approach
for AD is that we do not attempt to maintain a linear order-
ing of the nodes when the graph is constructed. Instead, we
generate an ordering after the graph has been constructed,

1 when multiple directions (for the forward mode) or multiple outputs (for
the reverse mode) are involved, the process must be repeated for each
direction (output), unless the Jacobian has some special structure

which can be done efficiently using linear time algorithms,
described in Section 2.2.

Also different from conventional AD tools is that we
shall build a graph of sparse, matrix-valued operations, in-
stead of just scalar operations, and allow the graph to con-
tain ”switches” in the form of if-statements, for-loops etc.
This means that there is no need to reconstruct the graph
or its linear ordering when a switch fires. When there are
a lot of switching events relative to the number of function
evaluations, this method promises to be significantly faster.

When calculating the full Hessian or Jacobian (as op-
posed to only a directional derivative), CasADi uses the
Sparse Jacobian/Hessianmethods rather than compression
techniques ([9]). The former methods are more efficient
from a theoretical point of view, but not widely used since
having to keep track of dependencies for each evaluation
node results in significant overhead. CasADi is able to
avoid this overhead by resorting to source code transfor-
mation, whenever multiple derivative directions (forward
or adjoint) are involved.

Given the linear ordering of a graph, it is generally
straightforward to generate source code for evaluation of
functions and derivatives, but in general we will stop short
of doing so and instead evaluate the expressions on avir-
tual machine. This eliminates the need of a C compiler in
the loop, which has large practical consequences, and also
saves us the trouble of working with potentially very large
files. As we shall see, a DAG with millions of nodes can
be constructed and sorted within seconds and evaluated in
milliseconds, but generating a C source file of it may re-
quire hundreds of MB, which have to be written to disk.
With the current approach, the graph representation never
leave RAM.

2.1 Forming the graph

Consider the following recursion describing the horizontal
motion of a ball under the action of friction:

sk+1 = sk + vk, k = 0, . . . , N − 1 (1)

vk+1 = vk − vk ∗ vk (2)

For givens0, v0 andN , this recursion defines a function
f : R2 → R

2:

[sN , vN] = f(s0, v0;N) (3)

Figure 1 shows the DAG, also referred to as thecompu-
tational graphin automatic differentiation terminology [5],
of this expression whenN = 2.

A DAG like this can easily be constructed in an object-
oriented programming language like C++. The basic build-
ing block can be an object that contains the elementary op-

input

+
s0

v0

*
v0

v0
-

v0

+

s1

v1

*v1

v1

-

v1

ou tpu t

s2

v2

Figure 1. The DAG for the ball example (N = 2)

100

eration to be performed as well as references to its depen-
dent nodes. Since a node can have an arbitrary number of
nodes pointing to it, we advocate the use of smart pointers
(or, more preciselyshared pointers) in order to be able to
keep track of the ownerships of the nodes [2].

More complex functions, which similarly to the ball
example arise after parametrization of an optimal control
problem may have millions of nodes and it is important to
find efficient ways to form and manipulate such graphs.

2.2 Topological sorting

Before a function can be evaluated, we have to order the
nodes of the DAG in the order of dependencies, known as
finding a topological sortingin graph theory. This step is
not necessary in AD by operator overloading, since a good
linear ordering can be recorded during the process of con-
structing the graph. In AD by source code transformation,
the compiler is responsible for finding this ordering.

A topological ordering can however also be found
cheaply after the DAG has been formed, which greatly fa-
cilitates the implementation. We propose to use a modified
breadth-first search, described in the following, to obtain
a good topological ordering. Our implementation of this
sorting depends on another sorting, thedepth-first search,
which we will desribe first.

2.2.1 Depth-first search

One way of finding a linear ordering is by so-calleddepth-
first search[6], which can be implemented in the following
way, where top(·) refers to the topmost element of astack2:

• Add the output nodes to a stackS

• Create an empty listA for the linear ordering

• While S is nonempty

If top(S) has not yet been visited

− Mark the top(S) as visited

− Add non-visited nodes toS on which top(S) de-
pends

else

− Add top(S) toA

− Remove top(S) from S

The algorithm visits each node at most one time and has
thus linear complexity in the number of nodes. Figure 2
shows an ordering obtained by this algorithm for the ball
example. The example illustrates two problems with this
sorting. Firstly, one needs to storev1 in memory until we
calculates2. Similarly, for a largeN , we would need to
keepv1, . . . , vN−1 in memory at the time we evaluatevN ,
since they will be needed later.

Secondly, several operations could be done in parallel,
e.g. operation {1} and {5}, in the graph.

2.2.2 Breadth-first search

These problems lead us to look at another ordering, namely
thebreadth-first search[6]. The standard algorithm for this

2 with stack is meant alast in, first outdata structure

ordering cannot readily be applied to the graph, since we
are not able to iterate overthe nodes that depend on a given
node, but only overthe nodes that a given node depends on.
This can, however, be solved with the following algorithm:

• Find a topological sortingA by a depth-first search

• Create a vector of dependency levelsL. An operation
associated with one level depends only on the results
from previous levels and can thus be evaluated indepen-
dently. Constants and inputs have level 0.

• For i = begin(A), . . . ,end(A)

Find lmax,i, the maximum level of any ofi’s depen-
dent nodes

Assign level(i) := 1 + lmax,i

• Sort the nodes by their level using abucket sort

The result of the sorting, for the ball example, is shown
in Figure 3. Since all nodes of one level can be evaluated
independently of each other, the sorting is suitable for par-
allelization. Like the depth-first search, this algorithm will
run in linear time.

A problem with the breadth-first search is that it tends
to evaluate nodes earlier than they are actually needed. For
example, when the expression is a simple sum of squares,
f(x1, . . . , xN) = x2

1 + . . . + x2
N , all multiplications will

take place on level 1, creating unnecessary memory over-
head. We can solve this by iterating over the levels in re-
verse order and ”move up” dependent nodes as much as
possible. This operation has also linear complexity.

3. Software implementation
The proposed algorithms have been been implemented in
the open-source C++ tool CasADi, which will be released
under the LGPL licence. A stated goal of the tool has
been to keep the data structures as transparent as possible
to allow a user to easily extend the code with methods
from the field of computer algebra, as well as numerical
optimization.

The focus of the code is to generate highly efficient run-
time code and for this purpose we propose to use a com-
bination of two different DAG representations, one DAG
which is restricted to built-in binary (and unary) scalar
functions and a general one representing a matrix syntax
tree of sparse matrix operations as well as nodes corre-
sponding to switches, loops, function evaluations, element
access and concatenation, similar to the graph representa-
tion used in a modelling language such as Modelica.

input

+ [5]
s0

v0

* [1]
v0

v0
- [2]

v0

+ [6]

s1

v1

* [3]v1

v1

- [4]

v1

ou tpu t

s2

v2

Figure 2. Linear ordering (in brackets) from a depth-first
search for the ball example

101

3.1 A scalar DAG representation

The purpose of the scalar DAG representation is to rep-
resent and evaluate an algorithm containing a series of
elementary operations (+,-,*,/, *) and built-in functions
from the C’smath.h library (floor, pow, sqrt, etc.).
No branching (if-statements) is allowed. With these restric-
tions, it is possible for the AD algorithm to access memory
in a strictly sequential manner, also for the reverse AD al-
gorithm, which is the reason that existing AD tools usually
onlyallows operations of this form [9].

With these restrictions, the class hierarchy simply be-
comes, with the most important members in brackets:

• Expression class,SX [pointer to anSXNode]

• Abstract base class for all nodes,SXNode [reference
counter]

Symbolic scalar [name of the variable]

Constant [value of the constant]

Binary Node [twoSX instances, index of a binary
function]

The graph is represented by a smart pointer class, called
SX, and a polymorphic node class consisting of an abstract
base class and three derived classes, a node corresponding
to a constant node, a node corresponding to a variable and
a node corresponding to a binary operation. We have gath-
ered all binary operations in a single node rather than deriv-
ing a class for each binary operation. The binary nodes, in
turn, has members of the classSX, correspond to its depen-
dent nodes. This simple representation is flexible enough to
be able to construct trees of millions of variables in C++.
Using the topological sorting outlined in the previous sec-
tion, we obtain a linear ordering of the nodes equivalent to
thetraceof automatic differentiation tools [9].

3.2 A matrix DAG representation

The scalar DAG representation is designed to be very effi-
cient for code made up entirely by standard unary and bi-
nary operations. In a well-designed code, the lion’s share of
the calculation time should indeed in sections of this type,
so it makes sense to specialize the solver to be efficient in
this case.

To be able to represent more general functions, we pro-
pose to use a second, much more general, DAG repre-
sentation. In this representation, the graph is made up by,
possibly sparse,matrix operationsand we include nodes
for elementwise operations as well as operations such as
matrix products. With this we can also represent a much
wider range of operations such as vertical and horizontal
concatenation, element access, function evaluation, loops

input

+ [1a]
s0

v0

* [1b]
v0

v0
- [2]

v0

+ [3a]

s1

v1

* [3b]v1

v1

- [4]

v1

ou tpu t

s2

v2

Figure 3. Linear ordering (in brackets) from a breadth-first
search for the ball example

(for, while) and switches (if-statements, etc.). This is much
more general than is allowed by AD tools, which generally
freezes all the if-statements during thetracing step and in-
lines all loops to create a representation similar to the scalar
DAG in the previous section. With the proposed approach,
we instead leave it to the user to decide which loops and
function calls actually should be inlined. By partially inlin-
ing the code, we arrive with an approach which is equiv-
alent to thecheckpointing schemesused by standard AD
tools [9].

We node that both forward and adjoint AD readily gen-
eralizes to work with graphs of this form. Many opera-
tions, like element access, just translate to linear matrixop-
erations (which are often sparse). Other operations, such
as matrix products and function evaluations, have explicit
chain rules defined for them.

When evaluating a function represented by the Ma-
trix DAG on a multi-core (shared memory) architecture,
independent nodes, as obtained from the breadth-first-
search, can be evaluated in parallel (multiple threads) using
OpenMP.

The implementation of the matrix expression class,MX,
is similar to theSX class above with the following differ-
ences.

• The Binary Node class becomes polymorphic, with one
derived node for each type of operation. This makes it
possible for the binary nodes to contain more informa-
tion, such as pointers to functions or more than two ar-
guments.

• The MX class contains arrays for the evaluation, and
the evaluation takes place by looping over a vector of
pointers to the nodes, rather than in a separate data
structure.

4. Numerical tests
4.1 An AD example: determinant calculation

We first test the algorithm on an AD benchmark, namely
the calculation of the adjoint derivivative of the determi-
nants of matrices of different sizes. The determinant is cal-
culated by expansion along rows, an exponentially expen-
sive calculation.

This example is implemented in the speed benchmark
collection of CppAD. We use this implementation to test
the performance of CasADi against CppAD as well as
ADOL-C, [3]. Figure 4 shows the speed, in number of
solves per second, for the three tools for matrices of sizes
ranging from 1-by-1 to 9-by-9. The tests have been per-
formed on an Dell Latitude E6400 laptop with an Intel Core
Duo processor of 2.4 GHz, 4 GB of RAM, 3072 KB of
L2 Cache and 128 kB if L1 cache. The operator system is
Linux.

We use the latest version of ADOL-C at the time of
writing, version 2-1-5, and the latest version of CppAD,
released 17 June 2010.

For the current test, CasADi outperforms the CppAD
and ADOL-C for sizes up to 8-by-8 (corresponding to some
100.000 elementary operations), but we want to stress that

102

the test only covers one single example and we make no
claims that these results will hold generally. More tests are
needed to better assess the performance of the solver.

4.2 Dynamic optimization example: minimal fuel
rocket flight

We then study an example from optimal control, namely the
minimal fuel flight of a rocket described by the following
continuous time model:

ṡ = v (4)

v̇ = (u− α v2)/m (5)

ṁ = −β u2 (6)

(7)

We assume that the rocket starts at rest at (s(0) = 0,
v(0) = 0) with massm(0) = 1. We simulate forT = 10
seconds and require that the rocket lands at rest (v(T) = 0)
ats(T) = 10. The optimization problem is to minimize the
fuel consumptionm(0)−m(T).

4.2.1 Solution approach

We discretize the control intoNu = 1000 piecewise
constant controls and solve the problem using asingle-
shooting approach. The single-shooting approach requires
a sensitivity-capable integrator which we can easily con-
struct in CasADi with a few lines of code using anex-
plicit Euler approachwith 1000 steps per control interval
of equal length (we wish to stress that there are certainly
much better ways of solving this optimal control problem,
but our purpose here is only to illustrate our AD approach).

We show two different ways of solving the problem
using CasADi, with scalar graphs and a combination of
scalar and matrix graphs (next section). In both approaches
we arrive at a non-linear programming problem (NLP) [14]
of the form:

minimize:
u0, . . . , u999

∑999

i=0
u2
i

subject to:
g(u) = 0,
−10 ≤ u ≤ 10

(8)

whereg(u) : R
1000 → R

2 is a non-linear function
that we shall construct. This NLP is then solved by the
non-linear optimization code Ipopt [16], which requires
not only function evaluation, but also the gradient of the
objective function and the Jacobian of the constraints. We
use CasADi to obtain this information. Since there are 1000
variables but only two constraints, it makes sense to use the
adjoint mode AD to calculate the Jacobian ofg.

4.2.2 Using scalar graphs

In the first approach, we use two nested for loops to cal-
culate one large graph with around 13 million nodes (13
being the number of elementary operations in each step).
This is the approach taken by default by existing AD tools.
In the CasADi notation, we get:

SX s = 0, v = 0, m = 1;
for(int k=0; k<1000; ++k){

for(int j=0; j<1000; ++j){
s += dt*v;
v += dt / m * (u[k] - alpha * v*v);
m += -dt * beta*u[k]*u[k];

}
}

whereSX is the name of the symbolic expression type
used in CasADi, which can be used in the same way as
C/C++ double. We assume that the inputu is stored in
a vector of symbolic variables of length 1000. After this
recursion, the expression forg is then simply obtained as
g(u) = [s− 10; v].

Ipopt requires 11 iterations to solve this problem and
the total solution time was 19.6 seconds out of which 7.8
seconds was needed for the function evaluations (the lion’s
share of the rest being needed to form and sort the graphs).
A single function evaluation, corresponding to around 13
million elementary operations, takes about 0.27 seconds,
or around 20 ns per elementary operation.

4.2.3 Using scalar and matrix graphs

The approach above is basically toinline everythingand
it is clear that the graphs will soon become too large. We
therefore show a second way to represent the same function
based on a two level approach. We first use the above
approach over an interval with a constant control only:

SX s_0("s_0"), v_0("v_0"), m_0("m_0");
SX u("u");
SX s = s_0, v = v_0, m = m_0;
for(int j=0; j<1000; ++j){
s += dt*v;
v += dt / m * (u[k] - alpha * v*v);
m += -dt * beta*u*u;

}

which we use to generate an function (anintegrator)
with some 13 thousand nodes (instead of 13 million). This
function will take as input (s0,v0,m0 andu) and return the
three outputs (s,v,m). We then evaluate this function 1000
times using out matrix graph representation:

MX X = {0,0,1}; // initial value
for(int k=0; k<1000; ++k){
// Integrate
vector<MX> input = {U[k],X};
X = integrator(input);

}

whereMX is the name of CasADi’s matrix expression
class. The second loop will be represented by a graph with
about 2000 nodes, 1000 ”element access” nodes (U[k])
and 1000 ”function evaluation” nodes. For Ipopt, both ap-
proaches are equivalent, they are simply two ways of cal-
culating the same functiong, so the optimization results
are indeed identical. The significantly lower memory need
in the second approach, however, enables us to construct
much larger problems (e.g. taking 100 times more steps)
without running out of memory.

The solution of the problem using the scalar and ma-
trix graph combination took 10.4 seconds, out of which 9.7

103

seconds was needed for the function and derivative evalua-
tion. The example clearly shows how this approach makes
forming the graphs significantly faster (less than one sec-
ond instead of 11), but in terms of solution times for a sin-
gle function evaluation, the scalar graph approach is still
significantly quicker, as it requires less operations.

4.3 A Modelica example: Van der Pol oscillator

In the third example, we will use CasADi as an inter-
face between two optimization tools, the Optimal control
package ACADO Toolkit [11] and the Modelica-compiler
JModelica [1]. We wish to solve the following optimal con-
trol problem describing a Van der Pol oscillator:

minimize:
x1(·), x2(·), u(·)

∫ 20

0

ep3 (x2
1 + x2

2 + u2) dt

subject to:

ẋ1 = (1− x2
2)x1 − x2 + u

ẋ2 = p1 x1

x1(0) = 0, x2(0) = 1
u ≤ 0.75

(9)

where thep0, p1, p2 are parameters andx1(·) andx2(·)
are state variables (time dependent) andu(·) is a control.

The example is taken from the JModelica benchmark
collection and has been implemented there in the Optimica
extension of Modelica [2]. We use the newly added XML
export functionality of JModelica to export the optimal
control problem in a fully symbolic form. This XML code
is then parsed in CasADi using the XML parser TinyXML
[15].

We use the optimal control package ACADO Toolkit to
solve the optimal control problem coupled to CasADi for
evaluating the objective function, the ODE right hand side
of their and derivatives. ACADO Toolkit uses a multiple-
shooting methods to discretize the optimal control problem
to a non-linear program (NLP) and then solves the NLP
using an Sequential Quadratic Programming (SQP) method
[14]. Using a limited memory Hessian approximation and
initialized with an zero control, 26 iterations were needed
to solve the problem.

Figure 5 shows the state and control trajectories for
the optimal solution as obtained by the tool coupling. The
results agree with those obtained by JModelica’s built-in
optimal control problem solver, which is based on direct
collocation [2].

5. Conclusions and outlook
The directed graph is a natural way of representing a non-
linear function and this formulation can be used not only
to formulate an optimal control problem, but also to re-
formulate the problem into the canonical form used by
current state-of-the-art solvers for large-scale optimization
problem. Automatic differentiation, both in forward and in
reverse mode, can be implemented efficiently directly on
the graph instead of taking the detour over generating C-
code and then using an existing AD tool for iteratively get-
ting generating linear orderings corresponding to different
branches.

We have presented CasADi, an AD tool using a func-
tion representation borrowed from the field of computer al-
gebra, also found in object oriented modelling languages,
and certainly much richer than that of most existing AD
tools. The tool has been coupled to optimal control soft-
ware ACADO Toolkit, the nonlinear programming solver
Ipopt [16] as well as the CVodes of the Sundials suite [10],
but we want to stress that CasADi isnot intended to be just
an interface between optimization tools and modelling en-
vironments. The idea is instead to actually implement the
optimization algorithms using the graph representation and
exploit the structure as much as possible.

The main scope of the tool thus starts off where current
tools, e.g. JModelica, generate C-code to be used in a nu-
merical solver. Using the graph representation, it is possible
to step-by-step reformulate the infinite dimensional, possi-
bly non-smooth OCP into a nonlinear problem (NLP), even
going as far as to even solve the NLP. The latter is of partic-
ular interest if we wish to generate code for a, say, nonlinear
model predictive control to be used on embedded systems.

Since the graphs after parameterizing states as well
as controls will be significantly larger than the graphs
needed to represent the optimal control problem, it makes
sense to have the graph constructed in a language such as
C++, rather than, say, Java or a scripting language such as
Python. Given the excellent possibilities to interface C++
to other languages, this should not be an issue.

Acknowledgments
This research was supported by the Research Council
KUL via the Center of Excellence on Optimization in En-
gineering EF/05/006 (OPTEC, http://www.kuleuven.be/
optec/), GOA AMBioRICS, IOF-SCORES4CHEM and
PhD/postdoc/fellow grants, the Flemish Government via
FWO (PhD/postdoc grants, projects G.0452.04, G.0499.04,
G.0211.05,G.0226.06, G.0321.06, G.0302.07, G.0320.08,
G.0558.08, G.0557.08, research communities ICCoS, AN-
MMM, MLDM) and via IWT (PhD Grants, McKnow-E,
Eureka-Flite+), Helmholtz Gemeinschaft via vICeRP, the
EU via ERNSI, Contract Research AMINAL, as well as
the Belgian Federal Science Policy Office: IUAP P6/04
(DYSCO, Dynamical systems, control and optimization,
2007-2011).

References
[1] Johan Åkesson, Torbjörn Ekman, and Görel Hedin. Imple-

mentation of a modelica compiler using jastadd attribute
grammars.Science of Computer Programming, 75(1-2):21
– 38, 2010. Special Issue on ETAPS 2006 and 2007 Work-
shops on Language Descriptions, Tools, and Applications
(LDTA ’06 and ’07).

[2] Andrei Alexandrescu.Modern C++ Design. Addison-
Wesley, 2008.

[3] Andreas Griewank and David Juedes and Jean Utke.
Algorithm 755: ADOL-C: a package for the automatic
differentiation of algorithms written in C/C++.ACM Trans.
Math. Softw., 22(2):131–167, 1996.

104

[4] Lorenz T. Biegler. An overview of simultaneous strategies
for dynamic optimization. Chemical Engineering and
Processing: Process Intensification, 46(11):1043–1053,
2007. Special Issue on Process Optimization and Control in
Chemical Engineering and Processing.

[5] Christian H. Bischof and Paul D. Hovland and Boyana
Norris. Implementation of automatic differentiation tools
(invited talk). j-SIGPLAN, 37(3):98–107, March 2002.
Proceedings of the 2002 ACM SIGPLAN Workshop Partial
Evaluation and Semantics-Based Program Manipulation
(PEPM’02).

[6] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest,
and Clifford Stein.Introduction to Algorithms. MIT Press
and McGraw-Hill, 2001.

[7] M. Grant and S. Boyd. Graph implementations for
nonsmooth convex programs. In V. Blondel, S. Boyd,
and H. Kimura, editors,Recent Advances in Learning and
Control, Lecture Notes in Control and Information Sciences,
pages 95–110. Springer-Verlag Limited, 2008.

[8] M. Grant and S. Boyd. CVX: Matlab software for
disciplined convex programming, version 1.21.http:
//cvxr.com/cvx, May 2010.

[9] Andreas Griewank and Andrea Walther.Evaluating
Derivatives. SIAM, 2008.

[10] A. C. Hindmarsh, P. N. Brown, K. E. Grant, S. L. Lee,
R. Serban, D. E. Shumaker, and C. S. Woodward. Sundials:
Suite of nonlinear and differential/algebraic equation
solvers. ACM Transactions on Mathematical Software,
2005.

[11] Boris Houska, Hans Joachim Ferreau, and Moritz Diehl.
Acado toolkit - an open-source framework for automatic
control and dynamic optimization.Optimal Control
Methods and Application, 2010.

[12] Jan Albersmeyer and Moritz Diehl. The Lifted Newton
Method and Its Application in Optimization.SIAM J.
Optim, 20(3):1655–1684, 2010.

[13] Monagan, Michael B. and Neuenschwander, Walter M.
GRADIENT: algorithmic differentiation in Maple. InISSAC
’93: Proceedings of the 1993 international symposium on
Symbolic and algebraic computation, pages 68–76, New
York, NY, USA, 1993. ACM.

[14] Jorge Nocedal and Stephen J. Wright.Numerical Optimiza-
tion. Springer, August 2000.

[15] Lee Thomason, Yves Berquin, and Andrew Ellerton.
Tinyxml, version 2.6.0.http://www.grinninglizard.
com/tinyxml/, May 2010.

[16] A. Wächter and L. T. Biegler. On the implementation
of an interior-point filter line-search algorithm for large-
scale nonlinear programming.Mathematical Programming,
106(1):25–57, 2006.

1 2 3 4 5 6 7 8
10

1

10
2

10
3

10
4

10
5

10
6

10
7

Problem dimension

S
ol

ut
io

n
ra

te
 (

so
lv

es
 p

er
 s

ec
on

d)

CasADi
CppAD
ADOL−C

Figure 4. AD benchmark test: determinant by minor ex-
pansion

Figure 5. The optimal state and control trajectories for the
Van der Pol oscillator example

105

 HistoryItem_V1
 AddNumbers

 Range: all pages
 Font: Times-Roman 10.0 point
 Origin: bottom centre
 Offset: horizontal 11.34 points, vertical 42.52 points
 Prefix text: ''
 Suffix text: ''
 Use registration colour: no

 BC

 99
 TR
 1
 0
 1690
 285

 0
 10.0000

 Both
 7
 1
 AllDoc

 CurrentAVDoc

 11.3386
 42.5197

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.1c
 Quite Imposing Plus 2
 1

 0
 7
 6
 7

 1

 HistoryList_V1
 qi2base

