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Abstract

The MultiBody package of the Modelica Standard Li-
brary (MSL) contains a Prismatic Joint model with two
Frame connectors where one frame can move with re-
spect to the other along a direction n. This can be
viewed as that the second frame can move along a
straight line fixed in the first frame. In this work a con-
straint is developed where this line is replaced by some
curve described by some suitable geometry: A Point-
to-Curve (PtCv) constraint. It turns out that there are
several options to define the orientation of the second
frame with respect to the first one. Additional degrees
of freedom are possible. These ideas can be applied
to 2D: A Point-to-Surface (PtSf) constraint . PtCv and
PtSf constraints seem to be suitable building blocks
for higher order constraints: Curve-to-Curve (CvCv)
resp. Surface-to-Surface (SfSf) constraints. As a by-
product there are some Joint models not yet available
in the MSL at all or not in that form, like an elementary
Cylindrical joint.

Keywords: point-to-curve contact; osculating cir-
cle; point-to-surface contact

1 Introduction

Part of Kämmerer’s involvement in the Eurosyslib
project[4] is the development of a package with mod-
els for building convertible car roofs. One type of
components of such a convertible roof are mechanisms
where some kind of roller can move within some-
thing like a track. When we can abstract from ef-
fects like backlash and collisions with the bearings we
can view this as a constraint with one translational de-
gree of freedom. In this abstraction a point can move
along a curve. The curve does not need to be fixed in
space, it may be moving, but it is rigid. Conceptual-
ized in Modelica MultiBody package terms this is a
model with two Frame connectors. When we describe

a roller - track component (where the track is fixed
rigidly to some other part of the mechanism) the con-
necting point is not on the idealized line of the track.
The moreover it is just a matter of the reference sys-
tem what we consider the location of the connection.
Translated to the Modelica model this means the curve
is fixed to frame_a but it does not need to go through
it. An idealized point can move along the curve. For
convenience the other connector frame_b is located at
this point on the curve.

The fact that there is just one translational degree of
freedom along the curve does not imply that the point
can move freely along the curve. There my be some
friction, damping or even applied forces. But in a first
stage we will not consider this.

Another question is if a Point-to-Curve constraint
also ought to have rotational degrees of freedom.
In the multi-body simulation program ADAMS[1] a
point-to-curve contact always has all three rotational
degrees of freedom (dofs), so it only constrains 2 trans-
lational dofs. Or think of the toddlers’ toy where
pierced pellets are beaded to a rigid wire. Here the
pellets can rotate around the center axis of their hole,
which is—again disregarding backlash—the tangen-
tial axis to the curve in the current contact point. An
idealized model of this toy would be a point to curve
constraint with two dofs: one translational dof along
the curve and one rotational dof around the tangential
axis in the contact point.

But it turns out that these additional rotational dofs
can always be modeled—once tangential orientation
along the curve can be represented—without putting
them into the PtCv model itself: An ADAMS-like 4-
dof PtCv can be built up from a PtCv without any ro-
tational dof and a spherical joint connected to it. The
mentioned toy can be modeled by a PtCv with tangen-
tial orientation with a revolute joint connected to it.
Therefore here we will abstain from further compli-
cating the models and will only consider PtCvs with-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 676 DOI: 10.3384/ecp09430047



out any rotational dof: A PtCv constraint always has
just one dof. (The idea of an additional rotational dof
is only picked up for the special case of a straight curve
in the section by-products where a cylindrical joint is
described.)

The curve of an ideal PtCv constraint may be infi-
nite or cyclic but it cannot be finite, i.e. cannot have
end points: Such end points cannot be described by
the notion of degrees of freedom. In contrast to this in
technical realizations of PtCv elements we often have
end points limiting the curve. But in most cases the
stop is realized by means of introducing a repelling
force and we can always describe a PtCv with stops
as an ideal PtCv (with an unlimited curve) with addi-
tional force elements applying a repelling force pre-
venting frame_b from leaving an admissible range of
the curve too far. This will be described in some more
detail in section PtCv with Stops.

As the Prismatic Joint from the MSL MultiBody
package can be seen as the most simple case of a PtCv
Joint, it is useful to have a look at it.

2 The Prismatic Joint

The Prismatic Joint has one translation dof in the
direction specified by the direction parameter n:
frame_b can move along a straight line trough
frame_a in direction n, i.e the set

{
es | s ∈ R3

}
where

e = n/‖n‖2 is the normalized direction vector. As n is
expressed in frame_a coordinates also the straight line
is. (Here the roles of frame_a and frame_b are inter-
changeable, but we already view the straight line as
fixed in frame_a.) Seen in this view the actual value
of the position value s determines the "contact point"
C in frame_a coordinates simply by C(s) = es. Here s
is a one dimensional position variable (a distance, but
may also become negative).

The only reasonable choice here is that both frames
have the same orientation. The global positions of the
frames is described by the equation rb = ra + T−1es
where T is the orientation matrix of frame_a and
T−1 is its inverse, which is simply the matrix trans-
posed, because orientation matrices are symmetric.
Disregarding the offset parameter s_offset we get
frame_a = frame_b iff s = 0.

The sum of the forces acting on both frames is zero:
Fa + Fb = 0. Regarding the torques at the frames we
have τa + τb + es×Fb = 0.

The tangential force, i.e. the force in direction n is
f = eFa = −eFb. As there are no frictional, damping
or applied forces in the basic Prismatic Joint model the

tangential force is zero, i.e. eFa = 0.
The question arising now is: What happens to these

location and force balance equations when the straight
line is distorted?

3 PtCv with parallel Orientation

Next we substitute the straight line by an arbitrary
smooth curve, but keep the fact that both frames main-
tain parallel oriented permanently, i.e. the equation
that both frame have the same rotation object. The
curve is fixed in frame_a but does not need to run
through it. Here we are not yet concerned with the
concrete modeling of the curve. It is just a smooth
mapping C : R→ R3. What means "smooth" here will
be elaborated later. It is not required that the curve
is parameterized by it arc length. So we now use a
variable s0 for parameterizing the curve. C(s0) is the
current contact point on the curve (in frame_a coor-
dinates). The distance to C(s0) from the initial contact
point along the curve, i.e. the arc length is denoted
by the variable s. The same is with the velocities: v0
is the curve parametrization velocity (i.e. the deriva-
tive of s0) and v is the velocity along the curve. Note
that s0 and v0 are not a physical length and velocity
but just abstract Real variables. Only if the curve is
parameterized by its arc length s = s0 holds. (An-
other case where s0 and v0 are length and velocity is
when the curve is parameterized with one of its com-
ponents, say x, i.e. when C(s0) = {s0,Cy(s0),Cz(s0)}
holds, where Cy and Cz are the projections of the con-
tact point function on y and z axis respectively. This
is called a—lacking a better name—a "linear" curve in
the PtCv package, because there is some main path in
the curve, y and z can be viewed as deviations from
this path.)

In the case of an arbitrary curve the equation rb =
ra +T−1C(s) relates the global positions of the frames.
Due to the parallel orientation of the frames their ro-
tation object are the same. As the force at a frame
is expressed in the frame coordinates we still have
Fa +Fb = 0. The balance equation for the torques now
becomes τa + τb +C(s)×Fb = 0.

The property that the force along the axis of motion
at the Prismatic Joint is zero here becomes that there
is no force in the tangential direction along the curve
in the contact point: taFa = 0 where ta is the (normal-
ized) tangential vector in the contact point in frame_a

coordinates.
A PtCv model with these equations is already suit-

able for building up an ADAMS-style PtCv by just
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connecting a Spherical Joint to frame_b.

4 Orientation of the second Frame

When something is moving along a curve it is quite
natural that also the orientation of that object changes
while traveling along the curve: A cornering car is nor-
mally oriented in the current direction of travel. When
we want an object to follow a given curve we could
use the old ADAMS users’ trick of connecting the ob-
ject to the curve by means of two PtCvs like described
above in a short distance. But this has the disadvan-
tage, that the object only follows the curve approxi-
mately. The closer the distance between both PtCvs,
the better is the approximation but the more likely are
numerical problems. The moveover when we do not
need the remaining rotational dof along the axis con-
necting both PtCvs, we have to get rid of it by means
of an additional joint. (In ADAMS this is done by a
Perpendicular Joint which is not yet available in the
MSL.) All these joints result in a model with many
equations to describe such a simple mechanism.

So it seems desirable to have a tangential orientation
of the second frame directly in the PtCv model. But
here the problem arises that "tangential to the curve"
only determines one direction vector of the orienta-
tion. Even if frame_b of the PtCv is to be connected
to a revolute joint in order to introduce a rotational dof
around the tangential axis (and therefore the second
direction vector of the orientation does not matter) it
has to be determined in order to have a unique solu-
tion of the equations. There are several opportunities:
Take an arbitrary direction vector, e.g. the local z-axis
of the frame_a coordinate system. But this does not
work when the tangential vector ta gets too near to the
selected second direction vector. The other opportu-
nity is to take the direction of the normal vector to
the curve (pointing inward to a local curvature) But if
the curve locally becomes a straight line the normal
vector is not defined and special considerations have
to be taken. The moreover using the normal vector
to the curve demands a higher differentiability of the
curve. Fore these reasons both options are available
in the PtCv implementation and can be selected due to
situation by parameter.

5 PtCv with tangential Orientation

A tangential orientation of frame_b keeps the position
equation of the frames unchanged.

In order to archive a tangential orientation at least
the tangential vector to the curve in the current con-
tact point ta (in frame_a coordinates) has to be deter-
mined. For a moving contact point this can in principle
be done in Modelica by just applying the der() oper-
ator. Problems arise when the contact point is at rest,
especially at simulation start. (So to speak you have to
know where the road is going without walking.) Cur-
rently spatial derivations cannot be directly expressed
in Modelica. Therefore not only an equation for the
contact point depending on the curve parametrization
variable s0 has to be provided but also an equation for
the tangential vector. The moreover, when the nor-
mal vector to the curve is taken as the second direction
vector for defining the orientation of frame_b, also the
second derivation of the contact point function has to
be provided. (The normal vector can be determined
from this second (spatial) derivation easily.)

When ta and na are normalized vectors also the bi-
normal vector bn = ta×na is and T = {ta,na,ba} con-
stitutes the transformation matrix of the relative rota-
tion object from frame_a to frame_b.

The force and torque balance equations now
have to account for the fact that both frames
are no longer equally orientated. Forces and
torques are transformed my means of the re-

solve1 and resolve2 functions from the Model-

ica.Mechanics.Multibody.Frames package. (De-
pending on whether frame_a or frame_b is closer to
a root in the connection tree the balance equations are
expressed resolved for both frames separately in order
to improve numerical performance.)

An important observation is that the property that
there are no forces in tangential direction does no
longer hold: Even if there are no friction, damping or
applied forces there is a force acting in tangential di-
rection on a body attached at its center of mass to the
curve when the curvature of the curve changes. When
the body (with not only mass but also inertia) starts
entering a corner the rotational energy rises. Due to
the law of energy preservation the translational energy
has to be decreased for the same amount. This means
nothing but there is a breaking force acting along the
curve. (When the curvature gets less again also the an-
gular velocity and rotational energy go down again, so
the translational energy rises and there is an accelerat-
ing force. So the process is reversible: after leaving the
corner the travel velocity along the curve is the same
as before entering the curve.)

When the curve is a circle there is a direct corre-
spondence between rotational and translational energy.
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For any two times differentiable curve there is a unique
circle approximating the curve in the best way locally
in a given point. This circle is called the osculating
circle. Its radius is the inverse of the length of the nor-
mal vector. So the rotational velocity of a point con-
nected to the curve is the same as the one of a point on
this circle. Thus the equation relating translational and
rotational energy can be applied to any two times dif-
ferentiable curve and by differentiating this equation
an equation for the tangential force can be applied.

Figure 1: Planar curve (parabola) with osculating cir-
cle, tangential and normal vector in the contact point

The osculating circle can be visualized in the PtCv
model. For the force equations we do not need its cen-
ter coordinates and not even its radius but only its in-
verse, the curvature of the curve. This difference is
important when the curve becomes a straight line lo-
cally, so that the radius of the osculating circle gets
infinite and is not defined. The curvature simply gets
zero and does not provide a problem.

Figure 2: Osculating circle and normal vector at a 3D
curve

Depending on the situation and the relation of tan-
gential and rotational velocity this tangential force

along the curve due to changing curvature can be ne-
glected, e.g. when describing the cornering of an ICE
train. On the other hand simulations of a body with a
rather large inertia connected to a curve with parabola
shape under the influence of gravity showed that the
translational velocity is not highest in the lowest point
of the parabola (as one might have expected) but at a
symmetrical pair of points in a certain distance with a
local minimum of the velocity in the lowest point of
the parabola—where the curvature is highest.

Figure 3: Velocity of a body with high inertia sliding
freely along parabola

6 Geometry Definition

Up to now we only talked abstractly about the current
contact point C(s0), the tangential vector ta and the
normal vector na (which are derivations of the contact
point functions or are determined from derivations).
In principle it is always possible to define the con-
tact point function by its three cartesian components
in the frame_a coordinate system. But it is rather in-
convenient to define, say a helix curve with its center
line in direction n by directly providing the three curve
parametrization functions C1,C2,C3 defining the curve
in frame_a coordinates.

Therefore similar to the direction vector n in the
Prismatic Joint two direction vector parameters nx and
ny have been introduced defining a local x,y,z-system
(with the z-direction orthogonal to both nx and ny) for a
more convenient definition of the curve. E.g. a straight
line in a direction n can be defined by setting nx = n,
taking for ny any direction not parallel to n and the first
coordinate function is the identity mapping, both other
components are zero mappings.

The moreover there are model variants, where the
curve is not defined in cartesian x,y,z coordinates but
in cylinder coordinates: nx here determines the axial
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direction of the cylinder. Here you have to provide the
radial and axial component of the curve. To define a
PtCv with the mentioned helix curve take nx = n, the
radial component is a constant and the axial compo-
nent a linear function with suitable slope.

Now remains the question how the cartesian or
cylindrical components of curve definitions are de-
scribed.

7 Geometry Component Definition

There are several methods of defining the x−, y− and
z− or radial and axial component of a curve definition.
There is the opportunity to use replaceable functions.
You write a function returning a single Real defining
the desired function component. This method is good
for defining geometric curves like the helix mentioned
above, but is not applicable for defining curves with
an arbitrary given shape. The moreover currently it is
required not only to implement the functions describ-
ing the curve component but also their first and second
derivations (because we need the spatial derivations of
the curve to calculate the tangential and normal vec-
tor). Therefore this method is rather of theoretical
interest to investigate the properties of an analytical
function of concern.

As apparently there was no package ready to use
we decided to implement our own cubic spline inter-
polation package. (It is not part of the PtCv package,
because splines are of course applicable in many areas
different from PtCv modeling.) Natural cubic splines
are implemented, i.e the second derivation at the def-
inition range borders are zero. A spline may have an
arbitrary number of definition points which need not
be equally spaced. Extrapolation is possible as con-
stant or linear continuation or as periodic extrapola-
tion with a repetition of the definition range infinitely
many times. Although the complete calculation of the
spline evaluation (and of the calculation of the second
derivations at the definition points) is completely im-
plemented in Modelica (like in the PtCv package, no
external functions are used) Dymola is not able to cal-
culate the derivations of the interpolation and extrapo-
lation functions itself, so the derivations had to be pro-
vided explicitly. At a PtCv with parallel orientation
using the normal vector for calculating the orientation
object time derivations up to the 4th order and spatial
derivations of the evaluation function are needed. So a
great deal of the development of the Spline package
was implementing derivations.

Depending of the type of PtCv splines for the x−,

y−, z−, radial or axial component of the curve defi-
nition can be provided. The radial spline is automati-
cally extrapolated periodically, but it is up to the user
to ensure that the lower and upper definition range bor-
der have the same radius to ensure the contact curve is
continuous. All other component splines are linearly
extrapolated. All definition splines have suitable de-
faults: The axial spline defaults to the zero spline, the
radial spline defaults to the unit radius, so the default
curve for a circular PtCv is a circle in the local y− z-
plane (orthogonal to the provided nx direction vector).
The x-spline defaults to the identity mapping, y− and
z-spline to the zero mapping. By this means in many
cases not all the definition splines have to be provided.

After we implemented our own Spline package we
discovered that there is already a package for eval-
uation of Bezier Splines[3] developed at the DLR,
Oberpfaffenhofen in 2002. (It is available under the
Modelica license.) In order to use this BSpline pack-
age we had to write extrapolation features for it. (They
were not added to the BSpline package, which was
kept unchanged, but were placed into our PtCv pack-
age.) Now also PtCvs using BSplines for the curve
definition are available in this package.

8 The PtCv Model Family

The sections above already mentioned that there are
several PtCv models with different coordinate systems
(cartesian or cylindrical) and different types the curve
component functions are defined (replaceable func-
tions, cubic splines, BSplines). All these models are
extended from one basic model in several steps.

The partial model PartialPtCv contains every-
thing common to all PtCv models. These are all pa-
rameters which are not directly related to the curve ge-
ometry definition, most of the parameters concerning
animation, the equations relating the position and ori-
entation of the two frames, the force balance equations
and the equations for the force tangential to the curve.
This model mostly uses the cartesian x,y,z-coordinate
system mentioned above. The curve parametrization
variables (e.g. s0 are defined using replaceable types
defaulting to Real, so they can be redeclared in situa-
tions, where they really mean positions and velocities,
or angles and angular velocities. What is missing here
is the equations for the current contact point C(s0), the
current tangential ta and normal vector na.

The next extension step is optional and rather in-
tended for development and debugging purposes: The
partial model PartialPtCvExtended, extended from
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PartialPtCv contains variables (and visualizers) not
really needed for the PtCv contact calculation but pro-
viding useful additional information, like visualizers
for the osculating circle, the tangential and the normal
vector, the traveled distance along the curve s and vari-
ables calculating the potential, translational and rota-
tional energy for the special case that a mass with its
center of mass is connected to a curve fixed in space.

The partial model PartialCircularPtCv is in-
tended for all PtCv models using cylinder coordinates.
(This does not mean that the curve itself is circular,
like seen in the helix curve example. Therefore the
name may be changed in future versions.) This model
contains variables for transforming the cylinder co-
ordinates into the cartesian x,y,z-system of the base
model. There is a parameter revolutionLength de-
termining the length of one revolution, i.e. if revolu-
tionLength= 360 the radial and axial component are
scaled on degrees, if revolutionLength = 2π they
have to be defined in radiant. The curve parametriza-
tion variables are redeclared to angles, angular veloci-
ties and angular accelerations.

Remember in the PtCv package the term "linear"
means that the cartesian x-component of the curve
is the identity mapping, i.e. there are only possi-
ble deviations into the y- and z-direction. For this
case there is the partial model PartialLinearPtCv.
In this case the curve parametrization variable s0 is
a distance, not along the curve but along the x-axis
instead. Therefore the curve parametrization types
are redeclared to SI.Position, SI.Velocity and
SI.Acceleration. As also linear PtCvs use cartesian
coordinates no transformation is required.

The partial model PartialGeneralPtCv only re-
declares all curve parametrization types to Real, just
to prevent further redeclaration. All these three partial
models are currently extended from PartialPtCvEx-

tended in order to have the additional debugging in-
formation at hand. In a final release they may be di-
rectly extended from PartialPtCv skipping the extra
variables and visualizers.

The next step in this extension hierarchy are
the completed (non partial) PtCv models, extend-
ing from one of the three models PartialCircu-

larPtCv, PartialLinearPtCv or PartialGener-

alPtCv. Here only the parameters for defining the
curve components are declared (i.e. the replaceable
functions for the geometry definition components cur-
rently together with their derivatives or the spline or
BSpline parameters) and also the equations for deter-
mining the current contact point C(s0), the tangential

vector ta and the normal vector na, by evaluation of the
functions or the spline resp. BSpline functions.

This separation into several model layers makes it
easy to add new PtCv models with a custom geome-
try. There is even an instruction how to do so in the
package documentation. On the other hand it enables
to protect the base models by encryption in a version
to be released in future.

9 PtCvs with Stops

So far we only dealt with PtCvs with an unlimited
curve. For building a PtCv with a limited admissi-
ble range of the parametrization variable s0, we take
an existing full PtCv model and add the stops by ex-
tending it. (So we go one step further in the model
extension hierarchy.) The implementation of a PtCv
with stops has been performed exemplarily on a Lin-
ear PtCv where the curve is defined by two replaceable
functions in y- and z-direction, but it can be imple-
mented in the same way for any type of PtCv model.

It is important to note that adding stops to a PtCv
does not impose a new constraint to it, but only applies
an new additional force in tangential direction depend-
ing on the position and velocity of the contact point. If
frame_b is forced to proceed by some prescribed mo-
tion it will do, regardless of the repelling forces. They
may become huge, but as we have ideal elements noth-
ing will break the mechanism like it will happen in a
physical realization. A PtCv with stops still has one
translational dof.

The stop position is defined by two new curve
parametrization parameters stop1 and stop2. In this
way the stop position is automatically located on the
curve, namely at the positions C(stop1) and C(stop2).
In case stop1 < s0 < stop2 there is no additional force
in tangential direction.

The stop is established by applying strong repelling
forces to the point frame when it leaves the admissi-
ble parameter range. The repelling force consists of a
non-linear spring force and linear damping where the
damping coefficient is dependent on the actual pen-
etration: If s0 < stop1 holds, there is contact to the
lower stop and there is a force like the IMPACT force
defined in ADAMS with a spring and a damping in-
gredient:

F(x) =
{

max(k(x1− x)exp− cv,0) x < x1
0 else

where k is the spring stiffness, exp the stiffness expo-
nent and c = ST EP(x,x1−d,cmax,x1,0) is the current
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damping coefficient depending on the position, which
returns cmax, when x < x1− d, but zero, when x > x1
and is smooth in between. This means that the damp-
ing force does not directly apply fully at the moment of
contact, but is increased from contact to a penetration
d where full damping cmax is archived. The IMPACT

and STEP functions are implemented as separate func-
tions to be used in other contexts than the PtCv stops.

The stops are visualized by cylinders with the
origins at C(stop1) and C(stop2) pointing into the
directions −tstop1 and tstop2 (out of the admissible
parametrization range) where tstop1 and tstop2 are
the tangential vectors to the curve at C(stop1) and
C(stop2). When the contact point leaves the range
stop1 < s0 < stop2 and there are contact forces, the
relevant stop visualization cylinder changes its color.

Subject to further work on this topic is to establish a
new partial model containing the stop implementation.
So a particular PtCv model with stops ought to be little
more than an extension of both the corresponding nor-
mal PtCv model (without stops) and the stop model.

9.1 Curve-to-Curve (CvCv) Constraints

A Curve-to-Curve (CvCv) constraint between two
curves is defined by the property that at any time both
curves have a common contact point and both curves
are oriented tangentially to each other. This is a local
condition. It does not require that the total shape of
the curve would admit this constellation when physi-
cally built. (The curves may cross each other at regions
away from the contact point.)

Some multi body dynamics programs (like
ADAMS) provide Curve-to-Curve constraints only
for planar curves and there is already a CvCv
constraint implementation for planar curves in the
PlanarMultiBody package [2]. But the concept of
Curve-to-Curve constraint can also be transferred to
smooth curves in 3D space.

In 2D CvCv constraint modeling when the contact
point is found the position of both curves to each other
is determined: A 2D CvCv constraint has just one
(translational) dof. Her in 3D it is plausible to admit
a rotational dof around the common tangential axis of
both curves also.

Instead of modeling a CvCv constraint elementar-
ily by stating its position and force balance equations
we follow the approach of using two PtCv constraints
connected to each other with their "point sides" to each
other with a revolute joint in between. In case no ro-
tational dof is admitted, there is a fixed rotation com-
ponent instead where is can be set if both curves are to

be oriented opposite to each other by using a rotation
angle of 180 degrees or not.

Figure 4: Diagram layer of a CvCv constraint

10 Point-to-Surface Constraints

It is quite natural to transfer the notion of a Point-to-
Curve constraint to 2D: At a Point-to-Surface (PtSf)
constraint a point can move along a smooth surface.
This means a PtSf constraint has 2 dofs. For sur-
faces constituting analytical functions there are PtSf
models with the surface described by replaceable func-
tions. For practical applications there are PtSf versions
where the surface is defined by 2D-Splines from the
AreaSpline package. Currently only the option that
the point frame is oriented parallel to the first frame
is implemented, but in future orientation tangential to
the surface will be an alternative.

Like at the PtCv models for all PtSf models there is
one common partial base model and extensions with
coordinate transformations for cylindrical and spheri-
cal coordinate systems (besides the core Cartesian co-
ordinate system) from which the specific PtSf models
are extended.

10.1 The AreaSpline Package

Here again it is straight forward to try to transfer cu-
bic spline interpolation to 2D, i.e. to return the z-
coordinate for a given (x,y) location. The spline is to
be defined on a rectangular grid (xi,y j)i=1,...m, j=1,...n.
(This can be view as a landscape, where the height
is tabulated at the points of this grid. Interpolation is
the task to calculate the height z = h(x,y) at any point
(x,y) in between, under the assumption that the land-
scape is smooth.

10.1.1 Area Spline Interpolation

The idea here is to interpolate in the x- and y-direction
rather independently. For any given x0 location the
projection f (y) = h(x0,y) can be considered a usual
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cubic spline (in the y-coordinate). In case x0 is one of
the grid values (x1, ...xm) we can determine the second
derivations at these positions by solving the equations
system like in the one-dimensional case. So we can
even determine h(x0,y). (The same holds when the
y-coordinate y0 is one of (y1, ...yn): We can calculate
h(x,y0) .) To calculate the height at an arbitrary po-
sition (x,y) not matching any of the grid lines we can
first determine the definition rectangle to which (x,y)
belongs, i.e. indices i and j so that xi < x < xi+1 and
y j < y < y j+1. Now we can calculate both h(xi,y) and
h(xi+1,y). The moreover we can determine h(xi,y) for
all i = 1, ...m and consider these values as the defini-
tion points of a cubic spline in the x-coordinate. The
problem is that for calculating this spline we’d had to
solve the system of equations for this particular arbi-
trary y, i.e. at evaluation time, what would be time
consuming at larger definition grids. But as the in-
terpolation function of a spline is a 3rd order poly-
nome between definition points, the 2nd derivation is a
1st order polynome which can be linearly interpolated
easily.

The approach is now as follows: Instead of
calculating the 2nd derivations of the spline de-
fined by (xi,h(xi,y0))i=1,..m by solving a system of
equations, we take the coefficients of the splines
(xi,h(xi,y j))i=1,...m and (xi,h(xi,yi+1))i=1,...m, interpo-
late each pair linearly and take them as the coefficients
of the spline through (xi,h(xi,y))i=1,...m. By interpo-
lating this spline at x we can finally calculate h(x,y).

Here we started by working in y-direction, i.e. by
first calculating h(xi,y) and h(xi+1,y) but that is not
crucial. It can be shown that we end up at the same
result, when we calculate h(x,y j) and h(x,y j+1) first
and determine the coefficients of the spline trough
(y j,h(x,y j)) j=1,...n by linear interpolation of the coef-
ficients in the columns xi and xi+1.

This approach has two advantages:

1. All spline coefficients can be calculated once for
all when defining the spline (or when modifying
it at an event). No solving of systems of linear
equations is required at evaluation time.

2. The coefficients in x-and in y-direction can be cal-
culated independently. The moreover the coeffi-
cients in each row and column can be determined
independently. We simply can calculate the usual
coefficients of 1D splines along all the definition
grid lines. With an m×n definition grid we have
just m systems of equations of size n and n sys-
tems of size m instead of one or two big systems
of size mn or so.

Unfortunately this approach has one big disadvantage:
Although it is true, that the 2nd derivation of the in-
terpolation function between two definition points is a
first order polynome which can be linearly interpolated
without any loss of precision, we just get an approxi-
mation, when we interpolate between the 2nd deriva-
tions in y-directions at (xi,y j) and (xi,y j+1) in order to
get the value at (xi,y). Linear interpolations is exact
here only in x-direction between (xi,y j) and (xi+1,y j)
but not in y-direction.

As a result of this inexactness we have the following
effects. The interpolation function is:

1. continuous,

2. two times continuously differentiable in any point
not matching one of the definitions grid lines,

3. two times partially continuously differentiable
along the definition line grids, but in general

4. not partially differentiable when crossing the def-
inition line grids, i.e. not (totally) differentiable
at points on the grid lines.

So the resulting interpolation surface looks folded at
the definition grid lines. The distances of the defini-
tion lines are the smaller the closer the definition grid
lines get. Of course we are a lot better off than with
interpolating the definition grid just linearly.

10.1.2 Area Spline Implementation

Like at the 1D splines there is a function makeArea-

Spline to initialize a spline record by calculating the
spline coefficients like described above. In the evalu-
ation function evalAreaSpline extrapolation is pos-
sible constantly, linearly and periodically. It can be
chosen between these three options independently in
the x- and the y-direction.

Unfortunately we had to implement the 1st and 2nd
derivation of this function manually. (Higher order
derivatives were not yet needed because at the PtSf
constraints up to now only parallel orientation of the
point frame was implemented.) But on the other hand
having these time derivatives it was easy to implement
the partial derivatives into x- and y-directions that we
also needed anyway.

10.1.3 Area Spline Visualization

There is a sub-package Visualizers for displaying
area spline surfaces using the Plot3D package. An
area spline can be displayed by entering its definition

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 683



data into a function call. There are variants also dis-
playing normal vectors to the surface or one of the par-
tial derivatives instead of the spline surface itself. The
definition grid lines are displayed also like in the ex-
ample below.

Figure 5: Example of Surface definition with AreaS-

pline Package

Unfortunately this package cannot be used for visu-
alizing a surface in a mytt MultiBody model with the
animation used there.

11 By-Products

In the development of the PtCv package an attempt
was made to integrate a revolute dof to a PtCv with
tangential orientation. This did not yet work properly.
But it does work in the special case that the curve is
simply a straight line. So there is a translational dof
along an axis and a rotational dof around that axis.
This is noting but a cylindrical joint. Therefore this
was turned to a separate model where the arbitrary
curve with all its parameters was reduced to a direc-
tion vector n and the hierarchy of partial models was
turned into one model.

Of course there is a Cylindrical Joint model in
the MultiBody package of the MSL, but this is com-
posed of the connection of a Prismatic and a Revo-
lute Joint. But compared to this standard implemen-
tation the Cylindrical Joint model in this package is
described directly by equations. The number of equa-
tions is about 10% less than in the standard implemen-
tation and simple test models are considerably faster.

A PtSf constraint where the surface is a plane is a

planar parallel joint, i. e. frame_b can move along a
plane through frame_a defined by two direction vec-
tors n and m. This is like the planar joint in the Multi-
Body library, but without the rotational degree of free-
dom. As such a joint is of general interest it has been
implemented as a separate model. Despite the Multi-
Body planar joint here the translation in the plane is
not modeled by two orthogonal prismatic joints but el-
ementarily.

12 Conclusions

Although especially the PtCv models are up and run-
ning the packages described in this paper are to be seen
as a work in progress. It seems valuable to incorporate
some more ideas from the PlanarMultiBody package
like providing the user with a collection of predefined
curves like circles and elipsoids. Cubic splines will be
then just one type of predefined curve. This applies
even more to the PtSf package which will become
much more usable if there would be a set of predefined
parametrizised shapes.

The original plan to develop also contact force el-
ements besides the constraints will not be addressed
anymore within the Eurosyslib project due to lack of
time but are subject to further work.
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