
TrueTime Network — A Network Simulation Library for

Modelica

Philip Reuterswärda, Johan Åkessona,b, Anton Cervina, Karl-Erik Årzéna
aDepartment of Automatic Control, Lund University, Sweden

bModelon AB, Sweden

Abstract

We present the TrueTime Network library for
Modelica, developed within the ITEA2 project
EUROSYSLIB. It allows for simulation of various
network protocols and is intended for use within
real-time networking. We describe some its fea-
tures and discuss implementational issues. Since
TrueTime Network is programmed in C, special
attention is given to the how Modelica’s external
function interface is used. We also discuss briefly
a future native Modelica implementation.

Keywords: Modelica; Network Simulation;

TrueTime; Real-time Control

1 Introduction

Networked systems and networked control are in-
creasingly common in many domains, e.g., in
automotive systems. Sending signals over net-
works cause delays that, depending on the net-
work protocol, can be more or less determinis-
tic. Some examples of delays are network inter-
face delays, transmission delays, propagation de-
lays, and back-off times in case of collisions on a
shared medium. In order to accurately simulate
the consequences that these delays have on the
overall system performance it is important to be
able to model the network at an appropriate level.
A too detailed network model including, e.g., the
transmission of individual bits, will make the sim-
ulation too slow. Furthermore, this level of detail
is in most cases unnecessary. A too coarse model,
e.g., to model the network as a constant delay,
will in many cases fail to capture the dynamics
introduced by the network communication.

Within the ITEA2 project EUROSYSLIB, the
Department of Automatic Control, Lund Univer-
sity is developing a Modelica network protocol li-
brary. The intended application area is real-time

networking. In these networks, the upper layers
of the ISO/OSI protocol stack are normally not
used. Hence the library only models various wired
or wireless data-link layer protocols with focus on
the MAC-access related sources of delays. The
library is based on the Matlab/Simulink toolbox
TrueTime [1] developed in the same group.

The Modelica implementation of the TrueTime
Network is based on the existing Simulink imple-
mentation of TrueTime, with some modifications.
TrueTime Network makes it possible to simulate
the sending of reals and arrays of reals over a net-
work using different network protocols. It is im-
plemented in C and used in Modelica through the
external function interface.

The organization of the paper is as follows. In
Section 2 we describe the TrueTime simulation
package for Simulink and how it models networks
and network protocols. Section 3 gives an in-
troduction to the TrueTime Network library for
Modelica from a user’s perspective. In Section
4 we discuss the implementational aspects of the
TrueTime Network library. Special attention is
given to the usage of the external function inter-
face. Section 5 discusses a future native Modelica
implementation of the library.

2 TrueTime

TrueTime [1] is a Matlab/Simulink-based simula-
tion tool that has been developed at Lund Uni-
versity since 1999. It provides models of multi-
tasking real-time kernels and local-area wired and
wireless networks that can be used in simulation
models for networked embedded control systems.
The TrueTime Network library is a Modelica port
of TrueTime’s network part. It supports six sim-
ple models of networks — CSMA/CD (Ethernet),
CSMA/AMP (CAN), Round Robin (Token Bus),
FDMA, TDMA (TTP) and Switched Ethernet.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 657 DOI: 10.3384/ecp09430058



In addition, the wireless network protocols IEEE
802.11b/g (WLAN) and 802.15.4 (ZigBee) are also
supported.

TrueTime models networks as a set of FIFO
input queues, a shared communication medium,
and a set of FIFO output queues. The queues
model the send and receive buffers in the nodes
connected to the network. A message that should
be transmitted from one node to another is placed
in one of the input queues. Messages are moved
from the input queues, into the network, and into
the output queues in an order that depends on the
simulated network protocol. A message moves be-
tween a number of different queues on its way over
the network in a fashion specified by the protocol.
The transmission time of each message depends
on the length of the message. Collisions and re-
transmissions are simulated in the relevant proto-
cols. The wireless network models also take the
path-loss of the radio signals into account, and as
such uses coordinates to specify the locations of
the nodes.

Propagation delays are not modeled, since they
are typically very small in a local area network.
Only packet-level simulation is supported, we as-
sume that higher level protocols have divided long
messages into packets.

3 Modelica Library

An overview of the library as shown in Dymola [3]
is shown in Figure 1. The TrueTime Network li-
brary supports block based modeling with several
different networks running in the same simulation.
To each implemented protocol there is a corre-
sponding block to allow for graphical modeling.
The different network settings can be changed in
the block masks. The inputs and outputs of the
network blocks are signals that are used to trigger
the sending and receiving of network packages.

Additionaly there are blocks for sending and re-
ceiving of network packages that are meant to be
connected with the network blocks, see Figure 2.
Separate blocks exist for the sending and receiv-
ing of scalars and arrays. There are also blocks
that, given an interval, sample and send a signal
periodically over the network. Finally there are
blocks representing empty nodes, these should be
connected to ground the network in case there are
nodes that do not send or receive.

The network protocols have several settings, see

Figure 1: The TrueTime Network package

e.g. Figure 3, some common to all and some spe-
cific to certain protocols. The network ID is an
unique identifier for each network. The number
of nodes in the networks must be known at the
time of compilation and are specified by the user.
The frame size and the speed of the network can
also be tuned. The loss probability determines the
probability that a message is lost in transit. Lost
messages still consume bandwidth but never ar-
rive at their destination. It is possible to set the
value of the seed for the random number genera-
tor used to calculate if a package is lost or not.
Setting of the seed makes it possible to conduct
Monte-Carlo type simulations.

The wireless protocols have some additional set-
tings. When simulating a wireless network the po-
sition of the nodes must be set. This is done either
once at initialization, or continuously throughout
the simulation in the case of a moving wireless
network node. The transmission power and sig-
nal threshold parameters determines how the wire-
less network signals will be intercepted. There
are also settings controlling the sending, resend-
ing and timing out of network packages.

3.1 Example Usage

The library comes with some examples, showing
the intended usage of the TrueTime Network li-
brary. The examples deals with control loops that

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 658



Figure 2: Blocks and external functions for send-
ing and receiving network messages

Figure 3: Parameter dialogue of the CSMA/CD
network block

are closed over networks. Examples show both
how to use a wired network, such as Ethernet,
and a wireless network protocol, e.g., WLAN. The
latter involves setting the positions of the net-
work nodes during the simulation. It is possible to
model both using blocks, see Figure 4, and stan-
dard Modelica, see Listing 1.

During the simulation it is possible to log the
various networks signal and values sent over the
network. The netwoks also log the network sched-
ule, which show when packages were sent and
when collisions happpened, see Figure 5.

4 Implementation

The original TrueTime Simulink blocks are im-
plemented as variable-step S-functions written in
C++. Internally, each block contains a pointer

model NetworkExample

CSMACD_Network

network(id=1,nbrNodes=2);

Receiver rcv1(id=1,address=1)

Receiver rcv2(id=1,address=2)

PeriodicSender snd1(id=1, address=1)

PeriodicSender snd2(id=1, address=2)

...

equation

connect(rcv1.portIn ,

network.portOut[1]);

connect(rcv2.portIn ,

network.portOut[2]);

connect(snd1.portOut ,

network.portIn [1]);

connect(snd2.portOut ,

network.portIn [2]);

...

end NetworkExample;

Listing 1: The network simulation loop

to a network structure and a discrete-event sim-
ulator. Zero-crossing functions are used to force
the solver to produce “major hits” at each inter-
nal (scheduled) or external (triggered) event. The
events include sending and receiving of messages.
Events are communicated between blocks using
trigger signals that switch value between 0 and
1. At events the network is run and network pack-
ages are moved between the FIFO queues that the
network comprises.

The C++ implementation of TrueTime was
ported to C, so that it could be used with Mod-
elica through the external function interface [2].
External objects are used to represent networks
corresponding to different protocols. Since the
external objects do not allow for member func-
tions, auxiliary external functions are used to, e.g.,
run the network and to send and receive network
packages. This hides the implementational details
from the user.

Modelica currently does not support external
states. This means that once we run the network
there is no way to roll back to a previous state.
Care must be taken when updating the network,
so that we do not run the network in the “future”.
This could happen, depending on the implementa-
tion, prior to event detection when the integrator
tries to step. The Simulink simulator has richer in-
terface to its integrator, which solves the problem
in the Simulink environment. In Modelica we ac-
complish this by careful use of the when-construct.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 659



Figure 4: Simulating a PID control loop closed
over a network

RTnetwork* nw;

int nw_id = 1;

nw = getNetworkPtr(nw_id);

Listing 2: Retrieving a network structure pointer

4.1 External Network Objects

Figure 6 shows a network protocol model in Mod-
elica. A network is implemented in dymola using
an external object representing each network pro-
tocol. It points to the external C implementation
of the network model. There is also a network
wrapper-class that handles the access to the ex-
ternal object. This is done through the functions
networkZC and runNetwork. Other external func-
tions can also access the external network model
by specifying the network ID. Externally, a pointer
to the network structure can be obtained by doing
a lookup on this number, see Listing 2.

To simulate network transmissions TrueTime
Network relies on two functions, the zero-crossing
function networkZC and runNetwork, see List-
ing 3. When a package is sent over the network,
the network does not receive the package itself. In-
stead it reads a boolean signal and triggers on the
flanks of it. When an incoming signal is received,
signaling the arrival of a new network package, the
network is run by calling runNetwork. By polling
the network using the networkZC, we know when
the network should be run the next time. If it re-
turns zero, a when-clause triggers and the trigger-

Figure 5: Simulation variables

Figure 6: Network protocol implementation

ing package is either delivered to its destination or
moved towards it through the FIFO queues that
make up the network. Dropping a package simply
means removing it from the network.

4.2 Sending and Receiving

Before triggering a signal on the send port of the
network the sending node must create a network
package and enqueue it in the external network
data structure. When a message is sent, by call-
ing the external function sendReal, see Listing 4,
a message structure is created and is inserted into
a FIFO queue. The network is accessed by doing a
lookup using the network id number. All this takes

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 660



algorithm

when change(signalIn) then

(signalOut ,schedule) :=

runNetwork(nw,nbrNodes ,time);

end when;

nextHit := networkZC(nw, time);

when (nextHit <= 0.0) then

(signalOut ,schedule) :=

runNetwork(nw,nbrNodes ,time);

end when;

Listing 3: The network simulation loop

function sendReal

input Integer id "Network id";

input Integer sender;

input Integer receiver;

input Real u "data";

...

output Real y;

external "C" y = ...

annotation(Include = ... );

end sendReal;

Listing 4: The sendReal external function

place in the external C code. At the same time, on
the Modelica side, a boolean variable representing
the input is toggled. When this happens the net-
work is run, by calling the runNetwork function.

When making its way over the network, a mes-
sage is transferred between a number of queues.
The sending and receiving of messages is event
based. How and when it is moved is determined
by the protocol model of the network that is to
be simulated. To determine when to run the
network a zero-crossing function is used. A call
to runNetwork placed within a when construct
achieves this. When the network is run, it checks
to see if any messages are to be transferred be-
tween the FIFO queues. The network also calcu-
lates the time of the next hit. This updates the
value reported by the zero-crossing function.

When a message is ready to be received, a
boolean variable is toggled. This triggers a call
to the receiveReal function, which retrieves the
message from the network. When sending and re-
ceiving arrays of data, the user specify at compile
time the length of arrays, see Listing 5.

function receiveRealArray

input Integer id "Network id";

input Integer receiver;

input Integer length;

output Real[length] y;

external "C" ...

annotation(Include = ... );

end receiveRealArray;

Listing 5: The receiveRealArray external func-
tion

5 A Native Implementation

In order to increase the transparency of the pro-
tocol implementations the network simulation en-
gine may be implemented in native Modelica,
rather than in C. Initial work following this ap-
proach was done.

The implementation was largely based on the
design of TrueTime. The basic building block
for this implementation is the RingBuffer class,
which emulates a buffer of limited size contain-
ing network messages. The network messages in
turn are represented by a record class NWMessage

and subclasses thereof for each individual proto-
col. The implementation also contains connectors
for connecting nodes to the network block, similar
to TrueTime. The connectors then contain vari-
ables corresponding to the addresses of the send-
ing and the receiving nodes, the actual data. The
connectors also carry a boolean variable which is
used to signal transmission. When this variable
is toggled, the receiving side takes appropriate ac-
tions, for example reads the message and store it
in an internal buffer. The project is still ongoing.

A particularly interesting extension of this work
would be to use ModeGraph to model the state
machines of sending and receiving nodes as well
as the protocols. In particular since network
protocols are often specified in terms of graphi-
cal state machine descriptions. Indeed, this ap-
proach would further improve the clarity and
transparency of the network protocol implemen-
tations.

6 Summary

We have presented the TrueTime Network library,
developed within the ITEA2 project EUROSYS-
LIB. The library is implemented using external
objects and we have showed key aspects of the im-

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 661



plementation related to the external function in-
terface. We have also talked about a future native
Modelica implementation, which is being worked
on at the time of writing.

References

[1] Anton Cervin, Dan Henriksson, Bo Lincoln,
Johan Eker and Karl-Erik Årzén. How Does

Control Timing Affect Performance? Analy-

sis and Simulation of Timing Using Jitterbug

and TrueTime IEEE Control Systems Maga-
zine 23, 16–30, 2003.

[2] Modelica Association. Modelica - A Uni-

fied Object-Oriented Language for Physical

Systems Modeling — Language Specification

Version 3.0, 2007.

[3] Dynasim AB. Dymola - Dynamic Modeling
Laboratory. http://www.dynasim.se

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 662


