
Building Modelica Tools using the Modelica SDK

Peter Harman Michael Tiller
deltatheta uk ltd. Emmeskay Inc.

The Technocentre, Puma Way 47119 Five Mile Road
Coventry, CV1 2TT, UK Plymouth, MI 48170, USA
peter.harman@deltatheta.com mtiller@emmeskay.com

Abstract

Modelica provides numerous opportunities for the
engineering industry to promote the reuse and ex-
change of simulation models by providing a clear
standard, open libraries and metadata support via
annotations. This opportunity is often underutilized
because full Modelica support could not be easily
incorporated into software tools without requiring
considerable resources.

This paper presents a software development kit, the
Modelica SDK, designed specifically to assist devel-
opers with integrating Modelica support into any
software tool. The philosophy behind this library is
to provide maximum extensibility to power users so
they can fully utilize the features of the Modelica
language and integrate them into their engineering
processes for maximum benefit.

The mechanisms provided for a developer to inte-
grate or extend the functionality of the tool into their
own software are discussed in detail and examples of
the extension points available and their uses are
shown.

Keywords: Modelica translator, Java, SDK, API

1 Introduction

This paper presents Modelica SDK, an implementa-
tion of Modelica available as a Java library. The
Modelica SDK is suitable for adding Modelica sup-
port to existing tools as well as developing new
Modelica tools and utilities.

Similar tools have been developed with specific
goals, such as for style checking and version control
[1] as well as translating models for us in an optimi-
zation framework [2]. Open source tools [2,3,4] do
exist which allow the developer to modify the code
to build custom tools. However this not only re-
quires detailed understanding of the underlying soft-
ware architecture in order to make such modifica-
tions but the licensing terms may also be incompati-

ble with the intended purpose of the tool. The aim of
the Modelica SDK is to cover all these use cases and
allow a broad range of applications, without burden-
ing the developer with creating and maintaining their
own implementation of Modelica and/or hindering
the developer with undesirable licensing terms.

2 Applications

The aim of this library is to enable the use of Mod-
elica in a wide range of tools and processes and, as
such, it is not possible to cover all the possible uses.
Instead, we will focus on a number of areas where
Modelica could be used in existing tools or where
the capabilities of Modelica can be extended using
new tools.

2.1 Custom Simulation Platforms

Modelica is first and foremost a modeling language
not a simulation platform. Depending on the in-
tended application, the simulation requirements may
vary greatly.

For example, in a hardware-in-the-loop (HiL) appli-
cation it is reasonable to sacrifice a certain degree of
accuracy in order to achieve real-time performance
as compared to desktop simulation. On the other
hand, for detailed design studies, the use of variable
time step integrators and careful event handling may
dictate greater focus on accuracy at the expense of
computational performance. Furthermore, depend-
ing on the simulation platform (e.g. HiL hardware,
grid computing) I/O requirements may vary (e.g. file
system access, IPC support). Finally, domain specif-
ic simulation tools, such as engine simulation tools,
multi-body tools and/or control system design tools,
often have an API for integration of user defined
models. In such cases, it may be necessary for the
code generation process to support third-party code
provided in C, C++, Fortran or some other custom
format.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 631 DOI: 10.3384/ecp09430046

For this reason, the Modelica SDK library exposes a
code generation API which allows the developer
great flexibility in controlling the code generation
process. In this way, the developer can choose to
target a wide variety of applications (e.g. Hardware-
in-the-loop, desktop simulation), control how I/O
and integration of third party code is handled and
choose in what particular programming language the
target code will be written (e.g. C, assembly, Java).

Some code generation schemes use templates or an
intermediate form [5] to provide such flexibility.
However these require an extra stage of parsing and
also may expose code the developer wishes to re-
main concealed. For this reason, the Modelica SDK
provides a set of Java interfaces allowing developers
to implement their own code generator (or subclass
the SDK provided ones) to suit their specific needs.

2.2 Parameter Management

It is often desirable to store parameters externally to
a model, either for the convenience of editing in
spreadsheets or other tools, or simply to comply with
company policies requiring the use of standardized
formats or a central database [6, 7]. By translating
these to and from Modelica records, or providing a
method of loading records from this data as de-
scribed with the path and file system package later,
the data can be referenced directly from within Mod-
elica editors by using Modelica dot-notation.

2.3 Parameter Studies and Optimization

Whether using a dedicated optimization package or a
spreadsheet, the first step of a parameter study or
optimization with a Modelica model is to identify the
parameters in the model, their default values and
units, and their maximum and minimum values if
defined. This can be obtained using the “query”
package described later.

Whether a calculated variable depends on a particu-
lar parameter is often determined by running mul-
tiple simulations in a sensitivity study. However,
using the Modelica SDK this information can be de-
termined easily from just the flattened system of eq-
uations using API calls (described later in the paper)
rather than relying on a brute force numerical ap-
proach.

Sensitivities may also be handled during a single
simulation with modified ODE solvers which require
additional code to be generated by customizing the
code generation process using the code generation
interfaces.

2.4 Issue Tracking and Version Control

The Modelica SDK also provides the foundation for
developing utilities for issue tracking and version
control. For example, Modelica aware versions of
diff and merge tools could be developed that allow
visualization of differences in the model structure
rather than just focusing on comparing lines of code.
Also, as annotations can be added, queried, modified
and removed using the SDK, these capabilities final-
ly make the valuable metadata stored in Modelica
accessible for storing additional information about
the model, e.g. relating issues (in an issue tracking
database) to particular model versions.

2.5 Plug-ins to Vertex

As the Modelica SDK is the Modelica implementa-
tion used in the Vertex [8] simulation tool, exten-
sions developed for the Modelica SDK also act as
plug-ins to the Vertex tool. In this way, any en-
hancements or features added through Modelica
SDK extension points are therefore also accessible
from Vertex. Such extensions might include adding
the ability to define new simulation targets, new
checking rules or new sources to load Modelica
models from (e.g. network servers, version control
systems).

3 Interfaces

As a software development kit the ease of integration
with different software platforms is essential. Differ-
ent means of integration have been included for dif-
ferent applications.

3.1 Java

The Modelica SDK is developed in the Java lan-
guage. This gives advantages of platform-neutrality,
convenient packaging as “jar” archive files, and “ja-
vadoc” documentation (automatically generated from
the Java source code).

The examples given in this paper were all imple-
mented in Java.

3.2 Scripting Languages

All the operations accessible to Java are also access-
ible by scripting languages running on the Java Vir-
tual Machine (JVM), creating a powerful environ-
ment for experimentation. Users of Python (Jython),
Ruby (JRuby), Groovy, Beanshell and MATLAB
can directly access the SDK classes and methods.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 632

3.3 C++ and .NET

The platform neutrality of Java is important for a
tool such as the Modelica SDK. However, many
applications are developed using other programming
languages and platforms. For this reason the key me-
thods in the SDK can be exposed to C++ or .NET
applications. Note that in such circumstances the
SDK still runs in the Java Virtual Machine, and ex-
tensions must still be written in Java.

3.4 Web Services

For complete portability a web services interface has
been developed using SOAP. SOAP clients libraries
are available in most programming languages. The
SOAP services were implemented using Axis2 [9],
which comes in both Java and C versions.

4 Capabilities

The SDK provides a Modelica 3.1 compatible parser
and object model as well as a translator implement-
ing most features of Modelica 3.1. In this section, we
will discuss the various features in the SDK and how
they impact both users and developers.

4.1 File and Path Management

For developers, the SDK handles all loading and sav-
ing of files. Classes are automatically loaded to
memory when required thereby freeing the developer
from the tedious tasks of managing memory or speci-
fying which files to load.

4.2 Parsing, Object Model and Manipulation

An important design feature of the SDK is that
loaded classes are treated as a set of “live” objects,
which can be manipulated and queried in memory
(similar to how the DOM object model is handled for
XML objects). Finding of a particular component,
annotation value or equation, is performed by tra-
versing this object-graph. Every object, whether it
represents a Modelica class, component, modifica-
tion or annotation, can have listeners added to it
which are notified of any changes. This makes the
SDK ideal for editors and other interactive tools.

Modelica classes represented using the SDK's object
model can be transformed into other representations,
e.g. written back out in Modelica syntax, using the
PrintTarget class. By supplying a custom PrintTarget
object, the developer can control the appearance and

format of the output, e.g. producing XML, HTML or
other formats.

4.3 Querying

A package is included for defining and executing
queries on Modelica classes or components. This
allows selection of components or classes which
match a specified predicate. The Apache Commons
Collections [10] library defines an interface called
Predicate with one method to evaluate whether an
object should be accepted or not. In addition to the
interface itself, a number of useful predicates are
also provided, such as selecting a component by type
or variability, or selecting a class by classes it ex-
tends from.

For selecting components there is an additional Boo-
lean flag which controls whether or not to iterate
through the hierarchy of the model. If this flag is
false, only components at the top-level of the class
are returned. If true, components from any level of
the class are considered. When selecting classes, a
similar additional argument controls whether to re-
strict queries to only models that are in memory or to
iterate over all classes found in the path (thus trigger-
ing these classes to be automatically loaded as
needed). The latter is, of course, quite slow as all
relevant files will be loaded and processed, but it can
be useful to consider all classes in the path for some
applications.

As an example, the following code selects all the
parameters from a specified class:

Predicate<ModelicaComponent> predicate =
new ComponentVariabilityPredicate(
Variability.PARAMETER);

List<ModelicaComponent> parameters =
Query.selectComponents(myClass,
predicate, true);

Similarly, the following code selects all loaded
classes that extend from Real:

Predicate<ModelicaClass> classPredicate
= new SubclassOfPredicate(“Real”);

List<ModelicaClass> realTypes =
Query.selectClasses(classPredicate,
false);

4.4 Checking

The “checking” package provides convenient me-
thods for validating a model against the Modelica
specification and reporting any issues found. The
rules provided check for a variety of different types
of issues but the real power in the checking capabili-
ties comes from the ability of developers to add their

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 633

own rules to the system (as discussed later in this
paper).

When a developer performs a check on a class, the
result is a CheckResultSet object which con-
tains the set of all results for rules the class has trig-
gered. Each result has a severity and the set as a
whole can be queried as to the highest severity result
in the set.

There are two powerful features available once a
CheckResultSet has been obtained. First, it is
possible to add a listener to be notified when a result
changes. In this way, the system can automatically
update these results as users make changes. Second,
each result provides a set of actions (extending ja-
vax.swing.Action) which can be performed to
correct the error. This feature is exploited in Vertex
to provide a “one-click” auto-correction mechanism
where applicable.

CheckResultSet crs =

CheckManager.checkClass(myClass);

if(Severity.ERROR==crs.getSeverity()) {

 // handle an error

}

4.5 Flattening and Symbolic Processing

 “Flattening” of a class, from hierarchical form to a
flat list of equations and variables, is divided into
two steps, “instantiation” and “elaboration”. The in-
stantiation process flattens the hierarchy to a set of
variables, equations, connectors and connections,
each using dot-notation. The elaboration process
performs the symbolic processing.

The symbolic processing handles over-constrained
connections [11], generates connection equations,
and divides the system by the variability of equa-
tions. For each level of variability it then assigns the
causality of the equations, and for continuous equa-
tions reduces the DAE index by differentiating se-
lected equations.

The following code fetches a class from the Modeli-
ca Standard Library, instantiates it, elaborates it and
requests the total list of equations:

ModelicaClass cc =
ModelicaClassLoader.findClass(
“Modelica.Mechanics.Rotational.Examp
les.CoupledClutches”);

Model model =
DefaultInstantiator.instantiate(cc);

model.elaborate();

List<Equation> equations =
model.getEquations();

4.6 Code Generation

As mentioned previously, the SDK includes methods
to translate a model to code. The flexible code gen-
eration architecture is provided through extension
points which are discussed in greater detail shortly.

5 Limitations

The design objective for the Modelica SDK is to
cover as much of the Modelica specification [12] as
possible. The parser and object model cover the full
3.1 specification, so operations which manipulate,
query, check or flatten classes, as discussed earlier,
operate on Modelica 3.1 code, these are tested on the
Modelica Standard Library 3.1. The current limita-
tions are in the symbolic processing and code gen-
eration sections of the tool. The current limitations
are:

• Overloaded operators are not yet supported
• Expandable connections do not yet generate

equations
• Stream connectors do not yet generate equa-

tions
• Subtasks are not yet generated and Sub-

task.decouple(x) defaults to x
• semiLinear is not optimized
• MultiBody extensions are supported but not

optimized, e.g. rooted(x) defaults to
true

• Inverse annotations are not yet supported,
currently symbolic solutions of equations
can be defined as described later

• Reducing systems of equations via methods
such as tearing is not currently performed,
though this is in development and some oth-
er optimizations are currently performed.

6 Extension Points

The SDK provides a number of operations which the
user can replace or add to with their own code. These
are referred to as extension points. Some of these
will be described here. In order to understand how
extension points work some knowledge of the Mod-
elica translation process as well as the relationship
between Modelica classes and files is required. The
extension mechanism makes use of the Java Ser-
viceLoader mechanism [13] which eases the de-
velopment of modular applications. The extension
points are defined in the SDK, but extensions can be
provided in separate modules on the Java classpath.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 634

6.1 Modelica Path

The Modelica Specification describes the relation-
ship between Modelica classes and files on the file-
system. It further describes the operation of the
Modelica path lookup mechanism for locating files
which uses URLs of the form “modelica://…” to
identify the location of files relative to Modelica de-
finitions. The SDK contains interfaces which
represent the generalized storage model (for both
source files and other types of data contained in the
package hierarchy, such as images, data, etc). Im-
plementations of these interfaces are provided for
two methods for two such storage schemes. The first
is the traditional file system based approach. The
second supports accessing code and data from an
archive file.

The archive file implementation is based upon a pro-
posal for Modelica 3.1 which allows an entire pack-
age (or collection of packages) to be bundled togeth-
er as a single file. An additional part of that same
proposal, the ability to resolve “modelica://” URL’s
to locate resources such as image or data files from
within the archive file itself, is also supported.

This is one of the most powerful features of the SDK
because Modelica code, data, images, etc. can all be
bundled into a single archive and easily distributed
(rather than stored as an elaborate directory structure
on the file system). Furthermore, this feature can be
used to create an extensible "virtual package hie-
rarchy" where additional resources are mapped to a
Modelica package structure and can thus be refe-
renced directly in Modelica code.

An example use of this feature would be the loading
of parameter data from a database. By defining two
Java classes a database table could be expressed as a
package with a series of records contained within it,
and these could be referenced within other Modelica
code.

6.2 Checking Rules

An important feature of the SDK is the ability to eva-
luate rules to check a class for validity and find er-
rors. A number of rules are built-in for checking
compatibility of a model to the Modelica Specifica-
tion. By providing an extension of the class
com.deltatheta.modelica.check.Check
Rule additional rules can be added.

A check rule has a single method, to check a class.
This method is passed a CheckResultSet object,
and is expected to add a CheckResult instance to
the set if the class fails to pass the rule.

public class UseOfPartialClassCheck
implements CheckRule {

 public void checkClass(CheckResultSet
results, ModelicaClass clazz) {

 for (ModelicaComponent component :
clazz.getComponents()) {

 try {

 ModelicaClass type =
component.getModelicaClass();

 if (type.isPartial()) {

 addResult(results,
component, type, clazz);

 }

 } catch
(ClassDefinitionNotFoundException
ex) { }

 }

 }

 private void addResult(CheckResultSet
results, final ModelicaComponent
comp, final ModelicaClass type,
final ModelicaClass clazz) {

 results.add(new
AbstractCheckResult() {

 public String getDescription() {

 return ("Component " +
comp.getName() + " in class" +
clazz.getPath() + " is of type " +
type.getPath() + " which is
partial");

 }

 public Severity getSeverity() {

 return (Severity.ERROR);

 }

 });

 }

}

6.3 Symbolic Rules

The SDK has the facility to add rules for solution of
scalar equations. This is useful for cases where a par-
ticular format of equation is known to appear regu-
larly in a modeling domain but is not solved by the
SDK, or where a user defined function has a particu-
lar solution. For example, the following code adds
the solution of a simple linear equation:

Solution.defineRule(“&y=&m*&x+&c”,

”&x:=(&y-&c)/&m”);

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 635

6.4 Code Generation

Where the SDK is being used to generate simulation
code there is a code generation stage in the transla-
tion process. In order to support the diverse range of
applications proposed this code generation must be
able to be language and platform independent. This
is achieved by the code generator itself being an ex-
tension matching a specified interface. Note there is
no built-in code generator provided in the SDK. Fur-
thermore, the specification of the code generation
interface is commercially sensitive and therefore on-
ly available to licensed developers.

7 Conclusions

Enabling a product to edit, simulate, import or ex-
tract data from Modelica models is no longer a leng-
thy process. With the availability of the Modelica
SDK such capabilities can now be rapidly developed
or integrated into existing tools. This dramatically
eases the adoption of Modelica as a standard for sys-
tems model development and exchange. Further-
more, it creates many opportunities for exploiting
currently underutilized features in Modelica (e.g.
annotations) and integrating Modelica into the engi-
neering process.

References

[1] Tiller M. “Parsing and Semantic Analysis of
Modelica Code for Non-Simulation Applica-
tions”. Modelica 2003.

[2] Åkesson J., Hedin G., Ekman T., “Develop-
ment of a Modelica Compiler using Jas-
tAdd”, Seventh Workshop on Language De-
scriptions, Tools and Applications. 2007.

[3] Najafi, M., Nikoukhah, R., Steer, S., Furic, S.
“New features and new challenges in model-
ing and simulation in Scicos”. 2005 IEEE
Conference on Control Applications

[4] Fritzson, P., Aronsson, P., Lundvall, H.,
Nyström, K., Pop, A., Saldamli, L., Broman,
D. “The OpenModelica Modeling, Simula-
tion, and Development Environment”. SIMS
2005.

[5] Jonas Larsson and Peter Fritzson. “A Mod-
elica-based Format for Flexible Modelica
Code Generation and Causal Model Trans-
formations”. In Proceedings of the 5th Inter-

national Modelica Conference (Modeli-
ca'2006), Vienna, Austria, Sept. 4-5, 2006.

[6] Tiller M. “Implementation of a Generic Data
Retrieval API for Modelica”. Modelica 2005.

[7] Koehler J., Banerjee A. “Usage of Modelica
for transmission simulation at ZF”. Modelica
2005

[8] deltatheta Vertex. [online]
http://www.deltatheta.com/products/vertex/

[9] Apache Software Foundation. Apache Axis2.
[online] http://ws.apache.org/axis2/

[10] Apache Software Foundation. Commons
Collections. [online]
http://commons.apache.org/collections/

[11] Otter M., Elmqvist H., Mattsson SE. “The
New Modelica MultiBody Library”. Modeli-
ca 2003.

[12] Modelica 3.1 Specification. 2009.

[13] O’Conner J. “Creating Extensible Applica-
tions with the Java Platform”. [online]
http://java.sun.com/developer/technicalArticl
es/javase/extensible/. 2007.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 636

