
SPICE3 Modelica Library

Kristin Majetta Sandra Böhme Christoph Clauß Peter Schneider
Fraunhofer-Institute for Integrated Circuits, Design Automation Division

Zeunerstraße 38, 01069 Dresden, Germany
{Kristin.Majetta, Sandra.Boehme, Christoph.Clauss, Peter.Schneider}@eas.iis.fraunhofer.de

Abstract

Since the very beginning of the Modelica development
ambitions for electronic simulation exist. The electronic
simulator SPICE, the SPICE models and the SPICE net-
lists grew to a quasi standard in electronics simulation
for the last 30 years. That is why the wish arose to have
SPICE models available in Modelica. This paper deals
with modeling the SPICE3 models in Modelica directly
extracted from the original SPICE3 source code. This
courses the problem of transforming the sequential
simulator-internal model descriptions of SPICE to the
declarative description from Modelica. To solve this
problem a way was developed and tested for some
SPICE3 semiconductor models. The actual library is
presented and further plans are shown.

Keywords: SPICE, Modelica, SPICE3 library for
Modelica, Semiconductor models, Electronic circuit
simulation

1 Motivation

With starting the development of Modelica, models
for electrical circuits were taken into consideration
[1]. Since SPICE and its derivatives grew to a quasi
standard in electronics simulation the SPICE mod-
els should become available within Modelica.
Beyond the Modelica standard library (MSL) two
SPICE libraries were developed [2], the SPICELib
and the BondLib. The SPICELib [3], which covers
different complex MOSFET models, is a standalone
library with its own connectors. The BondLib [4]
bases on bond graphs. It offers different levels of
models related to HSpice.
The reason for developing this SPICE3 library is to
provide both the original Berkeley SPICE3 models
and the SPICE netlist approach. Furthermore, some
additions will be prepared to cover PSPICE models.
Since the Berkeley SPICE3 simulator is the only
known electric circuit simulation program with
open source code it offers the opportunity to extract

models for implementation in Modelica. The
SPICE3 library uses that way for SPICE3 semicon-
ductor models.
In this paper the modelling steps are considered
which are done starting with a C++-model library
which was extracted from SPICE3 formerly. The
SPICE3 library structure is presented as well as a
circuit example.

2 SPICE3 models and netlists

The Berkeley SPICE3 (latest versions e5 or f4) is a
general-purpose circuit simulation program which
has built-in models both for general devices (resis-
tors, capacitors, inductors, dependent and independ-
ent sources) and semiconductor devices (Diode,
MOSFET, BJT,…). Some models are a collection of
different single models (levels). Instead of adding
new models the user is able to choose a large variety
of parameters. Only sometimes a new model is
added by the developer. The set of SPICE models is
like a standard in circuit simulation.

Via a netlist the SPICE3 models are composed to a
circuit to be simulated. The netlist contains the
model instances, their actual parameters, and the
connection nodes. In more detail SPICE3 netlists are
described in the SPICE3 user’s manual [5]. For
many electric and electronic devices SPICE3 netlists
are available. For the following inverter circuit figure
2 shows the SPICE3 netlist.

Fig. 1 MOSFET inverter circuit

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 567 DOI: 10.3384/ecp09430019

 Simulation inverter circuit
 MT1 4 2 0 0 Tran_NMOS L=2u W=5u
 MT2 6 2 4 6 Tran_PMOS
 VDD 6 0 5.0
 VEIN1 2 0 dc=0 sin(0 5 0.5)
 .model Tran_NMOS NMOS (VT0 =0.7
 tox=8n lambda=3e-2)
 .model Tran_PMOS PMOS (VT0 =-0.7)
 .tran 0.001 10
 plot v(6) v(2) v(4)
.end

Fig. 2 SPICE3 netlist of the inverter circuit

Within the semiconductor devices SPICE3 differen-
tiates between technology parameters and device
parameters. Device parameters can be chosen for
every single model instance, e.g. the channel length
of a transistor. Technology parameters which are
specified in a model card (.model) are adjustable for
more than one element simultaneously, e.g. the type
of transistors.

3 Model extraction out of SPICE3

The SPICE3 internal models were extracted from the
SPICE3 source code, and stored in a (commercial)
C++ library [6] [7]. This library was intensively
tested by including it as external model code to
SPICE3, so it was possible to test the C++ models
and the original SPICE3 models in parallel.

The C++ library includes the whole model pool of
the semiconductor elements of SPICE3. For each
element both a C++ file (*.cpp) and a header file
(*.h) exist. The header file of each semiconductor
element contains classes with data (parameter and
internal data) and declaration of methods. In the C++
file the methods are coded.

Due to the object-oriented principle, a class hierar-
chy of model components was created. Central base
classes contain such values and their methods that,
according to SPICE3, are needed in nearly every
model, e.g. the nominal temperature. Via inheritance
of the base classes their values are provided to other
classes. Each functionality that is needed more than
one time is coded in a separate function. Conse-
quently, a strongly structured hierarchy of classes
was developed.

To simulate a model with the C++ library a SPICE3
typical system of equations is generated (initializa-

tion phase) and for each solution step the current
data are loaded (simulation phase). For each device
of the circuit, model specific methods that are called
according to different aspects are supplied. These
methods can be disposed under functional aspects as
follows:

 Methods to analyse the source code

 Methods to create the linear system of
equations

 Methods for instantiation the models and
parameters

 Methods to calculate values of the linear
equation system

 Methods to insert values into the system of
equations

For each model parameter a variable exists, that is
called “parameterValue” which gets the value of the
particular parameter. For some parameters it is im-
portant to know whether they were set by the user or
their default values were used. Depending on which
case comes into effect, different formulas are used in
the further calculation. Even if the value set by the
user is the same as the default value, the simulation
results differ in some cases. The information if a pa-
rameter is set is stored in a Boolean value “IsGiven”
(true, if the parameter is set). The “IsGiven” value is
analysed by different methods.

The semiconductor devices are modelled by means
of a substitute circuit. In this process the different
physical effects are allocated at any one time to a
component of this circuit. For each of this effects
different methods exist, that insert the currents and
conductances that are calculated for the actual volt-
ages at the pins, into the linear system of equations.
Also equations are arranged for the internal nodes of
the substitute circuit. For the calculation also internal
values of the integration method are used, e.g. the
actual time step size and the history of the calculated
values.

In summary the C++ library of the SPICE3 semicon-
ductor elements can be characterized as follows:

 The complete library is according to the
semiconductors structured in classes, which
contain data and methods.

 For each device methods exist, that achieve
the necessary calculations.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 568

 For each element of the SPICE3 netlist, the
according classes are instantiated. The needed
methods are called for every instance.

 The aim of these calls is to create a linear
system of equations to calculate the solution
like in SPICE3.

 The parameter handling is special because of
the calculations in the initial phase that uses
so called “IsGiven” values.

 Internal values of the integration methods are
used.

The C++ library which was thoroughly tested is the
base for creating SPICE3 models in Modelica.

4 Modelling steps towards Modelica

The C++ functions are constructed to calculate the
currents of an equivalent circuit starting with given
node voltages. The currents are used inside SPICE3
for filling a linear system of equations.

Starting with the C++ equivalent circuit a Modelica
top level model (figure 3) is constructed with electri-
cal pins for connecting. The components of the top
level model represent special (e.g. semiconductor)
effects (e.g. channel current). Using the pin voltages
the components call in their algorithm part typically
a hierarchy of functions for the calculation of cur-
rents.

There are several steps of modelling semiconductor
devices [8], which are described in the following:

Fig. 3 MOS top level model

1. Construction of top level model
In Modelica every semiconductor device gets a so
called top level model which calls the semiconductor
functions and can be connected to other models via
its connectors. This top level model is the semicon-

ductor device component which will be applied by
the user. As in SPICE3 the top level model is adjust-
able by choosing parameters. Within the top level
model the branch currents are calculated using the
existing voltages and parameters with the help of
functions.

The physical values that are calculated in the C++
semiconductor devices are prepared to be inserted
into the linear system of equations like in the
SPICE3 simulator. Such a system of equations can-
not be addressed in Modelica usually. Only the rela-
tion between voltage and current at the interfaces of
the model is of interest (terminal behaviour [9]). The
voltages at the pins, that are the results of the simula-
tion algorithm, are gripped and given to functions
that calculate currents and other values.

The top level model that can be connected and pro-
vided with parameters is extracted from the func-
tionality in C++ (figure 3).

2. Parameter handling

The behaviour of a transistor is determined by its
parameters significantly. Parameters are e.g. the
physical dimension, the temperature or the oxide
thickness. Before the simulation the Boolean value
“IsGiven” is analysed, which gives the information
whether a parameter was set by the user its default
value is used.

In the C++ library the parameters are handled as a
string. If a parameter is needed when calling a
method, the string is searched for a value of the pa-
rameter. This way is also possible in Modelica, but it
is not usual. In Modelica all parameters are provided
in a parameter list, where the user can adjust the pa-
rameters. It is desirable that in the Modelica concept
a possibility exists that decides whether a parameter
is set by the user (“IsGiven”) or not. Unfortunately
such a possibility does not exist yet. That is why a
temporary solution was chosen. The default value of
parameters whose “IsGiven” value is of importance,
is set to a very big negative value (-1e40), because
that values does make no sense as a normal parame-
ter value. Afterwards it is checked if the value of a
parameter is not equal to -1e40. In that case it is as-
sumed that the parameter was given by the user and
consequently “IsGiven” is true. Otherwise the pa-
rameter gets it default value. This solution is only
preliminary and will be improved as soon as Mode-
lica delivers the necessary possibilities. The example

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 569

in figure 4 shows the parameter handling with the
parameter phi.

Fig. 4 parameter handling

As described in section two the parameters in
SPICE3 are divided into two groups, device and
technology parameters. In Modelica the device pa-
rameters are part of the semiconductor model. The
technology parameters are collected in a record. This
record is a parameter for all semiconductor devices.
This courses that also the technology parameters can
be adjusted in every single model separately which is
not intended in SPICE. But in some cases it could
make sense.

Furthermore the record with the technology parame-
ters is available in the highest level of the circuit.
Every semiconductor device gets the record as a pa-
rameter. So the components of the record can be ad-
justed in a global way for each device in the circuit.
Another possibility to provide the technology record
as global is to define a model in the circuit level that
inherits the properties of the MOSFET where the
desired parameters are unchangeably included. Both
possibilities force the user to work within the source
code. For untrained users it would be better to work
in the graphical modus of Dymola and giving each
single semiconductor device parameter its value by
clicking on the device and inserting the parameter
value in the prepared list.

3. Transformation of C++ library data structure

In the C++ source library the data are concentrated in
classes and located in the according header file of the
semiconductor elements. For each parameter a vari-
able “parameterValue” exists that gets the particular
value of the parameter. In Modelica the parameters
are concentrated in records because these are the
equivalent classes to the C++ classes with the pa-
rameters. Records were developed in Modelica to
collect and administrate data and to instantiate data
all at once. Inside the records the data get their de-
fault values. With a function call all data that are lo-
cated inside a record can be accessed. Parameters
that are needed for more than on model are collected

in a higher level record which is inherited to the
lower level records of the single models (figure 5).

Fig. 5 Transformation of C++ data structure

4. Transformation of C++ library methods

The C++ library of the semiconductor elements of
SPICE3 contains beyond parameters and variables
that are concentrated in classes, also of a huge num-
ber of methods that need to be transformed. Within
the transformation it is important, that the structure
of the C++ library also remains in Modelica with the
aim to recognise the C++ code.

Each semiconductor element in the C++ library be-
comes to a top level model in Modelica. Inside the
top level model functions are called, that calculate
both the parameters and the currents at the pins of
the model. These functions need to be extracted from
C++ and transformed to Modelica. In the C++ library
a hierarchy of classes exists where often more than
one method calculate one physical effect. Like in a
tree structure one method calls another method that
itself also calls another method and so on.

The transformation starts with the transfer of the
name of the C++ method to the according Modelica
function. That function has to be included into a
package that has the name of the C++ class where
the appropriate method came from. In the second
step the parameters and values that are concentrated
in classes in C++ are transformed to Modelica into
records. In the third step the function text that
changes the values in the classes respectively the
records has to be directly red of the C++ code and
transformed to Modelica where the original C++
names are used. Within that step the C++ code is
included into the Modelica code as annotation to
recognise the C++ code (figure 6).

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 570

Fig. 6 Transformation of a function

5. Code revision

After a SPICE3 model was transformed into Mode-
lica the source code is checked again with the aim to
make is more effective. One point is to include the
Modelica operator “smooth”. Within this all condi-
tions (if) are checked to find out if it is continuous,
also in higher derivations. In that case “smooth”
avoids the not needed breaks of the analogue simula-
tion algorithm. With this approach the performance
of the simulation can be increased very much.

It also has to be checked if methods were trans-
formed to Modelica that are actually not needed, to
simplify the Modelica code.

The system of equations that is built in SPICE3/C++
is not used in Modelica as well as internal values of
the integration method that is in connection to the
SPICE3 solution algorithm. The calculation of the
Jacobians that is done in SPICE3/C++ is also not
used in Modelica. It was tried to ensure to transform
only the functional aspects of the models to Mode-
lica. In this way a mixture between model equations
and numerical solution algorithms like in SPICE3 is
avoided.

5 Structure of SPICE3 library

The current SPICE3 library contains the packages
Basic, Interfaces, Semiconductors, Sources, Exam-
ples, Repository and Additionals (as can be seen in
figure 7).

Fig. 7 SPICE3 library overview

The package Basic contains basic elements like re-
sistor, capacitance, inductivity and controlled
sources. In the package Sources there are the volt-
age- and current sources transformed from SPICE3.
The package examples include some example cir-
cuits, to help the user getting a feeling of the behav-
ior of the library and their elements.

Only the semiconductor models are written using the
converted C++ library. The packages Semiconductor
and Repository are related to each other very closely.
In the package Repository the semiconductor devices
and their model cards from SPICE3 are modeled.
The necessary function and records are also in this
package. This package is not for user access. The
semiconductor package contains clearly arranged the
offered semiconductor devices and their model card
records for easy usage. The user should take the
models out of this package. Via inheritance these
models are connected to the repository. That’s why
the user does not have to access to the repository
directly.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 571

Fig. 8 Packages Semiconductor and Repository

The package Additionals contains the polynomial
sources like they are available in SPICE2 or
PSPICE. Other models that are not from SPICE3 can
be collected here.

6 Example

In this section a Modelica model of the inverter cir-
cuit shown in figure 1 is developed. The following
two approaches are important.

Graphical composition

The SPICE3 library models are composed and con-
nected with the graphical possibilities of the simula-
tor. Figure 9 shows such a circuit (Dymola).

Figure 9: Graphically composed inverter circuit

Textual composition

Starting with the SPICE3 netlist (figure 2) the Mode-
lica inverter model can be generated directly without
using graphical information. This feature is impor-
tant, because the SPICE3 netlists that exist for many
circuits, modules and complex circuit elements,
should also be available in Modelica. In the follow-
ing example of two inverters, a way of transforming
is shown. First of all the two source codes are op-
posed to each other.

SPICE3 Modelica
inverter

Mp1 11 1 13 11
+ MPmos

Mn1 13 1 0 0
+ MNmos

Vgate 1 0 PULSE
+ (0 5 2s 1s)

Vdrain 11 0
+ PULSE(0 5 0s
+ 1s)

.model MPmos PMOS
+ (gamma=0.37)

.model MNmos NMOS
+ (gamma=0.37
+ lambda=0.02)

.tran 0.01 5

.end

model inverter

 Spice3.Basic.Ground g;

 Spice3…M
Mp1(mtype=true,
M(GAMMA=0.37));

 Spice3…M
Mn1(M(LAMBDA=0.02,
GAMMA=0.37));

 Spice3…V_pulse
vgate(V1=0, V2=5, TD=2,
TR=1);

 Spice3…V_pulse
vdrain(V1=0, V2=5, TD=0,
TR=1);

 Spice3.Interfaces.Pin
p_in, p_out;

protected

 Spice3.Interfaces.Pin
n0, n1, n11, n13;

equation

 connect(p in, n1);
 connect(p_out, n13);

 connect(g.p, n0);

 connect(vdrain.n,n0);
 connect(vdrain.p,n11);

 connect(Mp1.NB,n11);
 connect(Mp1.ND, n11);
 connect(Mp1.NG, n1);
 connect(Mp1.NS, n13);
 connect(Mn1.NB,n0);
 connect(Mn1.ND, n13);
 connect(Mn1.NG, n1);
 connect(Mn1.NS, n0);

end inverter;

Fig. 10 Inverter model in SPICE and Modelica

The creation of the Modelica texts requires the fol-
lowing steps:

1. The obligate name of the Modelica model can be
derived from the first line in the SPICE3 netlist.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 572

2. It is necessary to create entities of each circuit ele-
ment of the SPICE3 netlist and to provide them with
parameters, e.g. the SPICE3 line
Vdrain 11 0 PULSE(0 5 0 1)

is in Modelica
V_pulse vdrain(V1=0,V2=5,TD=0,TR=1);

3. For each node number in SPICE an internal pin
has to be created in Modelica, e.g. for the node num-
ber 2 in SPICE, the Modelica line would be:
protected Spice3.Interfaces.Pin n2;

The “n” is necessary because in Modelica a single
number is not a name.

4. According to the netlist the internal pins have to
be connected to the circuit element, e.g.
connect (Mp1.ND, n11);

5. In the last step the external connectors have to be
created and connected to the according internal con-
nectors, e.g.
Spice3.Interfaces.Pin p_in, p_out;

connect(p_in, n1); connect(p_out, n2);

Concerning the semiconductor elements the model
cards have to be transformed to Modelica. Two ways
seem to be possible.

Separate record

The records of the technology parameters MPmos
and MNmos are instances of the record model card
in the model inverter for each transistor (Mp1,
Mp2,…).

model inverter

 parameter …modelcardMOS Pmos(GAMMA=0.37);

 parameter …modelcardMOS Nmos(LAMBDA=0.02,
 GAMMA=0.37);

 Spice3.Basic.Ground g;

 Spice3…MOS Mp1(mtype=1,modelcard=MPmos);

 Spice3…MOS Mp2(mtype=1,modelcard=MPmos);

 Spice3…MOS Mn1(modelcard=MNmos);

 Spice3…MOS Mn2(modelcard=MNmos);

 …

end inverter;

Extended model

For each technology parameter set a separate model
is created. This model extends the transistor M that
was defined in Modelica. Within this way the needed
technology parameters are given.

model inverter

 model MPmos

 Spice3.Semiconductors.modelcardMOS M
 (GAMMA=0.37);

 extends Spice3…MOS(final type=1,
 modelcard=M);

 end MPmos;

 model MNmos

 Spice3.Semiconductors.modelcardMOS M
 (LAMBDA=0.02, GAMMA=0.37);

 extends Spice3…MOS(final mtype=0,
 modelcard=M);

 end MNmos;

 Spice3.Basic.Ground g;

 MPmos Mp1;

 MPmos Mp2;

 MNmos Mn1;

 MNmos Mn2;

 …

end inverter;

With the help of these two possibilities the user can
give many transistors the same technology parame-
ters like it can be done in SPICE3.

The textual composition could be done automatically
by a special translator. The aim is to have such a
translator in the future, maybe in the Modelica lan-
guage.

 Fig. 11 Inverter simulation result

The result of the Dymola simulation of the inverter
circuit is in accordance with the SPICE3 simulation
result.

7 Test and Comparison

To verify the transformed models several different
test steps were arranged. It is important that the
Modelica library is in accordance with SPICE3.
Since the C++ library was tested very intensively it
can be assumed that it is correct. That is why
SPICE3 as well as the C++ library are the base of the
tests.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 573

The C++ code was included to the Modelica code as
comment. This allows the visual comparison of the
source codes.

Single values of currents or other variables (e.g. ca-
pacitances) are compared between the Modelica
simulation and the simulation of the C++ model li-
brary. This approach is very complex and time con-
suming. Therefore it is only done when the reason of
known differences has to be found out.

The terminal behavior is compared between Mode-
lica and SPICE3. Therefore single semiconductor
devices are connected to voltage sources to calculate
the current-voltage characteristics.

In the next step complex circuits are created with
several semiconductor elements and the results are
compared between SPICE3 and Modelica. Such cir-
cuits are the base for a collection of circuits for re-
gression tests, which are maintained to ensure the
correctness of the library in future.

A comparison between the Spice3 library for Mode-
lica and the BondLib in Dymola showed that the two
libraries have nearly the same results and perform-
ance. For the comparison three circuits were used
(NAND, NOR, double Inverter). The following table
1 shows the results in detail:

Tab. 1 Comparison between BondLib and
 Spice3 Library for Modelica

As it can be seen in the table 1, the Spice3 library
has much less variables then the BondLib before
translation of the model. After the model has been
translated, the BondLib has little less variables than
the Spice3 library. This shows that the simplification
algorithms of Dymola work better for the BondLib.

For the double Inverter circuit the output voltage of
the original SPICE3 simulator, the BondLib and the
Spice3 library for Modelica are shown in the follow-
ing figures 12/13.

 Fig. 12 Output voltage original SPICE3

 Fig 13 Output voltage BondLib and

 Spice3 library for Modelica

Each figure shows the output voltage of the second
inverter. In figure 12 the result of the original
SPICE3 simulator is shown. The results of the three
simulators are nearly the same.

8 Conclusions

In this paper a concept was described to transform
the procedural implemented SPICE3 models, which
are directly extracted from the original SPICE3
source code, to declarative described models for
Modelica. Therefore a list of modeling steps was
elaborated and applied to transform several semicon-
ductor devices from SPICE3 to Modelica whereas
the parameter handling was focused on. The result is
a SPICE3 library for Modelica which contains the
general devices and first semiconductor devices.

A disadvantage of the Spice3 library compared with
the Bondlib is that the Spice3 library has no heatport.
At the moment it is possible to simulate with a fixed
parameter “Temp”. It has to be figured out how this
parameter can be made variable and time dependent
in the future.

 NAND NOR Inverter

 SPICE3lib BONDlib SPICE3lib BONDlib Spice3lib BONDlib

Before
translat-
ing

scalar
unknowns 873 10.677 873 10.673 870 10.860

variables 1.157 12.136 1.157 12.132 1.152 12.315

After
translat-
ing

parameter
depending 8 2.005 8 2032 8 2.030

time-
varying
variables 826 688 826 687 824 687

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 574

Further steps for the improvement of the SPICE3
library are:

 developing a method for automatically trans-
forming SPICE3 netlists to Modelica

 increasing the performance of the Modelica
models (e.g. application of the smooth opera-
tor)

 parameter treatment (“IsGiven”) has to be
simplified

 adding SI units to the Modelica models

 large number of tests

 testing large circuits (many devices)

 inclusion of further SPICE3 models

 intensively testing, comparison to SPICE3

 inclusion of some PSPICE model features

 comparison with existing electronic libraries

 adding a heatport

Acknowledgement

This research was founded by the European ITEA2,
projects EUROSYSLIB and MODELISAR.

References

[1] Clauß, C.; Leitner, T.; Schneider, A.; Schwarz,
P.: Modelling of electronic circuits with Mode-
lica. Proc. Modelica Workshop, Lund, Sweden,
Oct. 2000, 3-11.

[2] Cellier, F.E.; Clauß, C.; Urquia, A.: Electronic
circuit modeling and simulation in Modelica.
EUROSIM 2007, Ljubljana, Slovenia, 9.-13.
Sept. 2007.

[3] Urquia, A.; Martin, C.; Dormido, S.: Design of
SPICELib: a Modelica Library for modeling and
analysis of electric circuits. Mathematical and
Computer Modelling of Dynamical Systems,
11(1)2005, 43-60.

[4] Cellier, F.E.; Nebot, A.: The Modelica bond
graph library. Proc. 4th Int. Modelica Confer-
ence, Hamburg-Harburg, Germany, 1, 2005, 57-
65.

[5] SPICE Version 3e Users Manual, 1991

[6] Leitner, T.: Entwicklung simulatorunabhängiger
Modelle für Halbleiter-Bauelemente mit objekt-
orientierten Methoden. Chemnitz, Technische
Universität, Diss., 1999.

[7] Leitner, T.: A new approach for semiconductor
models basing on SPICE model equations. Proc.

ECS’97, Bratislava, Slovakia, 4./5. 9. 1997, 119-
123.

[8] Majetta, K.: Entwicklung und prototypische Um-
setzung eines Konzeptes für eine Modelica-
Bibliothek von SPICE-Halbleiterbauelementen
und Erarbeitung einer Teststrategie. Dresden,
Berufsakademie Sachsen, Dipl., 2008.

[9] Clauss, C.; Haase, J.; Kurth, G.; Schwarz, P.:
Extended Admittance Description of Nonlinear
n-Poles. AEÜ, Vol. 49 (1995) 2, 91-97.

Proceedings 7th Modelica Conference, Como, Italy, Sep. 20-22, 2009

© The Modelica Association, 2009 575

